1
|
Donelan W, Li S, Dominguez-Gutierrez PR, Anderson Iv A, Yang LJ, Nguyen C, Canales BK. Expression and secretion of glycosylated barley oxalate oxidase in Pichia pastoris. PLoS One 2023; 18:e0285556. [PMID: 37167324 PMCID: PMC10174515 DOI: 10.1371/journal.pone.0285556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023] Open
Abstract
Oxalate oxidase is an enzyme that degrades oxalate and is used in commercial urinary assays to measure oxalate levels. The objective of this study was to establish an enhanced expression system for secretion and purification of oxalate oxidase using Pichia pastoris. A codon optimized synthetic oxalate oxidase gene derived from Hordeum vulgare (barley) was generated and cloned into the pPICZα expression vector downstream of the N-terminal alpha factor secretion signal peptide sequence and used for expression in P. pastoris X-33 strain. A novel chimeric signal peptide consisting of the pre-OST1 sequence fused to pro-αpp8 containing several amino acid substitutions was also generated to enhance secretion. Active enzyme was purified to greater than 90% purity using Q-Sepharose anion exchange chromatography. The purified oxalate oxidase enzyme had an estimated Km value of 256μM, and activity was determined to be 10U/mg. We have developed an enhanced oxalate oxidase expression system and method for purification.
Collapse
Affiliation(s)
- William Donelan
- Department of Urology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - ShiWu Li
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Paul R Dominguez-Gutierrez
- Department of Urology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Augustus Anderson Iv
- Department of Urology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Li-Jun Yang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Cuong Nguyen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Benjamin K Canales
- Department of Urology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
2
|
Assembly of an improved hybrid cascade system for complete ethylene glycol oxidation: Enhanced catalytic performance for an enzymatic biofuel cell. Biosens Bioelectron 2022; 216:114649. [DOI: 10.1016/j.bios.2022.114649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022]
|
3
|
Antonio JGR, Franco JH, Almeida PZ, Polizeli MDLTM, Minteer SD, De Andrade A. Evaluation of TEMPO‐NH2 and Oxalate Oxidase Enzyme for Complete Ethylene Glycol Oxidation. ChemElectroChem 2022. [DOI: 10.1002/celc.202200181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jesimiel Glaycon Rodrigues Antonio
- University of Sao Paulo Campus of Ribeirao Preto: Universidade de Sao Paulo Campus de Ribeirao Preto Chemistry Avenida Bandeirantes 3900 14040901 Ribeirão Preto BRAZIL
| | - Jefferson Honorio Franco
- University of Sao Paulo Campus of Ribeirao Preto: Universidade de Sao Paulo Campus de Ribeirao Preto Chemistry Avenida Bandeirantes 3900 14040901 Ribeirão Preto BRAZIL
| | - Paula Zaghetto Almeida
- University of Sao Paulo Campus of Ribeirao Preto: Universidade de Sao Paulo Campus de Ribeirao Preto Biology Avenida Bandeirantes 3900 14040901 Ribeirão Preto BRAZIL
| | - Maria de Lourdes T. M. Polizeli
- University of Sao Paulo Campus of Ribeirao Preto: Universidade de Sao Paulo Campus de Ribeirao Preto Biology Avenida Bandeirantes 3900 14040901 Ribeirão Preto BRAZIL
| | | | - Adalgisa De Andrade
- University of São Paulo Chemistry Avenida Bandeirantes 3900 14040901 Ribeirão Preto BRAZIL
| |
Collapse
|
4
|
Antonio JR, Franco JH, Almeida PZ, Almeida TS, Teixeira de Morais Polizeli MDL, Minteer SD, Rodrigues de Andrade A. Carbon Nanotube PtSn Nanoparticles for Enhanced Complete Biocatalytic Oxidation of Ethylene Glycol in Biofuel Cells. ACS MATERIALS AU 2021; 2:94-102. [PMID: 36855769 PMCID: PMC9888613 DOI: 10.1021/acsmaterialsau.1c00029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a hybrid catalytic system containing metallic PtSn nanoparticles deposited on multiwalled carbon nanotubes (Pt65Sn35/MWCNTs), prepared by the microwave-assisted method, coupled to the enzyme oxalate oxidase (OxOx) for complete ethylene glycol (EG) electrooxidation. Pt65Sn35/MWCNTs, without OxOx, showed good electrochemical activity toward EG oxidation and all the byproducts. Pt65Sn35/MWCNTs cleaved the glyoxilic acid C-C bond, producing CO2 and formic acid, which was further oxidized at the electrode. Concerning EG oxidation, the catalytic activity of the hybrid system (Pt65Sn35/MWCNTs+OxOx) was twice the catalytic activity of Pt65Sn35/MWCNTs. Long-term electrolysis revealed that Pt65Sn35/MWCNTs+OxOx was much more active for EG oxidation than Pt65Sn35/MWCNTs: the charge increased by 65%. The chromatographic results proved that Pt65Sn35/MWCNTs+OxOx collected all of the 10 electrons per molecule of the fuel and was able to catalyze EG oxidation to CO2 due to the associative oxidation between the metallic nanoparticles and the enzymatic pathway. Overall, Pt65Sn35/MWCNTs+OxOx proved to be a promising system to enhance the development of enzymatic biofuel cells for further application in the bioelectrochemistry field.
Collapse
Affiliation(s)
- Jesimiel
Glaycon Rodrigues Antonio
- Department
of Chemistry, Faculty of Philosophy Sciences and Letters at Ribeirão
Preto, University of São Paulo, 14040-901 Ribeirão
Preto, SP, Brazil
| | - Jefferson Honorio Franco
- Department
of Chemistry, Faculty of Philosophy Sciences and Letters at Ribeirão
Preto, University of São Paulo, 14040-901 Ribeirão
Preto, SP, Brazil
| | - Paula Z. Almeida
- Department
of Biology, Faculty of Philosophy Sciences and Letters at Ribeirão
Preto, University of São Paulo, 14040-901 Ribeirão
Preto, SP, Brazil
| | - Thiago S. Almeida
- Department
of Chemistry, Faculty of Philosophy Sciences and Letters at Ribeirão
Preto, University of São Paulo, 14040-901 Ribeirão
Preto, SP, Brazil,Department
of Chemistry, Campus Universitário de Iturama, Universidade Federal do Triângulo Mineiro, 38280-000, Iturama, MG, Brazil
| | | | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, Utah 84112, United States
| | - Adalgisa Rodrigues de Andrade
- Department
of Chemistry, Faculty of Philosophy Sciences and Letters at Ribeirão
Preto, University of São Paulo, 14040-901 Ribeirão
Preto, SP, Brazil,. Tel.: +55-16-3315-3725
| |
Collapse
|
5
|
Franco JH, Klunder KJ, Russell V, de Andrade AR, Minteer SD. Hybrid enzymatic and organic catalyst cascade for enhanced complete oxidation of ethanol in an electrochemical micro-reactor device. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Franco JH, de Almeida PZ, Abdellaoui S, Hickey DP, Ciancaglini P, de Lourdes T M Polizeli M, Minteer SD, de Andrade AR. Bioinspired architecture of a hybrid bifunctional enzymatic/organic electrocatalyst for complete ethanol oxidation. Bioelectrochemistry 2019; 130:107331. [PMID: 31349191 DOI: 10.1016/j.bioelechem.2019.107331] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 11/24/2022]
Abstract
Electrochemical ethanol oxidation was performed at an innovative hybrid architecture electrode containing TEMPO-modified linear poly(ethylenimine) (LPEI) and oxalate oxidase (OxOx) immobilized on carboxylated multi-walled carbon nanotubes (MWCNT-COOH). On the basis of chromatographic results, the catalytic hybrid electrode system completely oxidized ethanol to CO2 after 12 h of electrolysis. The fact that the developed system can catalyze ethanol electrooxidation at a carbon electrode confirms that organic oxidation catalysts combined with enzymatic catalysts allow up to 12 electrons to be collected per fuel molecule. The Faradaic efficiency of the hybrid system investigated herein lies above 87%. The combination of OxOx with TEMPO-LPEI to obtain a novel hybrid anode to oxidize ethanol to carbon dioxide constitutes a simple methodology with useful application in the development of enzymatic biofuel cells.
Collapse
Affiliation(s)
- Jefferson Honorio Franco
- Department of Chemistry, Faculty of Philosophy Sciences and Letters at Ribeirão Preto, University of São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Paula Zaghetto de Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Sofiene Abdellaoui
- Departments of Chemistry and Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, United States of America
| | - David P Hickey
- Departments of Chemistry and Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Pietro Ciancaglini
- Department of Chemistry, Faculty of Philosophy Sciences and Letters at Ribeirão Preto, University of São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Maria de Lourdes T M Polizeli
- Department of Biology, Faculty of Philosophy Sciences and Letters at Ribeirão Preto, University of São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Shelley D Minteer
- Departments of Chemistry and Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Adalgisa R de Andrade
- Department of Chemistry, Faculty of Philosophy Sciences and Letters at Ribeirão Preto, University of São Paulo, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
7
|
Biological functions controlled by manganese redox changes in mononuclear Mn-dependent enzymes. Essays Biochem 2017; 61:259-270. [PMID: 28487402 DOI: 10.1042/ebc20160070] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/05/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023]
Abstract
Remarkably few enzymes are known to employ a mononuclear manganese ion that undergoes changes in redox state during catalysis. Many questions remain to be answered about the role of substrate binding and/or protein environment in modulating the redox properties of enzyme-bound Mn(II), the nature of the dioxygen species involved in the catalytic mechanism, and how these enzymes acquire Mn(II) given that many other metal ions in the cell form more stable protein complexes. Here, we summarize current knowledge concerning the structure and mechanism of five mononuclear manganese-dependent enzymes: superoxide dismutase, oxalate oxidase (OxOx), oxalate decarboxylase (OxDC), homoprotocatechuate 3,4-dioxygenase, and lipoxygenase (LOX). Spectroscopic measurements and/or computational studies suggest that Mn(III)/Mn(II) are the catalytically active oxidation states of the metal, and the importance of 'second-shell' hydrogen bonding interactions with metal ligands has been demonstrated for a number of examples. The ability of these enzymes to modulate the redox properties of the Mn(III)/Mn(II) couple, thereby allowing them to generate substrate-based radicals, appears essential for accessing diverse chemistries of fundamental importance to organisms in all branches of life.
Collapse
|
8
|
Goodwin JM, Rana H, Ndungu J, Chakrabarti G, Moomaw EW. Hydrogen peroxide inhibition of bicupin oxalate oxidase. PLoS One 2017; 12:e0177164. [PMID: 28486485 PMCID: PMC5423638 DOI: 10.1371/journal.pone.0177164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/24/2017] [Indexed: 01/28/2023] Open
Abstract
Oxalate oxidase is a manganese containing enzyme that catalyzes the oxidation of oxalate to carbon dioxide in a reaction that is coupled with the reduction of oxygen to hydrogen peroxide. Oxalate oxidase from Ceriporiopsis subvermispora (CsOxOx) is the first fungal and bicupin enzyme identified that catalyzes this reaction. Potential applications of oxalate oxidase for use in pancreatic cancer treatment, to prevent scaling in paper pulping, and in biofuel cells have highlighted the need to understand the extent of the hydrogen peroxide inhibition of the CsOxOx catalyzed oxidation of oxalate. We apply a membrane inlet mass spectrometry (MIMS) assay to directly measure initial rates of carbon dioxide formation and oxygen consumption in the presence and absence of hydrogen peroxide. This work demonstrates that hydrogen peroxide is both a reversible noncompetitive inhibitor of the CsOxOx catalyzed oxidation of oxalate and an irreversible inactivator. The build-up of the turnover-generated hydrogen peroxide product leads to the inactivation of the enzyme. The introduction of catalase to reaction mixtures protects the enzyme from inactivation allowing reactions to proceed to completion. Circular dichroism spectra indicate that no changes in global protein structure take place in the presence of hydrogen peroxide. Additionally, we show that the CsOxOx catalyzed reaction with the three carbon substrate mesoxalate consumes oxygen which is in contrast to previous proposals that it catalyzed a non-oxidative decarboxylation with this substrate.
Collapse
Affiliation(s)
- John M. Goodwin
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, United States of America
| | - Hassan Rana
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, United States of America
| | - Joan Ndungu
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, United States of America
| | - Gaurab Chakrabarti
- Department of Pharmacology, Oncology and Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- Laboratory of Molecular Stress Responses, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Ellen W. Moomaw
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, United States of America
| |
Collapse
|
9
|
Zhu W, Easthon LM, Reinhardt LA, Tu C, Cohen SE, Silverman DN, Allen KN, Richards NGJ. Substrate Binding Mode and Molecular Basis of a Specificity Switch in Oxalate Decarboxylase. Biochemistry 2016; 55:2163-73. [PMID: 27014926 PMCID: PMC4854488 DOI: 10.1021/acs.biochem.6b00043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Oxalate
decarboxylase (OxDC) catalyzes the conversion of oxalate
into formate and carbon dioxide in a remarkable reaction that requires
manganese and dioxygen. Previous studies have shown that replacing
an active-site loop segment Ser161-Glu162-Asn163-Ser164 in the N-terminal domain of OxDC with
the cognate residues Asp161-Ala162-Ser-163-Asn164 of an evolutionarily related, Mn-dependent
oxalate oxidase gives a chimeric variant (DASN) that exhibits significantly
increased oxidase activity. The mechanistic basis for this change
in activity has now been investigated using membrane inlet mass spectrometry
(MIMS) and isotope effect (IE) measurements. Quantitative analysis
of the reaction stoichiometry as a function of oxalate concentration,
as determined by MIMS, suggests that the increased oxidase activity
of the DASN OxDC variant is associated with only a small fraction
of the enzyme molecules in solution. In addition, IE measurements
show that C–C bond cleavage in the DASN OxDC variant proceeds
via the same mechanism as in the wild-type enzyme, even though the
Glu162 side chain is absent. Thus, replacement of the loop
residues does not modulate the chemistry of the enzyme-bound Mn(II)
ion. Taken together, these results raise the possibility that the
observed oxidase activity of the DASN OxDC variant arises from an
increased level of access of the solvent to the active site during
catalysis, implying that the functional role of Glu162 is
to control loop conformation. A 2.6 Å resolution X-ray crystal
structure of a complex between oxalate and the Co(II)-substituted
ΔE162 OxDC variant, in which Glu162 has been deleted
from the active site loop, reveals the likely mode by which the substrate
coordinates the catalytically active Mn ion prior to C–C bond
cleavage. The “end-on” conformation of oxalate observed
in the structure is consistent with the previously published V/K IE data and provides an empty coordination
site for the dioxygen ligand that is thought to mediate the formation
of Mn(III) for catalysis upon substrate binding.
Collapse
Affiliation(s)
- Wen Zhu
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana 46202, United States
| | - Lindsey M Easthon
- Department of Chemistry, Boston University , Boston, Massachusetts 02215, United States
| | - Laurie A Reinhardt
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53726, United States
| | - Chingkuang Tu
- Department of Pharmacology & Therapeutics, University of Florida , Gainesville, Florida 32610, United States
| | - Steven E Cohen
- Department of Chemistry, Boston University , Boston, Massachusetts 02215, United States
| | - David N Silverman
- Department of Pharmacology & Therapeutics, University of Florida , Gainesville, Florida 32610, United States
| | - Karen N Allen
- Department of Chemistry, Boston University , Boston, Massachusetts 02215, United States
| | - Nigel G J Richards
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana 46202, United States
| |
Collapse
|
10
|
Rana H, Moussatche P, Rocha LS, Abdellaoui S, Minteer SD, Moomaw EW. Isothermal titration calorimetry uncovers substrate promiscuity of bicupin oxalate oxidase from Ceriporiopsis subvermispora. Biochem Biophys Rep 2016; 5:396-400. [PMID: 28955847 PMCID: PMC5600335 DOI: 10.1016/j.bbrep.2016.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/30/2015] [Accepted: 01/28/2016] [Indexed: 12/05/2022] Open
Abstract
Isothermal titration calorimetry (ITC) may be used to determine the kinetic parameters of enzyme-catalyzed reactions when neither products nor reactants are spectrophotometrically visible and when the reaction products are unknown. We report here the use of the multiple injection method of ITC to characterize the catalytic properties of oxalate oxidase (OxOx) from Ceriporiopsis subvermispora (CsOxOx), a manganese dependent enzyme that catalyzes the oxygen-dependent oxidation of oxalate to carbon dioxide in a reaction coupled with the formation of hydrogen peroxide. CsOxOx is the first bicupin enzyme identified that catalyzes this reaction. The multiple injection ITC method of measuring OxOx activity involves continuous, real-time detection of the amount of heat generated (dQ) during catalysis, which is equal to the number of moles of product produced times the enthalpy of the reaction (ΔHapp). Steady-state kinetic constants using oxalate as the substrate determined by multiple injection ITC are comparable to those obtained by a continuous spectrophotometric assay in which H2O2 production is coupled to the horseradish peroxidase-catalyzed oxidation of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) and by membrane inlet mass spectrometry. Additionally, we used multiple injection ITC to identify mesoxalate as a substrate for the CsOxOx-catalyzed reaction, with a kinetic parameters comparable to that of oxalate, and to identify a number of small molecule carboxylic acid compounds that also serve as substrates for the enzyme. ITC is used to assay the catalytic activity of oxalate oxidase. ITC enzymatic assay is sensitive, direct, and continuous. Mesoxalate and other carboxylic acids are substrates for oxalate oxidase.
Collapse
Affiliation(s)
- Hassan Rana
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA 30144, USA
| | | | - Lis Souza Rocha
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Sofiene Abdellaoui
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Ellen W Moomaw
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA 30144, USA
| |
Collapse
|
11
|
Homologous and Heterologous Expression of Basidiomycete Genes Related to Plant Biomass Degradation. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Li XC, Liao YY, Leung DWM, Wang HY, Chen BL, Peng XX, Liu EE. Divergent biochemical and enzymatic properties of oxalate oxidase isoforms encoded by four similar genes in rice. PHYTOCHEMISTRY 2015; 118:216-223. [PMID: 26347131 DOI: 10.1016/j.phytochem.2015.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/22/2015] [Accepted: 08/27/2015] [Indexed: 06/05/2023]
Abstract
The biochemical and enzymatic properties of four highly similar rice oxalate oxidase proteins (OsOxO1-4) were compared after their purification from the leaves of transgenic plants each overexpressing the respective OsOxO1-4 genes. Although alignment of their amino acid sequences has revealed divergence mainly in the signal peptides and they catalyze the same enzymic (oxalate oxidase) reaction, divergence in apparent molecular mass, Km, optimum pH, stability and responses to inhibitors and activators was uncovered by biochemical characterization of the purified OsOxO1-4 proteins. The apparent molecular mass of oligomer OsOxO1 was found to be similar to that of OsOxO3 but lower than the other two. The molecular mass of the subunit of OsOxO1 was lower than that of OsOxO3. The Km value of OsOxO3 was higher than the other three which had similar Km. OsOxO1 and OsOxO4 possessed peak activity at pH 8.5 which was close to that at the optimum pH 4.0. The activity of OsOxO2 at pH 8.5 was only 65% of that at its optimum pH 3.5, while the activity of OsOxO3 did not vary much at pH 6-9 and was also much lower than that at its optimum pH 3. OsOxO2 and OsOxO3 still maintained all their activities after being heated at 70°C for 1h while OsOxO1 and OsOxO4 lost about 30% of their activities. Pyruvate and oxaloacetic acid inhibited the activity of OsOxO3 more strongly than the other three. Interestingly, glucose 6-phosphate, fructose 6-phosphate and fructose 1,6-biphosphate related to photosynthetic assimilation of triose phosphate greatly increased the activities of OsOxO3 and OsOxO4. In addition to the differences in the biochemical properties of the four OsOxO proteins, an intriguing finding is that the purified OsOxO1-4 exhibited substrate inhibition, which is a typical of the classical Michaelis-Menten enzyme kinetics exhibited by a majority of other enzymes.
Collapse
Affiliation(s)
- Xiao Chun Li
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yuan Yang Liao
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - David W M Leung
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Hai Yan Wang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Bai Ling Chen
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xin Xiang Peng
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - E E Liu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
13
|
Pawlak PL, Panda M, Li J, Banerjee A, Averill DJ, Nikolovski B, Shay BJ, Brennessel WW, Chavez FA. Oxalate Oxidase Model Studies - Substrate Reactivity. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201402835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Abdellaoui S, Hickey DP, Stephens AR, Minteer SD. Recombinant oxalate decarboxylase: enhancement of a hybrid catalytic cascade for the complete electro-oxidation of glycerol. Chem Commun (Camb) 2015; 51:14330-3. [PMID: 26271633 DOI: 10.1039/c5cc06131h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complete electro-oxidation of glycerol to CO2is performed through an electro-oxidation cascade using a hybrid catalytic system combining an organic oxidation catalyst, 4-amino-TEMPO and a recombinant enzyme, oxalate decarboxylase fromBacillus subtilis.
Collapse
Affiliation(s)
- Sofiene Abdellaoui
- Departments of Chemistry and Materials Science and Engineering
- Salt Lake City
- USA
| | - David P. Hickey
- Departments of Chemistry and Materials Science and Engineering
- Salt Lake City
- USA
| | - Andrew R. Stephens
- Departments of Chemistry and Materials Science and Engineering
- Salt Lake City
- USA
| | - Shelley D. Minteer
- Departments of Chemistry and Materials Science and Engineering
- Salt Lake City
- USA
| |
Collapse
|
15
|
Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. FUNGAL BIOL REV 2014. [DOI: 10.1016/j.fbr.2014.05.001] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Moomaw EW, Uberto R, Tu C. Membrane inlet mass spectrometry reveals that Ceriporiopsis subvermispora bicupin oxalate oxidase is inhibited by nitric oxide. Biochem Biophys Res Commun 2014; 450:750-4. [PMID: 24953692 DOI: 10.1016/j.bbrc.2014.06.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
Membrane inlet mass spectrometry (MIMS) uses a semipermeable membrane as an inlet to a mass spectrometer for the measurement of the concentration of small uncharged molecules in solution. We report the use of MIMS to characterize the catalytic properties of oxalate oxidase (E.C. 1.2.3.4) from Ceriporiopsis subvermispora (CsOxOx). Oxalate oxidase is a manganese dependent enzyme that catalyzes the oxygen-dependent oxidation of oxalate to carbon dioxide in a reaction that is coupled with the formation of hydrogen peroxide. CsOxOx is the first bicupin enzyme identified that catalyzes this reaction. The MIMS method of measuring OxOx activity involves continuous, real-time direct detection of oxygen consumption and carbon dioxide production from the ion currents of their respective mass peaks. (13)C2-oxalate was used to allow for accurate detection of (13)CO2 (m/z 45) despite the presence of adventitious (12)CO2. Steady-state kinetic constants determined by MIMS are comparable to those obtained by a continuous spectrophotometric assay in which H2O2 production is coupled to the horseradish peroxidase catalyzed oxidation of 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid). Furthermore, we used MIMS to determine that NO inhibits the activity of the CsOxOx with a KI of 0.58±0.06 μM.
Collapse
Affiliation(s)
- Ellen W Moomaw
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA 30144, USA.
| | - Richard Uberto
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Chingkuang Tu
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
17
|
Moomaw EW, Hoffer E, Moussatche P, Salerno JC, Grant M, Immelman B, Uberto R, Ozarowski A, Angerhofer A. Kinetic and spectroscopic studies of bicupin oxalate oxidase and putative active site mutants. PLoS One 2013; 8:e57933. [PMID: 23469254 PMCID: PMC3585803 DOI: 10.1371/journal.pone.0057933] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/29/2013] [Indexed: 01/02/2023] Open
Abstract
Ceriporiopsis subvermispora oxalate oxidase (CsOxOx) is the first bicupin enzyme identified that catalyzes manganese-dependent oxidation of oxalate. In previous work, we have shown that the dominant contribution to catalysis comes from the monoprotonated form of oxalate binding to a form of the enzyme in which an active site carboxylic acid residue must be unprotonated. CsOxOx shares greatest sequence homology with bicupin microbial oxalate decarboxylases (OxDC) and the 241-244DASN region of the N-terminal Mn binding domain of CsOxOx is analogous to the lid region of OxDC that has been shown to determine reaction specificity. We have prepared a series of CsOxOx mutants to probe this region and to identify the carboxylate residue implicated in catalysis. The pH profile of the D241A CsOxOx mutant suggests that the protonation state of aspartic acid 241 is mechanistically significant and that catalysis takes place at the N-terminal Mn binding site. The observation that the D241S CsOxOx mutation eliminates Mn binding to both the N- and C- terminal Mn binding sites suggests that both sites must be intact for Mn incorporation into either site. The introduction of a proton donor into the N-terminal Mn binding site (CsOxOx A242E mutant) does not affect reaction specificity. Mutation of conserved arginine residues further support that catalysis takes place at the N-terminal Mn binding site and that both sites must be intact for Mn incorporation into either site.
Collapse
Affiliation(s)
- Ellen W Moomaw
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|