1
|
Lukman V, Odeyemi SW, Roth RL, Mbabala L, Tshililo N, Vlok NM, Dewar MJB, Kenyon CP. Novel kinase platform for the validation of the anti-tubercular activities of Pelargonium sidoides (Geraniaceae). BMC Biotechnol 2020; 20:50. [PMID: 32993619 PMCID: PMC7523293 DOI: 10.1186/s12896-020-00643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/28/2020] [Indexed: 05/30/2023] Open
Abstract
Background Pelargonium sidoides is an important traditional medicine in South Africa with a well-defined history of both traditional and documented use of an aqueous-ethanolic formulation of the roots of P. sidoides (EPs 7630), which is successfully employed for the treatment of respiratory tract infections. There is also historical evidence of use in the treatment of tuberculosis. The aim of this study was to develop a platform of Mycobacterium tuberculosis (Mtb) kinase enzymes that may be used for the identification of therapeutically relevant ethnobotanical extracts that will allow drug target identification, as well as the subsequent isolation of the active compounds. Results Mtb kinases, Nucleoside diphosphokinase, Homoserine kinase, Acetate kinase, Glycerol kinase, Thiamine monophosphate kinase, Ribokinase, Aspartokinase and Shikimate kinase were cloned, produced in Escherichia coli and characterized. HPLC-based assays were used to determine the enzyme activities and subsequently the inhibitory potentials of varying concentrations of a P. sidoides extract against the produced enzymes. The enzyme activity assays indicated that these enzymes were active at low ATP concentrations. The 50% inhibitory concentration (IC50) of an aqueous root extract of P. sidoides against the kinases indicated SK has an IC50 of 1.2 μg/ml and GK 1.4 μg/ml. These enzyme targets were further assessed for compound identification from the P. sidoides literature. Conclusion This study suggests P. sidoides is potentially a source of anti-tubercular compounds and the Mtb kinase platform has significant potential as a tool for the subsequent screening of P. sidoides extracts and plant extracts in general, for compound identification and elaboration by selected extract target inhibitor profiling.
Collapse
Affiliation(s)
- V Lukman
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg, 1709, South Africa.,Council for Scientific and Industrial Research, Pretoria, South Africa
| | - S W Odeyemi
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg, 1709, South Africa
| | - R L Roth
- Council for Scientific and Industrial Research, Pretoria, South Africa
| | - L Mbabala
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7505, South Africa
| | - N Tshililo
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7505, South Africa
| | - N M Vlok
- Proteomics Spectrometry Unit, Central Analytical Facility, University of Stellenbosch, Private Bag X1, Matieland, Stellenbsoch, 7600, South Africa
| | - M J B Dewar
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg, 1709, South Africa
| | - C P Kenyon
- Council for Scientific and Industrial Research, Pretoria, South Africa. .,DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7505, South Africa.
| |
Collapse
|
2
|
Luo D, Wang L, Liu H, Li L, Liao Y, Yi X, Yan X, Wan K, Zeng Y. Ribokinase screened from T7 phage displayed Mycobacterium tuberculosis genomic DNA library had good potential for the serodiagnosis of tuberculosis. Appl Microbiol Biotechnol 2019; 103:5259-5267. [PMID: 31069485 DOI: 10.1007/s00253-019-09756-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022]
Abstract
Tuberculosis caused by Mycobacterium tuberculosis (M. tuberculosis) is the leading cause of death among infectious diseases in the worldwide. Lack of more sensitive and effective diagnostic reagents has increased the awareness of rapid diagnosis for tuberculosis. In this study, T7 phage displayed genomic DNA library of M. tuberculosis was constructed to screen the antigens that specially bind with TB-positive serum from the whole genome of M. tuberculosis and to improve the sensitivity and specificity of tuberculosis serological diagnosis. After three rounds of biopanning, results of DNA sequencing and BLAST analysis showed that 19 positive phages displayed four different proteins and the occurrence frequency of the phage which displayed ribokinase was the highest. The results of indirect ELISA and dot immunoblotting indicated that representative phages could specifically bind to tuberculosis-positive serum. The prokaryotic expression vector containing the DNA sequence of ribokinase gene was then constructed and the recombinant protein was expressed and purified to evaluate the serodiagnosis value of ribokinase. The reactivity of the recombinant ribokinase with different clinical serum was detected and the sensitivities and specificities in tuberculosis serodiagnosis were 90% and 86%, respectively by screening serum from tuberculosis patients (n = 90) and uninfected individuals (n = 90) based on ELISA. Therefore, this study demonstrated that ribokinase had good potential for the serodiagnosis of tuberculosis.
Collapse
Affiliation(s)
- Dan Luo
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, People's Republic of China
| | - Li Wang
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, People's Republic of China
| | - Haican Liu
- State Key Laboratory for Infectious Disease Prevention and Control/National Institute for communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Lingling Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, People's Republic of China
| | - Yating Liao
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, People's Republic of China
| | - Xiaomei Yi
- Reproductive Medical Center, The Affiliated First Hospital, University of South China, Hengyang, 421001, People's Republic of China
| | - Xiaoliang Yan
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, People's Republic of China
| | - Kanglin Wan
- State Key Laboratory for Infectious Disease Prevention and Control/National Institute for communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | - Yanhua Zeng
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
3
|
Ding W, Zhou Y, Qu Q, Cui W, God'spower BO, Liu Y, Chen X, Chen M, Yang Y, Li Y. Azithromycin Inhibits Biofilm Formation by Staphylococcus xylosus and Affects Histidine Biosynthesis Pathway. Front Pharmacol 2018; 9:740. [PMID: 30042679 PMCID: PMC6048454 DOI: 10.3389/fphar.2018.00740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus xylosus, a coagulase-negative, non-pathogenic bacterium, responsible for opportunistic infections in humans and bovine mastitis, has the ability to form biofilms, which are responsible for persistent infections and antibiotic resistance. In our study, azithromycin significantly inhibited biofilm formation by altering protein expression. Of the 1764 proteins measured by the isobaric Tag for Relative and Absolute Quantification (iTRAQ) technique, only 148 proteins showed significantly different expression between the azithromycin-treated and untreated cells. Most ribosomal proteins were markedly up-regulated, and the expression of the proteins involved in histidine biosynthesis, which, in turn, influence biofilm formation, was down-regulated, particularly imidazole glycerophosphate dehydratase (IGPD). Previously, we had observed that IGPD plays an important role in biofilm formation by S. xylosus. Therefore, hisB expression was studied by real-time PCR, and the interactions between azithromycin and IGPD were predicted by molecular docking analysis. hisB was found to be significantly down-regulated, and six bond interactions were observed between azithromycin and IGPD. Many active atoms of azithromycin did not interact with the biologically active site of IGPD. Surface plasmon resonance analysis used to further study the relationship between IGPD and azithromycin showed minimum interaction between them. Histidine content in the azithromycin-treated and untreated groups was determined. We noted a slight difference, which was not consistent with the expression of the proteins involved in histidine biosynthesis. Therefore, histidine degradation into glutamate was also studied, and we found that all proteins were down-regulated. This could be the reason why histidine content showed little change between the treated and untreated groups. In summary, we found that azithromycin is a potential inhibitor of S. xylosus biofilm formation, and the underlying mechanism was preliminarily elucidated in this study.
Collapse
Affiliation(s)
- Wenya Ding
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yonghui Zhou
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Qianwei Qu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Wenqiang Cui
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Bello Onaghise God'spower
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yanyan Liu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Xueying Chen
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Mo Chen
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yanbei Yang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yanhua Li
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| |
Collapse
|
4
|
Palmer M, Steenkamp ET, Coetzee MPA, Blom J, Venter SN. Genome-Based Characterization of Biological Processes That Differentiate Closely Related Bacteria. Front Microbiol 2018; 9:113. [PMID: 29467735 PMCID: PMC5808187 DOI: 10.3389/fmicb.2018.00113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/17/2018] [Indexed: 12/21/2022] Open
Abstract
Bacteriologists have strived toward attaining a natural classification system based on evolutionary relationships for nearly 100 years. In the early twentieth century it was accepted that a phylogeny-based system would be the most appropriate, but in the absence of molecular data, this approach proved exceedingly difficult. Subsequent technical advances and the increasing availability of genome sequencing have allowed for the generation of robust phylogenies at all taxonomic levels. In this study, we explored the possibility of linking biological characters to higher-level taxonomic groups in bacteria by making use of whole genome sequence information. For this purpose, we specifically targeted the genus Pantoea and its four main lineages. The shared gene sets were determined for Pantoea, the four lineages within the genus, as well as its sister-genus Tatumella. This was followed by functional characterization of the gene sets using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In comparison to Tatumella, various traits involved in nutrient cycling were identified within Pantoea, providing evidence for increased efficacy in recycling of metabolites within the genus. Additionally, a number of traits associated with pathogenicity were identified within species often associated with opportunistic infections, with some support for adaptation toward overcoming host defenses. Some traits were also only conserved within specific lineages, potentially acquired in an ancestor to the lineage and subsequently maintained. It was also observed that the species isolated from the most diverse sources were generally the most versatile in their carbon metabolism. By investigating evolution, based on the more variable genomic regions, it may be possible to detect biologically relevant differences associated with the course of evolution and speciation.
Collapse
Affiliation(s)
- Marike Palmer
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Emma T Steenkamp
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Martin P A Coetzee
- Department of Genetic, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Stephanus N Venter
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Schroeder RY, Zhu A, Eubel H, Dahncke K, Witte CP. The ribokinases of Arabidopsis thaliana and Saccharomyces cerevisiae are required for ribose recycling from nucleotide catabolism, which in plants is not essential to survive prolonged dark stress. THE NEW PHYTOLOGIST 2018; 217:233-244. [PMID: 28921561 DOI: 10.1111/nph.14782] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
Nucleotide catabolism in Arabidopsis thaliana and Saccharomyces cerevisiae leads to the release of ribose, which requires phosphorylation to ribose-5-phosphate mediated by ribokinase (RBSK). We aimed to characterize RBSK in plants and yeast, to quantify the contribution of plant nucleotide catabolism to the ribose pool, and to investigate whether ribose carbon contributes to dark stress survival of plants. We performed a phylogenetic analysis and determined the kinetic constants of plant-expressed Arabidopsis and yeast RBSKs. Using mass spectrometry, several metabolites were quantified in AtRBSK mutants and double mutants with genes of nucleoside catabolism. Additionally, the dark stress performance of several nucleotide metabolism mutants and rbsk was compared. The plant PfkB family of sugar kinases forms nine major clades likely representing distinct biochemical functions, one of them RBSK. Nucleotide catabolism is the dominant ribose source in plant metabolism and is highly induced by dark stress. However, rbsk cannot be discerned from the wild type in dark stress. Interestingly, the accumulation of guanosine in a guanosine deaminase mutant strongly enhances dark stress symptoms. Although nucleotide catabolism contributes to carbon mobilization upon darkness and is the dominant source of ribose, the contribution appears to be of minor importance for dark stress survival.
Collapse
Affiliation(s)
- Rebekka Y Schroeder
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Anting Zhu
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Holger Eubel
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Kathleen Dahncke
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, Berlin, 14195, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| |
Collapse
|
6
|
Banda S, Cao N, Tse-Dinh YC. Distinct Mechanism Evolved for Mycobacterial RNA Polymerase and Topoisomerase I Protein-Protein Interaction. J Mol Biol 2017; 429:2931-2942. [PMID: 28843989 DOI: 10.1016/j.jmb.2017.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/14/2017] [Accepted: 08/19/2017] [Indexed: 01/01/2023]
Abstract
We report here a distinct mechanism of interaction between topoisomerase I and RNA polymerase in Mycobacterium tuberculosis and Mycobacterium smegmatis that has evolved independently from the previously characterized interaction between bacterial topoisomerase I and RNA polymerase. Bacterial DNA topoisomerase I is responsible for preventing the hyper-negative supercoiling of genomic DNA. The association of topoisomerase I with RNA polymerase during transcription elongation could efficiently relieve transcription-driven negative supercoiling. Our results demonstrate a direct physical interaction between the C-terminal domains of topoisomerase I (TopoI-CTDs) and the β' subunit of RNA polymerase of M. smegmatis in the absence of DNA. The TopoI-CTDs in mycobacteria are evolutionarily unrelated in amino acid sequence and three-dimensional structure to the TopoI-CTD found in the majority of bacterial species outside Actinobacteria, including Escherichia coli. The functional interaction between topoisomerase I and RNA polymerase has evolved independently in mycobacteria and E. coli, with distinctively different structural elements of TopoI-CTD utilized for this protein-protein interaction. Zinc ribbon motifs in E. coli TopoI-CTD are involved in the interaction with RNA polymerase. For M. smegmatis TopoI-CTD, a 27-amino-acid tail that is rich in basic residues at the C-terminal end is responsible for the interaction with RNA polymerase. Overexpression of recombinant TopoI-CTD in M. smegmatis competed with the endogenous topoisomerase I for protein-protein interactions with RNA polymerase. The TopoI-CTD overexpression resulted in decreased survival following treatment with antibiotics and hydrogen peroxide, supporting the importance of the protein-protein interaction between topoisomerase I and RNA polymerase during stress response of mycobacteria.
Collapse
Affiliation(s)
- Srikanth Banda
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Nan Cao
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
7
|
Abstract
The development and application of a highly versatile suite of tools for mycobacterial genetics, coupled with widespread use of "omics" approaches to elucidate the structure, function, and regulation of mycobacterial proteins, has led to spectacular advances in our understanding of the metabolism and physiology of mycobacteria. In this article, we provide an update on nucleotide metabolism and DNA replication in mycobacteria, highlighting key findings from the past 10 to 15 years. In the first section, we focus on nucleotide metabolism, ranging from the biosynthesis, salvage, and interconversion of purine and pyrimidine ribonucleotides to the formation of deoxyribonucleotides. The second part of the article is devoted to DNA replication, with a focus on replication initiation and elongation, as well as DNA unwinding. We provide an overview of replication fidelity and mutation rates in mycobacteria and summarize evidence suggesting that DNA replication occurs during states of low metabolic activity, and conclude by suggesting directions for future research to address key outstanding questions. Although this article focuses primarily on observations from Mycobacterium tuberculosis, it is interspersed, where appropriate, with insights from, and comparisons with, other mycobacterial species as well as better characterized bacterial models such as Escherichia coli. Finally, a common theme underlying almost all studies of mycobacterial metabolism is the potential to identify and validate functions or pathways that can be exploited for tuberculosis drug discovery. In this context, we have specifically highlighted those processes in mycobacterial DNA replication that might satisfy this critical requirement.
Collapse
|
8
|
Ghosh S, Mallick B, Nagaraja V. Direct regulation of topoisomerase activity by a nucleoid-associated protein. Nucleic Acids Res 2014; 42:11156-65. [PMID: 25200077 PMCID: PMC4176182 DOI: 10.1093/nar/gku804] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The topological homeostasis of bacterial chromosomes is maintained by the balance between compaction and the topological organization of genomes. Two classes of proteins play major roles in chromosome organization: the nucleoid-associated proteins (NAPs) and topoisomerases. The NAPs bind DNA to compact the chromosome, whereas topoisomerases catalytically remove or introduce supercoils into the genome. We demonstrate that HU, a major NAP of Mycobacterium tuberculosis specifically stimulates the DNA relaxation ability of mycobacterial topoisomerase I (TopoI) at lower concentrations but interferes at higher concentrations. A direct physical interaction between M. tuberculosis HU (MtHU) and TopoI is necessary for enhancing enzyme activity both in vitro and in vivo. The interaction is between the amino terminal domain of MtHU and the carboxyl terminal domain of TopoI. Binding of MtHU did not affect the two catalytic trans-esterification steps but enhanced the DNA strand passage, requisite for the completion of DNA relaxation, a new mechanism for the regulation of topoisomerase activity. An interaction-deficient mutant of MtHU was compromised in enhancing the strand passage activity. The species-specific physical and functional cooperation between MtHU and TopoI may be the key to achieve the DNA relaxation levels needed to maintain the optimal superhelical density of mycobacterial genomes.
Collapse
Affiliation(s)
- Soumitra Ghosh
- Department of Microbiology and Cell biology, Indian Institute of Science, Bangalore 560012, India
| | - Bratati Mallick
- Department of Microbiology and Cell biology, Indian Institute of Science, Bangalore 560012, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell biology, Indian Institute of Science, Bangalore 560012, India Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
9
|
Farhat MR, Shapiro BJ, Kieser KJ, Sultana R, Jacobson KR, Victor TC, Warren RM, Streicher EM, Calver A, Sloutsky A, Kaur D, Posey JE, Plikaytis B, Oggioni MR, Gardy JL, Johnston JC, Rodrigues M, Tang PKC, Kato-Maeda M, Borowsky ML, Muddukrishna B, Kreiswirth BN, Kurepina N, Galagan J, Gagneux S, Birren B, Rubin EJ, Lander ES, Sabeti PC, Murray M. Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat Genet 2013; 45:1183-9. [PMID: 23995135 PMCID: PMC3887553 DOI: 10.1038/ng.2747] [Citation(s) in RCA: 303] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 08/08/2013] [Indexed: 11/09/2022]
Abstract
M. tuberculosis is evolving antibiotic resistance, threatening attempts at tuberculosis epidemic control. Mechanisms of resistance, including genetic changes favored by selection in resistant isolates, are incompletely understood. Using 116 newly sequenced and 7 previously sequenced M. tuberculosis whole genomes, we identified genome-wide signatures of positive selection specific to the 47 drug-resistant strains. By searching for convergent evolution--the independent fixation of mutations in the same nucleotide position or gene--we recovered 100% of a set of known resistance markers. We also found evidence of positive selection in an additional 39 genomic regions in resistant isolates. These regions encode components in cell wall biosynthesis, transcriptional regulation and DNA repair pathways. Mutations in these regions could directly confer resistance or compensate for fitness costs associated with resistance. Functional genetic analysis of mutations in one gene, ponA1, demonstrated an in vitro growth advantage in the presence of the drug rifampicin.
Collapse
Affiliation(s)
- Maha R Farhat
- Pulmonary and Critical Care Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114
| | - B Jesse Shapiro
- The Eli and Edythe L. Broad Institute, Cambridge, MA, 02142
- Department of Organismic and Evolutionary Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138
- Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston, MA 02115
- Département de sciences biologiques, Université de Montréal, Montréal, QC, Canada
| | - Karen J Kieser
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115
| | - Razvan Sultana
- Dana Farber Cancer Institute, Department of Bioinformatics and Computational Biology, Boston, MA, 02115
| | - Karen R Jacobson
- Section of Infectious Diseases, Boston University School of Medicine, Boston, MA 02118
- DST/NRF Centre of Excellence for Biomedical TB Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Thomas C Victor
- DST/NRF Centre of Excellence for Biomedical TB Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Robin M Warren
- DST/NRF Centre of Excellence for Biomedical TB Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Elizabeth M Streicher
- DST/NRF Centre of Excellence for Biomedical TB Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Alistair Calver
- Anglogold Ashanti Health West Vaal Hospital, Orkney, North West, South Africa
| | - Alex Sloutsky
- University of Massachusetts Medical School, Massachusetts Supranational TB Reference Laboratory, 305 South St., Boston MA 01230
| | - Devinder Kaur
- University of Massachusetts Medical School, Massachusetts Supranational TB Reference Laboratory, 305 South St., Boston MA 01230
| | - Jamie E Posey
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30333
| | - Bonnie Plikaytis
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30333
| | - Marco R Oggioni
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | - Jennifer L Gardy
- Communicable Disease Prevention and Control Services, British Columbia Centre for Disease Control, Vancouver V5Z 4R4, Canada
| | - James C Johnston
- Clinical Prevention Services, British Columbia Centre for Disease Control, Vancouver V5Z 4R4, Canada
| | - Mabel Rodrigues
- Mycobacteriology/TB Laboratory, BCCDC Public Health Microbiology and Reference Laboratory, Provincial Health Services Authority Laboratories, Vancouver V5Z 4R4, Canada
| | - Patrick K C Tang
- Mycobacteriology/TB Laboratory, BCCDC Public Health Microbiology and Reference Laboratory, Provincial Health Services Authority Laboratories, Vancouver V5Z 4R4, Canada
| | - Midori Kato-Maeda
- Division of Pulmonary and Critical Care, University of California, San Francisco, San Francisco CA 94043
| | - Mark L Borowsky
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Harvard University, Boston MA 02115
| | - Bhavana Muddukrishna
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Harvard University, Boston MA 02115
| | - Barry N Kreiswirth
- Public Health Research Institute Tuberculosis Center, Rutgers, The State University of NJ, Newark, NJ 07103
| | - Natalia Kurepina
- Public Health Research Institute Tuberculosis Center, Rutgers, The State University of NJ, Newark, NJ 07103
| | - James Galagan
- The Eli and Edythe L. Broad Institute, Cambridge, MA, 02142
- Departments of Biomedical Engineering, Boston University, Boston, MA 02215
- Department of Microbiology, Boston University, Boston, MA 02215
- Bioinformatics Program, Boston University, Boston, MA 02215
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland
- University of Basel, 4002 Basel, Switzerland
| | - Bruce Birren
- The Eli and Edythe L. Broad Institute, Cambridge, MA, 02142
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115
| | - Eric S Lander
- The Eli and Edythe L. Broad Institute, Cambridge, MA, 02142
| | - Pardis C Sabeti
- The Eli and Edythe L. Broad Institute, Cambridge, MA, 02142
- Department of Organismic and Evolutionary Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138
- Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston, MA 02115
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115
| | - Megan Murray
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA 02115
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115
| |
Collapse
|
10
|
Elkin SR, Kumar A, Price CW, Columbus L. A broad specificity nucleoside kinase from Thermoplasma acidophilum. Proteins 2013; 81:568-82. [PMID: 23161756 DOI: 10.1002/prot.24212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/18/2012] [Accepted: 11/01/2012] [Indexed: 11/07/2022]
Abstract
The crystal structure of Ta0880, determined at 1.91 Å resolution, from Thermoplasma acidophilum revealed a dimer with each monomer composed of an α/β/α sandwich domain and a smaller lid domain. The overall fold belongs to the PfkB family of carbohydrate kinases (a family member of the Ribokinase clan) which include ribokinases, 1-phosphofructokinases, 6-phosphofructo-2-kinase, inosine/guanosine kinases, fructokinases, adenosine kinases, and many more. Based on its general fold, Ta0880 had been annotated as a ribokinase-like protein. Using a coupled pyruvate kinase/lactate dehydrogenase assay, the activity of Ta0880 was assessed against a variety of ribokinase/pfkB-like family substrates; activity was not observed for ribose, fructose-1-phosphate, or fructose-6-phosphate. Based on structural similarity with nucleoside kinases (NK) from Methanocaldococcus jannaschii (MjNK, PDB 2C49, and 2C4E) and Burkholderia thailandensis (BtNK, PDB 3B1O), nucleoside kinase activity was investigated. Ta0880 (TaNK) was confirmed to have nucleoside kinase activity with an apparent KM for guanosine of 0.21 μM and catalytic efficiency of 345,000 M(-1) s(-1) . These three NKs have significantly different substrate, phosphate donor, and cation specificities and comparisons of specificity and structure identified residues likely responsible for the nucleoside substrate selectivity. Phylogenetic analysis identified three clusters within the PfkB family and indicates that TaNK is a member of a new sub-family with broad nucleoside specificities. Proteins 2013. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sarah R Elkin
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904-4319, USA
| | | | | | | |
Collapse
|
11
|
Du Y, Zhang H, He Y, Huang F, He ZG. Mycobacterium smegmatis Lsr2 physically and functionally interacts with a new flavoprotein involved in bacterial resistance to oxidative stress. J Biochem 2012; 152:479-86. [PMID: 22952243 DOI: 10.1093/jb/mvs095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lsr2, a bacterial histone-like protein, has been shown to be clearly involved in modulating chromatin organization, compaction and global gene expression. However, the regulatory mechanism of its functions remains largely unclear. In this study, using bacterial two-hybrid technique and pull-down assays, the Mycobacterium smegmatis Lsr2 was detected to associate with a hypothetical flavoprotein, Ms4334. A further co-immunoprecipitation assay confirmed the physical interaction between these two proteins in vivo in mycobacteria. Importantly, the Ms4334 protein was also capable of enhancing the inhibitory effect of Lsr2 in vitro on the function of DNA topoisomerase I (MsTopA). Therefore, Lsr2 could physically and functionally interact with Ms4334. Further, the Ms4334 gene was confirmed to encode a new FAD-binding flavoprotein that displayed two characteristic absorption peaks at about 370 and 450 nm in a UV-visible spectra scanning assay. Interestingly, when comparing the growths of wild-type M. smegmatis with the Ms4334-knockout strain in response to H(2)O(2), Ms4334 was found to contribute to mycobacterial resistance to oxidative stress. The findings provided important clues for a further understanding of the regulation mechanism of Lsr2 in mycobacteria.
Collapse
Affiliation(s)
- Yanli Du
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|