1
|
Beal MA, Meier MJ, Dykes A, Yauk CL, Lambert IB, Marchetti F. The functional mutational landscape of the lacZ gene. iScience 2023; 26:108407. [PMID: 38058303 PMCID: PMC10696112 DOI: 10.1016/j.isci.2023.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/23/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023] Open
Abstract
The lacZ gene of Escherichia coli encodes β-galactosidase (β-gal), a lactose metabolism enzyme of the lactose operon. Previous chemical modification or site-directed mutagenesis experiments have identified 21 amino acids that are essential for β-gal catalytic activity. We have assembled over 10,000 lacZ mutations from published studies that were collected using a positive selection assay to identify mutations in lacZ that disrupted β-gal function. We analyzed 6,465 independent lacZ mutations that resulted in 2,732 missense mutations that impaired β-gal function. Those mutations affected 492 of the 1,023 lacZ codons, including most of the 21 previously known residues critical for catalytic activity. Most missense mutations occurred near the catalytic site and in regions important for subunit tetramerization. Overall, our work provides a comprehensive and detailed map of the amino acid residues affecting the structure and catalytic activity of the β-gal enzyme.
Collapse
Affiliation(s)
- Marc A. Beal
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Matthew J. Meier
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Angela Dykes
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Carole L. Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Iain B. Lambert
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
2
|
Mickert MJ, Gorris HH. Transition-State Ensembles Navigate the Pathways of Enzyme Catalysis. J Phys Chem B 2018; 122:5809-5819. [DOI: 10.1021/acs.jpcb.8b02297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Matthias J. Mickert
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Hans H. Gorris
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| |
Collapse
|
3
|
Nierengarten JF, Schneider JP, Trinh TMN, Joosten A, Holler M, Lepage ML, Bodlenner A, García-Moreno MI, Ortiz Mellet C, Compain P. Giant Glycosidase Inhibitors: First- and Second-Generation Fullerodendrimers with a Dense Iminosugar Shell. Chemistry 2018; 24:2483-2492. [DOI: 10.1002/chem.201705600] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Jean-François Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires; Université de Strasbourg et CNRS (UMR 7509); Ecole Européenne de Chimie, Polymères et Matériaux; 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - Jérémy P. Schneider
- Laboratoire de Synthèse Organique et Molécules Bioactives; Université de Strasbourg et CNRS (UMR 7509); Ecole Européenne de Chimie, Polymères et Matériaux; 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - Thi Minh Nguyet Trinh
- Laboratoire de Chimie des Matériaux Moléculaires; Université de Strasbourg et CNRS (UMR 7509); Ecole Européenne de Chimie, Polymères et Matériaux; 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - Antoine Joosten
- Laboratoire de Synthèse Organique et Molécules Bioactives; Université de Strasbourg et CNRS (UMR 7509); Ecole Européenne de Chimie, Polymères et Matériaux; 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - Michel Holler
- Laboratoire de Chimie des Matériaux Moléculaires; Université de Strasbourg et CNRS (UMR 7509); Ecole Européenne de Chimie, Polymères et Matériaux; 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - Mathieu L. Lepage
- Laboratoire de Synthèse Organique et Molécules Bioactives; Université de Strasbourg et CNRS (UMR 7509); Ecole Européenne de Chimie, Polymères et Matériaux; 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - Anne Bodlenner
- Laboratoire de Synthèse Organique et Molécules Bioactives; Université de Strasbourg et CNRS (UMR 7509); Ecole Européenne de Chimie, Polymères et Matériaux; 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - M. Isabel García-Moreno
- Departamento de Química Orgánica; Facultad de Química; Universidad de Sevilla; Profesor García González 1 41012 Sevilla Spain
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica; Facultad de Química; Universidad de Sevilla; Profesor García González 1 41012 Sevilla Spain
| | - Philippe Compain
- Laboratoire de Synthèse Organique et Molécules Bioactives; Université de Strasbourg et CNRS (UMR 7509); Ecole Européenne de Chimie, Polymères et Matériaux; 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| |
Collapse
|
4
|
Rutkiewicz-Krotewicz M, Pietrzyk-Brzezinska AJ, Sekula B, Cieśliński H, Wierzbicka-Woś A, Kur J, Bujacz A. Structural studies of a cold-adapted dimeric β-D-galactosidase fromParacoccussp. 32d. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:1049-61. [DOI: 10.1107/s2059798316012535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/03/2016] [Indexed: 12/20/2022]
Abstract
The crystal structure of a novel dimeric β-D-galactosidase fromParacoccussp. 32d (ParβDG) was solved in space groupP212121at a resolution of 2.4 Å by molecular replacement with multiple models using theBALBESsoftware. This enzyme belongs to glycoside hydrolase family 2 (GH2), similar to the tetrameric and hexameric β-D-galactosidases fromEscherichia coliandArthrobactersp. C2-2, respectively. It is the second known structure of a cold-active GH2 β-galactosidase, and the first in the form of a functional dimer, which is also present in the asymmetric unit. Cold-adapted β-D-galactosidases have been the focus of extensive research owing to their utility in a variety of industrial technologies. One of their most appealing applications is in the hydrolysis of lactose, which not only results in the production of lactose-free dairy, but also eliminates the `sandy effect' and increases the sweetness of the product, thus enhancing its quality. The determined crystal structure represents the five-domain architecture of the enzyme, with its active site located in close vicinity to the dimer interface. To identify the amino-acid residues involved in the catalytic reaction and to obtain a better understanding of the mechanism of action of this atypical β-D-galactosidase, the crystal structure in complex with galactose (ParβDG–Gal) was also determined. The catalytic site of the enzyme is created by amino-acid residues from the central domain 3 and from domain 4 of an adjacent monomer. The crystal structure of this dimeric β-D-galactosidase reveals significant differences in comparison to other β-galactosidases. The largest difference is in the fifth domain, named Bgal_windup domain 5 inParβDG, which contributes to stabilization of the functional dimer. The location of this domain 5, which is unique in size and structure, may be one of the factors responsible for the creation of a functional dimer and cold-adaptation of this enzyme.
Collapse
|
5
|
Abellán Flos M, García Moreno MI, Ortiz Mellet C, García Fernández JM, Nierengarten JF, Vincent SP. Potent Glycosidase Inhibition with Heterovalent Fullerenes: Unveiling the Binding Modes Triggering Multivalent Inhibition. Chemistry 2016; 22:11450-60. [DOI: 10.1002/chem.201601673] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Marta Abellán Flos
- Département de Chimie, Laboratoire de Chimie Bio-Organique; University of Namur (UNamur); rue de Bruxelles 61 5000 Namur Belgium
| | - M. Isabel García Moreno
- Departamento de Química Orgánica; Facultad de Química; Universidad de Sevilla; C/Prof. García González 1 41012 Sevilla Spain
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica; Facultad de Química; Universidad de Sevilla; C/Prof. García González 1 41012 Sevilla Spain
| | - Jose Manuel García Fernández
- Instituto de Investigaciones Químicas (IIQ); CSIC - Universidad de Sevilla; Av. Américo Vespucio 49, Isla de la Cartuja 41092 Sevilla Spain
| | - Jean-Francois Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires; Université de Strasbourg et CNRS (UMR 7509); Ecole Européenne de Chimie, Polymères et Matériaux; 25 rue Becquerel 67087 Strasbourg France
| | - Stéphane P. Vincent
- Département de Chimie, Laboratoire de Chimie Bio-Organique; University of Namur (UNamur); rue de Bruxelles 61 5000 Namur Belgium
| |
Collapse
|
6
|
Wheatley RW, Huber RE. An allolactose trapped at the lacZ β-galactosidase active site with its galactosyl moiety in a (4)H3 conformation provides insights into the formation, conformation, and stabilization of the transition state. Biochem Cell Biol 2015; 93:531-40. [PMID: 26291713 DOI: 10.1139/bcb-2015-0037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When lactose was incubated with G794A-β-galactosidase (a variant with a "closed" active site loop that binds transition state analogs well) an allolactose was trapped with its Gal moiety in a (4)H3 conformation, similar to the oxocarbenium ion-like conformation expected of the transition state. The numerous interactions formed between the (4)H3 structure and β-galactosidase indicate that this structure is representative of the transition state. This conformation is also very similar to that of d-galactono-1,5-lactone, a good transition state analog. Evidence indicates that substrates take up the (4)H3 conformation during migration from the shallow to the deep mode. Steric forces utilizing His418 and other residues are important for positioning the O1 leaving group into a quasi-axial position. An electrostatic interaction between the O5 of the distorted Gal and Tyr503 as well as C-H-π bonds with Trp568 are also significant. Computational studies of the energy of sugar ring distortion show that the β-galactosidase reaction itinerary is driven by energetic considerations in utilization of a (4)H3 transition state with a novel (4)C1-(4)H3-(4)C1 conformation itinerary. To our knowledge, this is the first X-ray crystallographic structural demonstration that the transition state of a natural substrate of a glycosidase has a (4)H3 conformation.
Collapse
Affiliation(s)
- Robert W Wheatley
- Biochemistry Division, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada.,Biochemistry Division, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Reuben E Huber
- Biochemistry Division, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada.,Biochemistry Division, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
7
|
Aguirre C, Condado-Morales I, Olguin LF, Costas M. Isothermal titration calorimetry determination of individual rate constants of trypsin catalytic activity. Anal Biochem 2015; 479:18-27. [PMID: 25823683 DOI: 10.1016/j.ab.2015.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/02/2015] [Accepted: 03/11/2015] [Indexed: 11/25/2022]
Abstract
Determination of individual rate constants for enzyme-catalyzed reactions is central to the understanding of their mechanism of action and is commonly obtained by stopped-flow kinetic experiments. However, most natural substrates either do not fluoresce/absorb or lack a significant change in their spectra while reacting and, therefore, are frequently chemically modified to render adequate molecules for their spectroscopic detection. Here, isothermal titration calorimetry (ITC) was used to obtain Michaelis-Menten plots for the trypsin-catalyzed hydrolysis of several substrates at different temperatures (278-318K): four spectrophotometrically blind lysine and arginine N-free esters, one N-substituted arginine ester, and one amide. A global fitting of these data provided the individual rate constants and activation energies for the acylation and deacylation reactions, and the ratio of the formation and dissociation rates of the enzyme-substrate complex, leading also to the corresponding free energies of activation. The results indicate that for lysine and arginine N-free esters deacylation is the rate-limiting step, but for the N-substituted ester and the amide acylation is the slowest step. It is shown that ITC is able to produce quality kinetic data and is particularly well suited for those enzymatic reactions that cannot be measured by absorption or fluorescence spectroscopy.
Collapse
Affiliation(s)
- César Aguirre
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | - Itzel Condado-Morales
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | - Luis F Olguin
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico.
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico.
| |
Collapse
|
8
|
Brito-Arias M, Aguilar-Lemus C, Hurtado-Ponce PB, Martínez-Barrón G, Ibañez-Hernandez M. Synthesis of phenylazonaphtol-β-D-O-glycosides, evaluation as substrates for beta-glycosidase activity and molecular studies. Org Med Chem Lett 2014; 4:2. [PMID: 24995152 PMCID: PMC4074863 DOI: 10.1186/2191-2858-4-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 05/02/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phenylazonaphtol-β-D-O-glycosides are alternative substrates for the detection of enzymatic activity of β-glycosidases which are involved in various important processes. These azoic compounds are currently exploited as prodrugs for colonic disease due the presence of β-glycosidase activity in the gut flora and therefore allowing the release of the drug at the specific site. RESULTS Phenylazonaphtol-β-D-O-glucoside 3a and galactoside 3b were prepared via diazonium salt conditions under weak acidic conditions which do not compromise the O-glycosidic bond stability, by coupling reaction between 2-naphtol sodium salt with aminoglycosides 1a and 1b. The resulting phenylazonaphtol glycosides 2a and 2b were deprotected affording the phenylazonaphtol glycosides 3a and 3b in quantitative yield. The galactoside glycoside 3b was assayed as substrate for in vitro β-galactosidase enzymatic activity showing strong absorbance after releasing of the azoic chromophore. Also, docking studies were performed to determine the best pose as well as the interactions between the ligand and the residues located at the active site. CONCLUSIONS The methodology developed for synthesizing the phenylazonaphtol glycosides described proved to be convenient for generating azoic functionalities in the presence of glycosidic bonds and the glycosides suitable as alternative substrates and potentially useful prodrugs in the treatment of colonic diseases.
Collapse
Affiliation(s)
- Marco Brito-Arias
- Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional, Avenida Acueducto s/n La Laguna Ticomán DF cp 07340, Mexico
| | - Carlos Aguilar-Lemus
- Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional, Avenida Acueducto s/n La Laguna Ticomán DF cp 07340, Mexico
| | - Pamela B Hurtado-Ponce
- Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional, Avenida Acueducto s/n La Laguna Ticomán DF cp 07340, Mexico
| | - Guadalupe Martínez-Barrón
- Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Carpio y Plan de Ayala Colonia Santo Tomas DF cp11340, Mexico
| | - Miguel Ibañez-Hernandez
- Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Carpio y Plan de Ayala Colonia Santo Tomas DF cp11340, Mexico
| |
Collapse
|
9
|
Wheatley RW, Lo S, Jancewicz LJ, Dugdale ML, Huber RE. Structural explanation for allolactose (lac operon inducer) synthesis by lacZ β-galactosidase and the evolutionary relationship between allolactose synthesis and the lac repressor. J Biol Chem 2013; 288:12993-3005. [PMID: 23486479 DOI: 10.1074/jbc.m113.455436] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
β-Galactosidase (lacZ) has bifunctional activity. It hydrolyzes lactose to galactose and glucose and catalyzes the intramolecular isomerization of lactose to allolactose, the lac operon inducer. β-Galactosidase promotes the isomerization by means of an acceptor site that binds glucose after its cleavage from lactose and thus delays its exit from the site. However, because of its relatively low affinity for glucose, details of this site have remained elusive. We present structural data mapping the glucose site based on a substituted enzyme (G794A-β-galactosidase) that traps allolactose. Various lines of evidence indicate that the glucose of the trapped allolactose is in the acceptor position. The evidence includes structures with Bis-Tris (2,2-bis(hydroxymethyl)-2,2',2″-nitrilotriethanol) and L-ribose in the site and kinetic binding studies with substituted β-galactosidases. The site is composed of Asn-102, His-418, Lys-517, Ser-796, Glu-797, and Trp-999. Ser-796 and Glu-797 are part of a loop (residues 795-803) that closes over the active site. This loop appears essential for the bifunctional nature of the enzyme because it helps form the glucose binding site. In addition, because the loop is mobile, glucose binding is transient, allowing the release of some glucose. Bioinformatics studies showed that the residues important for interacting with glucose are only conserved in a subset of related enzymes. Thus, intramolecular isomerization is not a universal feature of β-galactosidases. Genomic analyses indicated that lac repressors were co-selected only within the conserved subset. This shows that the glucose binding site of β-galactosidase played an important role in lac operon evolution.
Collapse
Affiliation(s)
- Robert W Wheatley
- Division of Biochemistry, Faculty of Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | | | | | |
Collapse
|
10
|
Juers DH, Matthews BW, Huber RE. LacZ β-galactosidase: structure and function of an enzyme of historical and molecular biological importance. Protein Sci 2012; 21:1792-807. [PMID: 23011886 PMCID: PMC3575911 DOI: 10.1002/pro.2165] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 09/18/2012] [Indexed: 12/25/2022]
Abstract
This review provides an overview of the structure, function, and catalytic mechanism of lacZ β-galactosidase. The protein played a central role in Jacob and Monod's development of the operon model for the regulation of gene expression. Determination of the crystal structure made it possible to understand why deletion of certain residues toward the amino-terminus not only caused the full enzyme tetramer to dissociate into dimers but also abolished activity. It was also possible to rationalize α-complementation, in which addition to the inactive dimers of peptides containing the "missing" N-terminal residues restored catalytic activity. The enzyme is well known to signal its presence by hydrolyzing X-gal to produce a blue product. That this reaction takes place in crystals of the protein confirms that the X-ray structure represents an active conformation. Individual tetramers of β-galactosidase have been measured to catalyze 38,500 ± 900 reactions per minute. Extensive kinetic, biochemical, mutagenic, and crystallographic analyses have made it possible to develop a presumed mechanism of action. Substrate initially binds near the top of the active site but then moves deeper for reaction. The first catalytic step (called galactosylation) is a nucleophilic displacement by Glu537 to form a covalent bond with galactose. This is initiated by proton donation by Glu461. The second displacement (degalactosylation) by water or an acceptor is initiated by proton abstraction by Glu461. Both of these displacements occur via planar oxocarbenium ion-like transition states. The acceptor reaction with glucose is important for the formation of allolactose, the natural inducer of the lac operon.
Collapse
Affiliation(s)
- Douglas H Juers
- Department of Physics, Whitman CollegeWalla Walla, Washington 99362
| | - Brian W Matthews
- Institute of Molecular Biology, 1229 University of OregonEugene, Oregon 97403-1229
| | - Reuben E Huber
- Department of Biological Sciences, University of Calgary, 2500 University DriveNW, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|