1
|
Wei Y, Zhang S, Shao F, Sun Y. Ankylosing spondylitis: From pathogenesis to therapy. Int Immunopharmacol 2025; 145:113709. [PMID: 39644789 DOI: 10.1016/j.intimp.2024.113709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Ankylosing spondylitis (AS) is an autoimmune rheumatic disease that primarily affects the axial joints, with its etiology complex and still not fully understood. The unknown pathogenesis of AS limits the development of treatment strategies, so keeping up-to-date with the current research on AS can help in searching for potential therapeutic targets. In addition to the classic HLA-B27 genetic susceptibility and Th17-related inflammatory signals, increasing research is focusing on the influence of autoantigen-centered autoimmune responses and bone stromal cells on the onset of AS. Autoantigens derived from gut microbiota and preferential TCR both exacerbate the autoimmune response in patients with AS. Furthermore, dysregulated bone metabolism also promotes pathological new bone formation in AS. Current treatments approved for AS almost focus on the management of inflammation with inconsistent treatment results due to the heterogeneity of patients. In this review, we systematically summarized various pathogenesis and management of AS, meanwhile discussed the underlying risk factors and potential therapeutic targets.
Collapse
Affiliation(s)
- Yuxiao Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| | - Shuqiong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| | - Fenli Shao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
2
|
Ferreira JM, Gonçalves CS, Costa BM. Emerging roles and biomarker potential of WNT6 in human cancers. Cell Commun Signal 2024; 22:538. [PMID: 39529066 PMCID: PMC11552340 DOI: 10.1186/s12964-024-01892-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
The WNT6 ligand is a well-known activator of the WNT signaling pathway, considered a vital player in several important physiologic processes during embryonic development and maintaining homeostasis throughout life, regulating the proliferation and differentiation of multiple stem/progenitor cell types. More recently, as it is the case for many key molecular regulators of embryonic development, dysregulation of WNT6 has been implicated in cancer development and progression in multiple studies. In this review, we overview the most significant recent findings regarding WNT6 in the context of human malignancies, exploring its influence on multiple dimensions of tumor pathophysiology and highlighting the putative underlying WNT6-associated molecular mechanisms. We also discuss the potential clinical implications of WNT6 as a prognostic and therapeutic biomarker. This critical review highlights the emerging relevance of WNT6 in multiple human cancers, and its potential as a clinically-useful biomarker, addressing key unanswered questions that could lead to new opportunities in patient diagnosis, stratification, and the development of rationally-designed precision therapies.
Collapse
Affiliation(s)
- Joana M Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Céline S Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
3
|
Wang M, Zhao S, Shi C, Guyot MC, Liao M, Tauer JT, Willie BM, Cobetto N, Aubin CÉ, Küster-Schöck E, Drapeau P, Zhang J, Wu N, Kibar Z. Planar cell polarity zebrafish models of congenital scoliosis reveal underlying defects in notochord morphogenesis. Development 2024; 151:dev202829. [PMID: 39417583 PMCID: PMC11698040 DOI: 10.1242/dev.202829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Congenital scoliosis (CS) is a type of vertebral malformation for which the etiology remains elusive. The notochord is pivotal for vertebrae development, but its role in CS is still understudied. Here, we generated a zebrafish knockout of ptk7a, a planar cell polarity (PCP) gene that is essential for convergence and extension (C&E) of the notochord, and detected congenital scoliosis-like vertebral malformations (CVMs). Maternal zygotic ptk7a mutants displayed severe C&E defects of the notochord. Excessive apoptosis occurred in the malformed notochord, causing a significantly reduced number of vacuolated cells, and compromising the mechanical properties of the notochord. The latter manifested as a less-stiff extracellular matrix along with a significant reduction in the number of the caveolae and severely loosened intercellular junctions in the vacuolated region. These defects led to focal kinks, abnormal mineralization, and CVMs exclusively at the anterior spine. Loss of function of another PCP gene, vangl2, also revealed excessive apoptosis in the notochord associated with CVMs. This study suggests a new model for CS pathogenesis that is associated with defects in notochord C&E and highlights an essential role of PCP signaling in vertebrae development.
Collapse
Affiliation(s)
- Mingqin Wang
- Azrieli Research Center of CHU Sainte Justine, University of Montreal, Montreal H3T 1C5, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal H3C 3J7, QC, Canada
| | - Sen Zhao
- The Department of Orthopedic Surgery, Key Laboratory of Big Data for Spinal Deformities, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Chenjun Shi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| | - Marie-Claude Guyot
- Azrieli Research Center of CHU Sainte Justine, University of Montreal, Montreal H3T 1C5, QC, Canada
| | - Meijiang Liao
- The CHUM Research Center, University of Montréal, Montréal H2X 0A9, Canada
| | - Josephine T. Tauer
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Shriners Hospital for Children-Canada, Montreal H4A 0A9, QC, Canada
| | - Bettina M. Willie
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Shriners Hospital for Children-Canada, Montreal H4A 0A9, QC, Canada
| | - Nikita Cobetto
- Department Mechanical Engineering, Polytechnique Montreal, Montreal H3T 1J4, QC, Canada
| | - Carl-Éric Aubin
- Azrieli Research Center of CHU Sainte Justine, University of Montreal, Montreal H3T 1C5, QC, Canada
- Department Mechanical Engineering, Polytechnique Montreal, Montreal H3T 1J4, QC, Canada
| | - Elke Küster-Schöck
- Azrieli Research Center of CHU Sainte Justine, University of Montreal, Montreal H3T 1C5, QC, Canada
| | - Pierre Drapeau
- Department of Neurosciences, University of Montreal, Montreal H3C 3J7, QC, Canada
- The CHUM Research Center, University of Montréal, Montréal H2X 0A9, Canada
| | - Jitao Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| | - Nan Wu
- The Department of Orthopedic Surgery, Key Laboratory of Big Data for Spinal Deformities, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zoha Kibar
- Azrieli Research Center of CHU Sainte Justine, University of Montreal, Montreal H3T 1C5, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal H3C 3J7, QC, Canada
| |
Collapse
|
4
|
Novotna S, Maia LA, Radaszkiewicz KA, Roudnicky P, Harnos J. Linking planar polarity signalling to actomyosin contractility during vertebrate neurulation. Open Biol 2024; 14:240251. [PMID: 39561813 PMCID: PMC11576107 DOI: 10.1098/rsob.240251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/19/2024] [Accepted: 10/02/2024] [Indexed: 11/21/2024] Open
Abstract
Actomyosin contractility represents an ancient feature of eukaryotic cells participating in many developmental and homeostasis events, including tissue morphogenesis, muscle contraction and cell migration, with dysregulation implicated in various pathological conditions, such as cancer. At the molecular level, actomyosin comprises actin bundles and myosin motor proteins that are sensitive to posttranslational modifications like phosphorylation. While the molecular components of actomyosin are well understood, the coordination of contractility by extracellular and intracellular signals, particularly from cellular signalling pathways, remains incompletely elucidated. This study focuses on WNT/planar cell polarity (PCP) signalling, previously associated with actomyosin contractility during vertebrate neurulation. Our investigation reveals that the main cytoplasmic PCP proteins, Prickle and Dishevelled, interact with key actomyosin components such as myosin light chain 9 (MLC9), leading to its phosphorylation and localized activation. Using proteomics and microscopy approaches, we demonstrate that both PCP proteins actively control actomyosin contractility through Rap1 small GTPases in relevant in vitro and in vivo models. These findings unveil a novel mechanism of how PCP signalling regulates actomyosin contractility through MLC9 and Rap1 that is relevant to vertebrate neurulation.
Collapse
Affiliation(s)
- Sarka Novotna
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno62500, Czechia
| | - Lorena Agostini Maia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno62500, Czechia
| | | | - Pavel Roudnicky
- CEITEC-Central European Institute of Technology, Masaryk University, Brno62500, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno62500, Czechia
| | - Jakub Harnos
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno62500, Czechia
| |
Collapse
|
5
|
Sun W, Zhang H, Xie W, Ma L, Dang Y, Liu Y, Li L, Qu F, Tan W. Development of Integrin-Facilitated Bispecific Aptamer Chimeras for Membrane Protein Degradation. J Am Chem Soc 2024; 146:25490-25500. [PMID: 39226482 DOI: 10.1021/jacs.4c04794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The emergence of lysosome-targeting chimeras (LYTACs), which represents a promising strategy for membrane protein degradation based on lysosomal pathways, has attracted much attention in disease intervention and treatment. However, the expression level of commonly used lysosome-targeting receptors (LTRs) varies in different cell lines, thus limiting the broad applications of LYTACs. To overcome this difficulty, we herein report the development of integrin α3β1 (ITGA3B1)-facilitated bispecific aptamer chimeras (ITGBACs) as a platform for the degradation of membrane proteins. ITGBACs consist of two aptamers, one targeting ITGA3B1 and another binding to the membrane-associated protein of interest (POI), effectively transporting the POI into lysosomes for degradation. Our findings demonstrate that ITGBACs effectively eliminate pathological membrane proteins, such as CD71 and PTK7, inducing significant cell-cycle arrest and apoptosis and markedly inhibiting tumor growth in tumor-bearing mice models. Therefore, this work provides a novel and versatile membrane protein degradation platform, offering a promising targeted therapy based on tumor-specific LTRs.
Collapse
Affiliation(s)
- Weidi Sun
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Hui Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
| | - Wanlin Xie
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Lele Ma
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yang Dang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yuan Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
| | - Ling Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Fengli Qu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res 2024; 12:39. [PMID: 38987555 PMCID: PMC11237130 DOI: 10.1038/s41413-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024] Open
Abstract
Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
7
|
Chen J, He J, Bing T, Feng Y, Lyu Y, Lei M, Tan W. Identification of the Binding Site between Aptamer sgc8c and PTK7. Anal Chem 2024; 96:10601-10611. [PMID: 38889444 DOI: 10.1021/acs.analchem.4c01186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Aptamers are single-stranded RNA or DNA molecules that can specifically bind to targets and have found broad applications in cancer early-stage detection, accurate drug delivery, and precise treatment. Although various aptamer screening methods have been developed over the past several decades, the accurate binding site between the target and the aptamer cannot be characterized during a typical aptamer screening process. In this research, we chose a widely used aptamer screened by our group, sgc8c, and its target protein tyrosine kinase 7 (PTK7) as the model aptamer and target and tried to determine the binding site between aptamer sgc8c and PTK7. Through sequential protein truncation, we confirmed that the exact binding site of sgc8c was within the region of Ig 3 to Ig 4 in the extracellular domain of PTK7. Using in vitro expressed Ig (3-4), we successfully acquired the crystal of an sgc8c-Ig (3-4) binding complex. The possible sgc8c-binding amino acid residues on PTK7 and PTK7-binding nucleotide residues on sgc8c were further identified and simulated by mass spectrometry and molecular dynamics simulation and finally verified by aptamer/protein truncation and mutation.
Collapse
Affiliation(s)
- Jianghuai Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jiaxuan He
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Tao Bing
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yawei Feng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Furong Laboratory, Changsha, Hunan 410082, China
| | - Ming Lei
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
8
|
Tan QH, Otgonbaatar A, Kaur P, Ga AF, Harmston NP, Tolwinski NS. The Wnt Co-Receptor PTK7/Otk and Its Homolog Otk-2 in Neurogenesis and Patterning. Cells 2024; 13:365. [PMID: 38474329 PMCID: PMC10930971 DOI: 10.3390/cells13050365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Wnt signaling is a highly conserved metazoan pathway that plays a crucial role in cell fate determination and morphogenesis during development. Wnt ligands can induce disparate cellular responses. The exact mechanism behind these different outcomes is not fully understood but may be due to interactions with different receptors on the cell membrane. PTK7/Otk is a transmembrane receptor that is implicated in various developmental and physiological processes including cell polarity, cell migration, and invasion. Here, we examine two roles of Otk-1 and Otk-2 in patterning and neurogenesis. We find that Otk-1 is a positive regulator of signaling and Otk-2 functions as its inhibitor. We propose that PTK7/Otk functions in signaling, cell migration, and polarity contributing to the diversity of cellular responses seen in Wnt-mediated processes.
Collapse
Affiliation(s)
- Qian Hui Tan
- Division of Science, Yale-NUS College, Singapore 138527, Singapore (A.O.); (P.K.); (A.F.G.); (N.P.H.)
| | - Agimaa Otgonbaatar
- Division of Science, Yale-NUS College, Singapore 138527, Singapore (A.O.); (P.K.); (A.F.G.); (N.P.H.)
| | - Prameet Kaur
- Division of Science, Yale-NUS College, Singapore 138527, Singapore (A.O.); (P.K.); (A.F.G.); (N.P.H.)
| | - Angelica Faye Ga
- Division of Science, Yale-NUS College, Singapore 138527, Singapore (A.O.); (P.K.); (A.F.G.); (N.P.H.)
| | - Nathan P. Harmston
- Division of Science, Yale-NUS College, Singapore 138527, Singapore (A.O.); (P.K.); (A.F.G.); (N.P.H.)
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
- Molecular Biosciences Division, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Nicholas S. Tolwinski
- Division of Science, Yale-NUS College, Singapore 138527, Singapore (A.O.); (P.K.); (A.F.G.); (N.P.H.)
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
9
|
Kong C, Pu J, Zhao Q, Weng W, Ma L, Qian Y, Hu W, Meng X, Meng T. MTX-13, a Novel PTK7-Directed Antibody-Drug Conjugate with Widened Therapeutic Index Shows Sustained Tumor Regressions for a Broader Spectrum of PTK7-Positive Tumors. Mol Cancer Ther 2023; 22:1128-1143. [PMID: 37352387 PMCID: PMC10544008 DOI: 10.1158/1535-7163.mct-23-0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/04/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Protein tyrosine kinase 7 (PTK7) is a Wnt signaling pathway protein implicated in cancer development and metastasis. When using a potent microtubule inhibitor (Aur0101), PTK7-targeting antibody-drug conjugate (ADC), h6M24-vc0101 (PF-06647020/cofetuzumab pelidotin) is efficacious only in limited tumor types with low response rates in a phase I trial. To improve patient response and to expand responding tumor types, we designed MTX-13, a PTK7-targeting ADC consisting of a novel antibody (Ab13) conjugated to eight molecules of topoisomerase I inhibitor exatecan through T1000, a novel self-immolative moiety. MTX-13 exhibited PTK7-specific cell binding, efficient internalization, and exatecan release to cause cytotoxic activity through DNA damage and apoptosis induction, and a strong bystander killing. MTX-13 displayed potent antitumor activities on cell line-derived xenograft and patient-derived xenograft models from a wide range of solid tumors, significantly outperforming h6M24-vc0101. PTK7 was shown to be an actionable target in small cell lung cancer for which MTX-13 showed complete and durable responses. With a consistent overexpression of PTK7 in squamous cell carcinomas derived from diverse anatomic sites, strong potency of MTX-13 in this group of heterogenous tumors suggested a common treatment strategy. Finally, MTX-13 inhibited tumor growth and metastasis in an orthotopic colon cancer xenograft model. MTX-13 displayed a favorable pharmacokinetic and safety profile in monkeys with the highest non-severely toxic dose (HNSTD) of ≥30 mg/kg, significantly higher than 3-5 mg/kg of HNSTD for h6M24-vc0101. The higher therapeutic index of MTX-13 bodes well for its clinical translation with the potential to expand the responding patient population beyond that of current PTK7-targeting ADCs.
Collapse
Affiliation(s)
- Chao Kong
- Multitude Therapeutics, Xuhui District, Shanghai, China
| | - Junyi Pu
- School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Qianqian Zhao
- Multitude Therapeutics, Xuhui District, Shanghai, China
| | - Weining Weng
- Multitude Therapeutics, Xuhui District, Shanghai, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Linjie Ma
- Multitude Therapeutics, Xuhui District, Shanghai, China
| | - Yu Qian
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xun Meng
- Multitude Therapeutics, Xuhui District, Shanghai, China
| | - Tao Meng
- MabCare Therapeutics, Shanghai, China
- HySlink Therapeutics, Shanghai, China
| |
Collapse
|
10
|
Jovanovic M, Mitra A, Besio R, Contento BM, Wong KW, Derkyi A, To M, Forlino A, Dale RK, Marini JC. Absence of TRIC-B from type XIV Osteogenesis Imperfecta osteoblasts alters cell adhesion and mitochondrial function - A multi-omics study. Matrix Biol 2023; 121:127-148. [PMID: 37348683 PMCID: PMC10634967 DOI: 10.1016/j.matbio.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Osteogenesis Imperfecta (OI) is a heritable collagen-related bone dysplasia characterized by bone fractures, growth deficiency and skeletal deformity. Type XIV OI is a recessive OI form caused by null mutations in TMEM38B, which encodes the ER membrane intracellular cation channel TRIC-B. Previously, we showed that absence of TMEM38B alters calcium flux in the ER of OI patient osteoblasts and fibroblasts, which further disrupts collagen synthesis and secretion. How the absence of TMEM38B affects osteoblast function is still poorly understood. Here we further investigated the role of TMEM38B in human osteoblast differentiation and mineralization. TMEM38B-null osteoblasts showed altered expression of osteoblast marker genes and decreased mineralization. RNA-Seq analysis revealed that cell-cell adhesion was one of the most downregulated pathways in TMEM38B-null osteoblasts, with further validation by real-time PCR and Western blot. Gap and tight junction proteins were also decreased by TRIC-B absence, both in patient osteoblasts and in calvarial osteoblasts of Tmem38b-null mice. Disrupted cell adhesion decreased mutant cell proliferation and cell cycle progression. An important novel finding was that TMEM38B-null osteoblasts had elongated mitochondria with altered fusion and fission markers, MFN2 and DRP1. In addition, TMEM38B-null osteoblasts exhibited a significant increase in superoxide production in mitochondria, further supporting mitochondrial dysfunction. Together these results emphasize the novel role of TMEM38B/TRIC-B in osteoblast differentiation, affecting cell-cell adhesion processes, gap and tight junction, proliferation, cell cycle, and mitochondrial function.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | | | - Ka Wai Wong
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China; Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alberta Derkyi
- Office of the Clinical Director, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Michael To
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China; Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States.
| |
Collapse
|
11
|
Frenster JD, Erdjument-Bromage H, Stephan G, Ravn-Boess N, Wang S, Liu W, Bready D, Wilcox J, Kieslich B, Jankovic M, Wilde C, Horn S, Sträter N, Liebscher I, Schöneberg T, Fenyo D, Neubert TA, Placantonakis DG. PTK7 is a positive allosteric modulator of GPR133 signaling in glioblastoma. Cell Rep 2023; 42:112679. [PMID: 37354459 PMCID: PMC10445595 DOI: 10.1016/j.celrep.2023.112679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/24/2023] [Accepted: 05/23/2023] [Indexed: 06/26/2023] Open
Abstract
The adhesion G-protein-coupled receptor GPR133 (ADGRD1) supports growth of the brain malignancy glioblastoma. How the extracellular interactome of GPR133 in glioblastoma modulates signaling remains unknown. Here, we use affinity proteomics to identify the transmembrane protein PTK7 as an extracellular binding partner of GPR133 in glioblastoma. PTK7 binds the autoproteolytically generated N-terminal fragment of GPR133 and its expression in trans increases GPR133 signaling. This effect requires the intramolecular cleavage of GPR133 and PTK7's anchoring in the plasma membrane. PTK7's allosteric action on GPR133 signaling is additive with but topographically distinct from orthosteric activation by soluble peptide mimicking the endogenous tethered Stachel agonist. GPR133 and PTK7 are expressed in adjacent cells in glioblastoma, where their knockdown phenocopies each other. We propose that this ligand-receptor interaction is relevant to the pathogenesis of glioblastoma and possibly other physiological processes in healthy tissues.
Collapse
Affiliation(s)
- Joshua D Frenster
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Biology and Medicine at the Skirball Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Gabriele Stephan
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Niklas Ravn-Boess
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Shuai Wang
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Devin Bready
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jordan Wilcox
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Björn Kieslich
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, 04103 Leipzig, Germany; Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Manuel Jankovic
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, 04103 Leipzig, Germany
| | - Caroline Wilde
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, 04103 Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - David Fenyo
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Thomas A Neubert
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Biology and Medicine at the Skirball Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitris G Placantonakis
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
12
|
He Q, Hu H, Yang F, Song D, Zhang X, Dai X. Advances in chimeric antigen receptor T cells therapy in the treatment of breast cancer. Biomed Pharmacother 2023; 162:114609. [PMID: 37001182 DOI: 10.1016/j.biopha.2023.114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Breast cancer (BC) is the most frequently occurring cancer type seriously threatening the lives of women worldwide. Clinically, the high frequency of diverse resistance to current therapeutic strategies advocates a demand to develop novel and effective approaches for the efficient treatment of BC. The chimeric antigen receptor T (CAR-T) cells therapy, one of the immunotherapies, has displayed powerful capacity to specifically kill and eliminate tumors. Due to the success of CAR-T therapy achieved in treating hematological malignancy, the effect of CAR-T cells therapy has been tested in various human diseases including breast cancer. This review summarized and discussed the landscape of the CAR-T therapy for breast cancer, including the advances, challenge and countermeasure of CAR-T therapy in research and clinical application. The roles of potential antigen targets, tumor microenvironment, immune escape in regulating CAR-T therapy, the combination of CAR-T therapy with other therapeutic strategies to further enhance therapeutic efficacy of CAR-T treatment were also highlighted. Therefore, our review provided a comprehensive understanding of CAR-T cell therapy in breast cancer which will awake huge interests for future in-depth investigation of CAR-T based therapy in cancer treatment.
Collapse
|
13
|
Dijkstra J, Neikes HK, Rezaeifard S, Ma X, Voest EE, Tauriello DVF, Vermeulen M. Multiomics of Colorectal Cancer Organoids Reveals Putative Mediators of Cancer Progression Resulting from SMAD4 Inactivation. J Proteome Res 2023; 22:138-151. [PMID: 36450103 PMCID: PMC9830641 DOI: 10.1021/acs.jproteome.2c00551] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The development of metastasis severely reduces the life expectancy of patients with colorectal cancer (CRC). Although loss of SMAD4 is a key event in CRC progression, the resulting changes in biological processes in advanced disease and metastasis are not fully understood. Here, we applied a multiomics approach to a CRC organoid model that faithfully reflects the metastasis-supporting effects of SMAD4 inactivation. We show that loss of SMAD4 results in decreased differentiation and activation of pro-migratory and cell proliferation processes, which is accompanied by the disruption of several key oncogenic pathways, including the TGFβ, WNT, and VEGF pathways. In addition, SMAD4 inactivation leads to increased secretion of proteins that are known to be involved in a variety of pro-metastatic processes. Finally, we show that one of the factors that is specifically secreted by SMAD4-mutant organoids─DKK3─reduces the antitumor effects of natural killer cells (NK cells). Altogether, our data provide new insights into the role of SMAD4 perturbation in advanced CRC.
Collapse
Affiliation(s)
- Jelmer
J. Dijkstra
- Department
of Molecular Biology, Faculty of Science, Radboud Institute for Molecular
Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, Geert Grooteplein 26−28, 6525
GA Nijmegen, The
Netherlands
| | - Hannah K. Neikes
- Department
of Molecular Biology, Faculty of Science, Radboud Institute for Molecular
Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, Geert Grooteplein 26−28, 6525
GA Nijmegen, The
Netherlands
| | - Somayeh Rezaeifard
- Department
of Cell Biology, Radboud University Medical Center/Radboud Institute
for Molecular Life Sciences (RIMLS), Radboud
University Nijmegen, Geert Grooteplein 26−28, 6525
GA Nijmegen, The
Netherlands
| | - Xuhui Ma
- Department
of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Antoni van Leeuwenhoek
Hospital, 1066 CX Amsterdam, The Netherlands
| | - Emile E. Voest
- Department
of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Antoni van Leeuwenhoek
Hospital, 1066 CX Amsterdam, The Netherlands
| | - Daniele V. F. Tauriello
- Department
of Cell Biology, Radboud University Medical Center/Radboud Institute
for Molecular Life Sciences (RIMLS), Radboud
University Nijmegen, Geert Grooteplein 26−28, 6525
GA Nijmegen, The
Netherlands
| | - Michiel Vermeulen
- Department
of Molecular Biology, Faculty of Science, Radboud Institute for Molecular
Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, Geert Grooteplein 26−28, 6525
GA Nijmegen, The
Netherlands,
| |
Collapse
|
14
|
Wang AJ, Gao Y, Shi YY, Dai MY, Cai HB. A review of recent advances on single use of antibody-drug conjugates or combination with tumor immunology therapy for gynecologic cancer. Front Pharmacol 2022; 13:1093666. [PMID: 36618922 PMCID: PMC9813853 DOI: 10.3389/fphar.2022.1093666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint inhibitors have made significant progress in the treatment of various cancers. However, due to the low ICI responsive rate for the gynecologic cancer, ICI two-drug combination therapy tends to be a predominant way for clinical treatment. Antibody-drug conjugates, a promising therapeutic modality for cancer, have been approved by the FDA for breast cancer, lymphoma, multiple myeloma and gastric cancer. On September 2021, the FDA granted accelerated approval to tisotumab vedotin for patients with recurrent or metastatic cervical cancer. Currently, the role of therapy of ADCs on gynecologic tumors was also included in medication regimens. Now more than 30 ADCs targeting for 20 biomarkers are under clinical trials in the field, including monotherapy or combination with others for multiple lines of therapy. Some ADCs have been proved to enhance the antitumor immunity effect on both pre-clinical models and clinical trials. Therefore, combination of ADCs and ICIs are expected in clinical trials. In this review, we discuss current development of ADCs in gynecologic oncology and the combination effects of ICIs and ADCs.
Collapse
Affiliation(s)
- An-Jin Wang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China,Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Yang Gao
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China,Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Yu-Ying Shi
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China,Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Meng-Yuan Dai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China,Hubei Cancer Clinical Study Center, Wuhan, Hubei, China,*Correspondence: Meng-Yuan Dai, ; Hong-Bing Cai,
| | - Hong-Bing Cai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China,Hubei Cancer Clinical Study Center, Wuhan, Hubei, China,*Correspondence: Meng-Yuan Dai, ; Hong-Bing Cai,
| |
Collapse
|
15
|
Multiomics characterization implicates PTK7 in ovarian cancer EMT and cell plasticity and offers strategies for therapeutic intervention. Cell Death Dis 2022; 13:714. [PMID: 35977930 PMCID: PMC9386025 DOI: 10.1038/s41419-022-05161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 01/21/2023]
Abstract
Most patients with ovarian cancer (OC) are diagnosed at a late stage when there are very few therapeutic options and a poor prognosis. This is due to the lack of clearly defined underlying mechanisms or an oncogenic addiction that can be targeted pharmacologically, unlike other types of cancer. Here, we identified protein tyrosine kinase 7 (PTK7) as a potential new therapeutic target in OC following a multiomics approach using genetic and pharmacological interventions. We performed proteomics analyses upon PTK7 knockdown in OC cells and identified novel downstream effectors such as synuclein-γ (SNCG), SALL2, and PP1γ, and these findings were corroborated in ex vivo primary samples using PTK7 monoclonal antibody cofetuzumab. Our phosphoproteomics analyses demonstrated that PTK7 modulates cell adhesion and Rho-GTPase signaling to sustain epithelial-mesenchymal transition (EMT) and cell plasticity, which was confirmed by high-content image analysis of 3D models. Furthermore, using high-throughput drug sensitivity testing (525 drugs) we show that targeting PTK7 exhibited synergistic activity with chemotherapeutic agent paclitaxel, CHK1/2 inhibitor prexasertib, and PLK1 inhibitor GSK461364, among others, in OC cells and ex vivo primary samples. Taken together, our study provides unique insight into the function of PTK7, which helps to define its role in mediating aberrant Wnt signaling in ovarian cancer.
Collapse
|
16
|
Zhang H, Zhu S, Deng W, Li R, Zhou H, Xiong H. The landscape of chimeric antigen receptor T cell therapy in breast cancer: Perspectives and outlook. Front Immunol 2022; 13:887471. [PMID: 35935930 PMCID: PMC9354605 DOI: 10.3389/fimmu.2022.887471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy is a revolutionary adoptive cell therapy, which could modify and redirect T cells to specific tumor cells. Since CAR-T cell therapy was first approved for B cell-derived malignancies in 2017, it has yielded unprecedented progress in hematological tumors and has dramatically reshaped the landscape of cancer therapy in recent years. Currently, cumulative evidence has demonstrated that CAR-T cell therapy could be a viable therapeutic strategy for solid cancers. However, owing to the immunosuppressive tumor microenvironment (TME) and heterogenous tumor antigens, the application of CAR-T cell therapy against solid cancers requires circumventing more challenging obstacles. Breast cancer is characterized by a high degree of invasiveness, malignancy, and poor prognosis. The review highlights the underlying targets of CAR-T cell therapy in breast cancer, summarizes the challenges associated with CAR-T cell therapy, and proposes the strategies to overcome these challenges, which provides a novel approach to breast cancer treatment.
Collapse
|
17
|
Target-Specific Exosome Isolation through Aptamer-Based Microfluidics. BIOSENSORS 2022; 12:bios12040257. [PMID: 35448317 PMCID: PMC9027373 DOI: 10.3390/bios12040257] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 01/08/2023]
Abstract
Exosomes (30–100 nm in diameter) are a group of cell-derived membrane vesicles, packaged as valuable cargo with lipid, proteins, and genetic materials from their parent cells. With the increasing interest in exosomes for diagnostic and therapeutic applications, the rapid isolation of pure exosome populations has become a hot topic. In this paper, we propose modified microchannels with aptamer in a microfluidics system for rapid and efficient isolation of exosomes by targeting exosome-carrying CD63 and PTK 7. The capture efficiency in surface-modified channels reaches around 107–108 particles/mL in 20 min, and purified exosomes with reliable size can be achieved.
Collapse
|
18
|
Miao B, Skopelitou D, Srivastava A, Giangiobbe S, Dymerska D, Paramasivam N, Kumar A, Kuświk M, Kluźniak W, Paszkowska-Szczur K, Schlesner M, Lubinski J, Hemminki K, Försti A, Bandapalli OR. Whole-Exome Sequencing Identifies a Novel Germline Variant in PTK7 Gene in Familial Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23031295. [PMID: 35163215 PMCID: PMC8836109 DOI: 10.3390/ijms23031295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/02/2022] [Accepted: 01/18/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the third most frequently diagnosed malignancy worldwide. Only 5% of all CRC cases are due to germline mutations in known predisposition genes, and the remaining genetic burden still has to be discovered. In this study, we performed whole-exome sequencing on six members of a Polish family diagnosed with CRC and identified a novel germline variant in the protein tyrosine kinase 7 (inactive) gene (PTK7, ENST00000230419, V354M). Targeted screening of the variant in 1705 familial CRC cases and 1674 healthy elderly individuals identified the variant in an additional familial CRC case. Introduction of this variant in HT-29 cells resulted in increased cell proliferation, migration, and invasion; it also caused down-regulation of CREB, p21 and p53 mRNA and protein levels, and increased AKT phosphorylation. These changes indicated inhibition of apoptosis pathways and activation of AKT signaling. Our study confirmed the oncogenic function of PTK7 and supported its role in genetic predisposition of familial CRC.
Collapse
Affiliation(s)
- Beiping Miao
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Diamanto Skopelitou
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Aayushi Srivastava
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Sara Giangiobbe
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
| | - Dagmara Dymerska
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (D.D.); (M.K.); (W.K.); (K.P.-S.); (J.L.)
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany;
| | - Abhishek Kumar
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Institute of Bioinformatics, International Technology Park, Bengaluru 560066, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Magdalena Kuświk
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (D.D.); (M.K.); (W.K.); (K.P.-S.); (J.L.)
| | - Wojciech Kluźniak
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (D.D.); (M.K.); (W.K.); (K.P.-S.); (J.L.)
| | - Katarzyna Paszkowska-Szczur
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (D.D.); (M.K.); (W.K.); (K.P.-S.); (J.L.)
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (D.D.); (M.K.); (W.K.); (K.P.-S.); (J.L.)
| | - Kari Hemminki
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
- Correspondence: (K.H.); (O.R.B.); Tel.: +49-6221-421809 (O.R.B.); Fax: +49-6221-424639 (O.R.B.)
| | - Asta Försti
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Obul Reddy Bandapalli
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
- Correspondence: (K.H.); (O.R.B.); Tel.: +49-6221-421809 (O.R.B.); Fax: +49-6221-424639 (O.R.B.)
| |
Collapse
|
19
|
Troyanovsky RB, Indra I, Kato R, Mitchell BJ, Troyanovsky SM. Basolateral protein Scribble binds phosphatase PP1 to establish a signaling network maintaining apicobasal polarity. J Biol Chem 2021; 297:101289. [PMID: 34634305 PMCID: PMC8569552 DOI: 10.1016/j.jbc.2021.101289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/25/2023] Open
Abstract
Scribble, a member of the LAP protein family, contributes to the apicobasal polarity (ABP) of epithelial cells. The LAP-unique region of these proteins, which is essential and sufficient for ABP, includes a conserved Leucine-Rich Repeat (LRR) domain. The major binding partners of this region that could regulate ABP remain unknown. Here, using proteomics, native gel electrophoresis, and site-directed mutagenesis, we show that the concave surface of LRR domain in Scribble participates in three types of mutually exclusive interactions-(i) homodimerization, serving as an auto-inhibitory mechanism; (ii) interactions with a diverse set of polarity proteins, such as Llgl1, Llgl2, EPB41L2, and EPB41L5, which produce distinct multiprotein complexes; and (iii) a direct interaction with the protein phosphatase, PP1. Analogy with the complex between PP1 and LRR domain of SDS22, a well-studied PP1 regulator, suggests that the Scibble-PP1 complex stores a latent form of PP1 in the basolateral cell cortex. Such organization may generate a dynamic signaling network wherein PP1 could be dispatched from the complex with Scribble to particular protein ligands, achieving fast dephosphorylation kinetics.
Collapse
Affiliation(s)
- Regina B Troyanovsky
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Indrajyoti Indra
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rei Kato
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Brian J Mitchell
- Department of Cell & Developmental Biology, The Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sergey M Troyanovsky
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Cell & Developmental Biology, The Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
20
|
Jin X, Huang T, Ma C, Duan J, Li R, Zhang W, Tian W. Protein tyrosine kinase 7-knockdown inhibits oral squamous cell carcinoma cell viability, proliferation, migration and invasion via downregulating dishevelled segment polarity protein 3 expression. Exp Ther Med 2021; 22:1372. [PMID: 34659518 PMCID: PMC8515512 DOI: 10.3892/etm.2021.10806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Protein tyrosine kinase 7 (PTK7) expression has been reported to be dysregulated and to regulate various cellular activities in numerous types of cancer. However, to the best of our knowledge, the status and role of PTK7 in oral squamous cell carcinoma (OSCC) remains largely unknown. The present study aimed to investigate the involvement of PTK7 in OSCC progression and to determine the potential underlying mechanisms of action. The expression levels of PTK7 and dishevelled segment polarity protein 3 (DVL3) in OSCC cell lines were analyzed using reverse transcription-quantitative PCR and western blotting. A co-immunoprecipitation assay was used to verify the binding association between PTK7 and DVL3. In addition, OSCC cells were transfected with a short hairpin RNA targeting PTK7 or pcDNA-DVL3 overexpression vectors. The effect of PTK7 on OSCC cell viability, proliferation, migration and invasion, and the underlying mechanisms, were investigated using Cell Counting Kit-8, colony formation, wound healing and Transwell assays, respectively. Western blotting was used to analyze the expression levels of proliferation- and migration-associated proteins. The results revealed that the expression levels of both PTK7 and DVL3 were significantly upregulated in OSCC cell lines. In addition, a binding association was identified between PTK7 and DVL3 in SCC-9 cells. The knockdown of PTK7 expression inhibited OSCC cell viability, proliferation, invasion and migration, while the overexpression of DVL3 reversed the inhibitory effects of PTK7-knockdown on OSCC cells. In conclusion, the results of the present study suggested that PTK7 may be a key regulator of OSCC proliferation, migration and invasion, and PTK7-knockdown may inhibit OSCC cell viability, proliferation, invasion and migration by downregulating DVL3 expression. Therefore, PTK7 and DVL3 may represent potential biomarkers for diagnosis and treatment, as well as promising drug targets for OSCC.
Collapse
Affiliation(s)
- Xiaoye Jin
- Department of Stomatology, The Second Hospital of Yulin City, Xi'an Jiaotong University Medical School, Yulin, Shaanxi 719000, P.R. China
| | - Tao Huang
- Disinfection Supply Center, The Second Hospital of Yulin City, Xi'an Jiaotong University Medical School, Yulin, Shaanxi 719000, P.R. China
| | - Caihong Ma
- Department of Oral and Maxillofacial Surgery, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu 730050, P.R. China
| | - Jiafeng Duan
- Department of Head and Neck Cancer Surgery, Stomatological Hospital affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Rong Li
- Department of Oral and Maxillofacial Surgery, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu 730050, P.R. China
| | - Wei Zhang
- Department of Pharmacy, Yulin First Hospital of Shaanxi Province, Yulin, Shaanxi 719000, P.R. China
| | - Wenyan Tian
- Department of Oral and Maxillofacial Surgery, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
21
|
Jie Y, Liu G, Feng L, Li Y, E M, Wu L, Li Y, Rong G, Li Y, Wei H, Gu A. PTK7-Targeting CAR T-Cells for the Treatment of Lung Cancer and Other Malignancies. Front Immunol 2021; 12:665970. [PMID: 34475869 PMCID: PMC8406764 DOI: 10.3389/fimmu.2021.665970] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022] Open
Abstract
In spite of impressive success in treating hematologic malignancies, adoptive therapy with chimeric antigen receptor modified T cells (CAR T) has not yet been effective in solid tumors, where identification of suitable tumor-specific antigens remains a major obstacle for CAR T-cell therapy due to the “on target off tumor” toxicity. Protein tyrosine kinase 7 (PTK7) is a member of the Wnt-related pseudokinases and identified as a highly expressed antigen enriched in cancer stem cells (CSCs) from multiple solid tumors, including but not limited to triple-negative breast cancer, non-small-cell lung cancer, and ovarian cancer, suggesting it may serve as a promising tumor-specific target for CAR T-cell therapy. In this study, we constructed three different PTK7-specific CAR (PTK7-CAR1/2/3), each comprising a humanized PTK7-specific single-chain variable fragment (scFv), hinge and transmembrane (TM) regions of the human CD8α molecule, 4-1BB intracellular co-stimulatory domain (BB-ICD), and CD3ζ intracellular domain (CD3ζ-ICD) sequence, and then prepared the CAR T cells by lentivirus-mediated transduction of human activated T cells accordingly, and we sequentially evaluated their antigen-specific recognition and killing activity in vitro and in vivo. T cells transduced with all three PTK7-CAR candidates exhibited antigen-specific cytokine production and potent cytotoxicity against naturally expressing PTK7-positive tumor cells of multiple cancer types without mediating cytotoxicity of a panel of normal primary human cells; meanwhile, in vitro recursive cytotoxicity assays demonstrated that only PTK7-CAR2 modified T cells retained effective through multiple rounds of tumor challenge. Using in vivo xenograft models of lung cancers with different expression levels of PTK7, systemic delivery of PTK7-CAR2 modified T cells significantly prevented tumor growth and prolonged overall survival of mice. Altogether, our results support PTK7 as a therapeutic target suitable for CAR T-cell therapy that could be applied for lung cancers and many other solid cancers with PTK7 overexpression.
Collapse
Affiliation(s)
- Yamin Jie
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guijun Liu
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lina Feng
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ying Li
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingyan E
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Liangliang Wu
- Key Lab of Cancer Center, General Hospital of Chinese PLA & Beijing Key Laboratory of Cell Engineering & Antibody, Beijing, China
| | - Yinyin Li
- Liver Cancer Unit, Department of Liver Disease, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Guanghua Rong
- Liver Cancer Unit, Department of Liver Disease, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yongwu Li
- Department of Radiology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Huafeng Wei
- Key Lab of Cancer Center, General Hospital of Chinese PLA & Beijing Key Laboratory of Cell Engineering & Antibody, Beijing, China
| | - Anxin Gu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
22
|
Grund A, Till K, Giehl K, Borchers A. Ptk7 Is Dynamically Localized at Neural Crest Cell-Cell Contact Sites and Functions in Contact Inhibition of Locomotion. Int J Mol Sci 2021; 22:ijms22179324. [PMID: 34502237 PMCID: PMC8431534 DOI: 10.3390/ijms22179324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Neural crest (NC) cells are highly migratory cells that contribute to various vertebrate tissues, and whose migratory behaviors resemble cancer cell migration and invasion. Information exchange via dynamic NC cell-cell contact is one mechanism by which the directionality of migrating NC cells is controlled. One transmembrane protein that is most likely involved in this process is protein tyrosine kinase 7 (PTK7), an evolutionary conserved Wnt co-receptor that is expressed in cranial NC cells and several tumor cells. In Xenopus, Ptk7 is required for NC migration. In this study, we show that the Ptk7 protein is dynamically localized at cell-cell contact zones of migrating Xenopus NC cells and required for contact inhibition of locomotion (CIL). Using deletion constructs of Ptk7, we determined that the extracellular immunoglobulin domains of Ptk7 are important for its transient accumulation and that they mediate homophilic binding. Conversely, we found that ectopic expression of Ptk7 in non-NC cells was able to prevent NC cell invasion. However, deletion of the extracellular domains of Ptk7 abolished this effect. Thus, Ptk7 is sufficient at protecting non-NC tissue from NC cell invasion, suggesting a common role of PTK7 in contact inhibition, cell invasion, and tissue integrity.
Collapse
Affiliation(s)
- Anita Grund
- Faculty of Biology, Molecular Embryology, Philipps-University Marburg, D-35032 Marburg, Germany; (A.G.); (K.T.)
| | - Katharina Till
- Faculty of Biology, Molecular Embryology, Philipps-University Marburg, D-35032 Marburg, Germany; (A.G.); (K.T.)
| | - Klaudia Giehl
- Faculty of Medicine, Signal Transduction of Cellular Motility, Internal Medicine V, Justus-Liebig University Giessen, D-35392 Giessen, Germany;
| | - Annette Borchers
- Faculty of Biology, Molecular Embryology, Philipps-University Marburg, D-35032 Marburg, Germany; (A.G.); (K.T.)
- Correspondence: ; Tel.: +49-6421-2826587
| |
Collapse
|
23
|
Maitland ML, Sachdev JC, Sharma MR, Moreno V, Boni V, Kummar S, Stringer-Reasor E, Lakhani N, Moreau AR, Xuan D, Li R, Powell EL, Jackson-Fisher A, Bowers M, Alekar S, Xin X, Tolcher AW, Calvo E. First-in-Human Study of PF-06647020 (Cofetuzumab Pelidotin), an Antibody-Drug Conjugate Targeting Protein Tyrosine Kinase 7, in Advanced Solid Tumors. Clin Cancer Res 2021; 27:4511-4520. [PMID: 34083232 PMCID: PMC9401513 DOI: 10.1158/1078-0432.ccr-20-3757] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/26/2021] [Accepted: 05/28/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE We investigated safety, tolerability, pharmacokinetics, and antitumor activity of the protein tyrosine kinase 7 (PTK7)-targeted, auristatin-based antibody-drug conjugate (ADC) PF-06647020/cofetuzumab pelidotin (NCT02222922). PATIENTS AND METHODS Patients received PF-06647020 intravenously every 3 weeks at 0.2-3.7 mg/kg or every 2 weeks at 2.1-3.2 mg/kg, in sequential dose escalation, following a modified toxicity probability interval method. In dose expansion, pretreated patients with advanced, platinum-resistant ovarian cancer, non-small cell lung cancer (NSCLC), or triple-negative breast cancer (TNBC) received PF-06647020 2.8 mg/kg every 3 weeks. RESULTS The most common, treatment-related adverse events for PF-06647020 administered every 3 weeks were nausea, alopecia, fatigue, headache, neutropenia, and vomiting (45%-25%); 25% of patients had grade ≥ 3 neutropenia. Two patients experienced dose-limiting toxicities (grade 3 headache and fatigue) at the highest every 3 weeks dose evaluated. The recommended phase II dose was 2.8 mg/kg every 3 weeks. The overall safety profile observed with PF-06647020 administered every 2 weeks was similar to that of the every 3 weeks regimen. Systemic exposure for the ADC and total antibody generally increased in a dose-proportional manner. Antitumor activity was observed in treated patients with overall objective response rates of 27% in ovarian cancer (n = 63), 19% in NSCLC (n = 31), and 21% in TNBC (n = 29). Responders tended to have moderate or high PTK7 tumor expression by IHC. CONCLUSIONS This PTK7-targeted ADC demonstrated therapeutic activity in previously treated patients with ovarian cancer, NSCLC, and TNBC at a dose range of 2.1-3.2 mg/kg, supporting further clinical evaluation to refine dose, schedule, and predictive tissue biomarker testing in patients with advanced malignancies.
Collapse
Affiliation(s)
- Michael L Maitland
- Inova Schar Cancer Institute and Center for Personalized Health, University of Virginia Cancer Center, Fairfax, Virginia.
| | | | | | - Victor Moreno
- START Madrid-FJD, Hospital Universitario Fundacion Jimenez Diaz, Madrid, Spain
| | - Valentina Boni
- START Madrid-CIOCC, HM Hospital Sanchinarro, Madrid, Spain
| | - Shivaani Kummar
- Stanford University School of Medicine, Stanford, California
| | | | | | | | | | - Ray Li
- Pfizer, San Diego, California
| | | | | | | | | | | | | | - Emiliano Calvo
- START Madrid-CIOCC, HM Hospital Sanchinarro, Madrid, Spain
| |
Collapse
|
24
|
Canonical Wnt Signaling Pathway on Polarity Formation of Utricle Hair Cells. Neural Plast 2021; 2021:9950533. [PMID: 34122536 PMCID: PMC8166501 DOI: 10.1155/2021/9950533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
As part of the inner ear, the vestibular system is responsible for sense of balance, which consists of three semicircular canals, the utricle, and the saccule. Increasing evidence has indicated that the noncanonical Wnt/PCP signaling pathway plays a significant role in the development of the polarity of the inner ear. However, the role of canonical Wnt signaling in the polarity of the vestibule is still not completely clear. In this study, we found that canonical Wnt pathway-related genes are expressed in the early stage of development of the utricle and change dynamically. We conditionally knocked out β-catenin, a canonical Wnt signaling core protein, and found that the cilia orientation of hair cells was disordered with reduced number of hair cells in the utricle. Moreover, regulating the canonical Wnt pathway (Licl and IWP2) in vitro also affected hair cell polarity and indicated that Axin2 may be important in this process. In conclusion, our results not only confirm that the regulation of canonical Wnt signaling affects the number of hair cells in the utricle but also provide evidence for its role in polarity development.
Collapse
|
25
|
Intracellular and Extracellular Markers of Lethality in Osteogenesis Imperfecta: A Quantitative Proteomic Approach. Int J Mol Sci 2021; 22:ijms22010429. [PMID: 33406681 PMCID: PMC7795927 DOI: 10.3390/ijms22010429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a heritable disorder that mainly affects the skeleton. The inheritance is mostly autosomal dominant and associated to mutations in one of the two genes, COL1A1 and COL1A2, encoding for the type I collagen α chains. According to more than 1500 described mutation sites and to outcome spanning from very mild cases to perinatal-lethality, OI is characterized by a wide genotype/phenotype heterogeneity. In order to identify common affected molecular-pathways and disease biomarkers in OI probands with different mutations and lethal or surviving phenotypes, primary fibroblasts from dominant OI patients, carrying COL1A1 or COL1A2 defects, were investigated by applying a Tandem Mass Tag labeling-Liquid Chromatography-Tandem Mass Spectrometry (TMT LC-MS/MS) proteomics approach and bioinformatic tools for comparative protein-abundance profiling. While no difference in α1 or α2 abundance was detected among lethal (type II) and not-lethal (type III) OI patients, 17 proteins, with key effects on matrix structure and organization, cell signaling, and cell and tissue development and differentiation, were significantly different between type II and type III OI patients. Among them, some non-collagenous extracellular matrix (ECM) proteins (e.g., decorin and fibrillin-1) and proteins modulating cytoskeleton (e.g., nestin and palladin) directly correlate to the severity of the disease. Their defective presence may define proband-failure in balancing aberrances related to mutant collagen.
Collapse
|
26
|
Wang J, Feng D, Gao B. An Overview of Potential Therapeutic Agents Targeting WNT/PCP Signaling. Handb Exp Pharmacol 2021; 269:175-213. [PMID: 34463852 DOI: 10.1007/164_2021_533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Since the discovery of the proto-oncogene Wnt1 (Int1) in 1982, WNT signaling has been identified as one of the most important pathways that regulates a wide range of fundamental developmental and physiological processes in multicellular organisms. The canonical WNT signaling pathway depends on the stabilization and translocation of β-catenin and plays important roles in development and homeostasis. The WNT/planar cell polarity (WNT/PCP) signaling, also known as one of the β-catenin-independent WNT pathways, conveys directional information to coordinate polarized cell behaviors. Similar to WNT/β-catenin signaling, disruption or aberrant activation of WNT/PCP signaling also underlies a variety of developmental defects and cancers. However, the pharmacological targeting of WNT/PCP signaling for therapeutic purposes remains largely unexplored. In this review, we briefly discuss WNT/PCP signaling in development and disease and summarize the known drugs/inhibitors targeting this pathway.
Collapse
Affiliation(s)
- Jin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Di Feng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
27
|
Sadakierska-Chudy A, Patrylak J, Janeczko J, Chudy J. Downregulation of gene expression and the outcome of ICSI in severe oligozoospermic patients: A preliminary study. Mol Reprod Dev 2020; 87:1219-1230. [PMID: 33241638 DOI: 10.1002/mrd.23442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 11/09/2022]
Abstract
Preimplantation embryo development might be influenced by a specific set of transcripts that are delivered to the oocyte by the sperm. The aim of the study was to determine the relationship between the level of selected transcripts in spermatozoa and preimplantation development of the embryos in couples with severe oligozoospermia undergoing intracytoplasmic sperm injection (ICSI) procedure. Therefore, we assessed messenger RNA (mRNA) levels of genes involved in fertilization events, oocyte activation, chromatin remodeling, and DNA repair in severe oligozoospermic compared with normozoospermic men as well as morphokinetic parameters of embryos using the time-lapse imaging system. mRNA profiling (44 genes), in mature sperm, was carried out with custom-designed 384-well TLDA Cards. The morphokinetic parameters of zygotes and embryos were recorded by using a time-lapse imaging system. The transcript levels of 21 genes were significantly decreased in the severe oligozoospermic group. Most were associated with fertilization events, oocyte activation and embryonic genome activation. Among them, mRNA of AKAP4 and PTK7 was greatly reduced, moreover, the transcripts of PLCζ and POU5F1, essential for OA and EGA, were not detected at all in patients with severe oligozoospermia. Moreover, the reduced expression of genes important for spermatogenesis, chromatin remodeling and DNA repair was also observed in this group. Time-lapse analysis revealed that fertilization failure occurred in 14% of retrieved oocytes and 90% of all degenerated embryos did not reach morula stage. This study provides preliminary results indicating a significant decrease in transcripts of genes important for spermatogenesis and early preimplantation development in the mature sperm of men with severe oligozoospermia.
Collapse
Affiliation(s)
- Anna Sadakierska-Chudy
- Department of Genetics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - J Patrylak
- Infertility Treatment Centre PARENS, Krakow, Poland
| | - J Janeczko
- Infertility Treatment Centre PARENS, Krakow, Poland
| | - J Chudy
- Department of Genetics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| |
Collapse
|
28
|
Ganier L, Morelli X, Borg JP. [Role in oncology and targeting of the PTK7 tyrosine kinase receptor]. Med Sci (Paris) 2020; 36 Hors série n° 1:42-46. [PMID: 33052093 DOI: 10.1051/medsci/2020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Laetitia Ganier
- Centre de Recherche en Cancérologie de Marseille (CRCM), Équipe labellisée Ligue Cell polarity, cell signaling and cancer, Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, 13009 Marseille, France
| | - Xavier Morelli
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, 13009 Marseille, France
| | - Jean-Paul Borg
- Centre de Recherche en Cancérologie de Marseille (CRCM), Équipe labellisée Ligue Cell polarity, cell signaling and cancer, Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, 13009 Marseille, France - Institut Universitaire de France, Paris, France
| |
Collapse
|
29
|
Structural Insights into Pseudokinase Domains of Receptor Tyrosine Kinases. Mol Cell 2020; 79:390-405.e7. [PMID: 32619402 DOI: 10.1016/j.molcel.2020.06.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/03/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022]
Abstract
Despite their apparent lack of catalytic activity, pseudokinases are essential signaling molecules. Here, we describe the structural and dynamic properties of pseudokinase domains from the Wnt-binding receptor tyrosine kinases (PTK7, ROR1, ROR2, and RYK), which play important roles in development. We determined structures of all pseudokinase domains in this family and found that they share a conserved inactive conformation in their activation loop that resembles the autoinhibited insulin receptor kinase (IRK). They also have inaccessible ATP-binding pockets, occluded by aromatic residues that mimic a cofactor-bound state. Structural comparisons revealed significant domain plasticity and alternative interactions that substitute for absent conserved motifs. The pseudokinases also showed dynamic properties that were strikingly similar to those of IRK. Despite the inaccessible ATP site, screening identified ATP-competitive type-II inhibitors for ROR1. Our results set the stage for an emerging therapeutic modality of "conformational disruptors" to inhibit or modulate non-catalytic functions of pseudokinases deregulated in disease.
Collapse
|
30
|
Litak J, Grochowski C, Litak J, Osuchowska I, Gosik K, Radzikowska E, Kamieniak P, Rolinski J. TLR-4 Signaling vs. Immune Checkpoints, miRNAs Molecules, Cancer Stem Cells, and Wingless-Signaling Interplay in Glioblastoma Multiforme-Future Perspectives. Int J Mol Sci 2020; 21:ijms21093114. [PMID: 32354122 PMCID: PMC7247696 DOI: 10.3390/ijms21093114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Toll-like-receptor (TLR) family members were detected in the central nervous system (CNS). TLR occurrence was noticed and widely described in glioblastomamultiforme (GBM) cells. After ligand attachment, TLR-4 reorients domains and dimerizes, activates an intracellular cascade, and promotes further cytoplasmatic signaling. There is evidence pointing at a strong relation between TLR-4 signaling and micro ribonucleic acid (miRNA) expression. The TLR-4/miRNA interplay changes typical signaling and encourages them to be a target for modern immunotherapy. TLR-4 agonists initiate signaling and promote programmed death ligand-1 (PD-1L) expression. Most of those molecules are intensively expressed in the GBM microenvironment, resulting in the autocrine induction of regional immunosuppression. Another potential target for immunotreatment is connected with limited TLR-4 signaling that promotes Wnt/DKK-3/claudine-5 signaling, resulting in a limitation of GBM invasiveness. Interestingly, TLR-4 expression results in bordering proliferative trends in cancer stem cells (CSC) and GBM. All of these potential targets could bring new hope for patients suffering from this incurable disease. Clinical trials concerning TLR-4 signaling inhibition/promotion in many cancers are recruiting patients. There is still a lot to do in the field of GBM immunotherapy.
Collapse
Affiliation(s)
- Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland
- Department of Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Cezary Grochowski
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
- Laboratory of Virtual Man, Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
- Correspondence:
| | - Joanna Litak
- St. John‘s Cancer Center in Lublin, 20-090 Lublin, Poland
| | - Ida Osuchowska
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Krzysztof Gosik
- Department of Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | | | - Piotr Kamieniak
- Department of Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Jacek Rolinski
- Department of Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
31
|
Spatio-temporal and Cellular Expression Patterns of PTK7 in the Healthy and Traumatically Injured Rat and Human Spinal Cord. Cell Mol Neurobiol 2020; 40:1087-1103. [PMID: 31974907 DOI: 10.1007/s10571-020-00794-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022]
Abstract
Despite the emerging role of protein tyrosine kinase 7 (PTK7) as a Wnt co-receptor and the relevant functions of the Wnt family of proteins in spinal cord injury (SCI), the potential involvement of PTK7 in SCI is currently unknown. As a first essential step to shed light on this issue, we evaluated the spatio-temporal and cellular expression patterns of PTK7 in healthy and traumatically injured rat and human spinal cords. In the uninjured rats, PTK7 expression was observed in the ependymal epithelium, endothelial cells, meningeal fibronectin-expressing cells, and specific axonal tracts, but not in microglia, astrocytes, neurons, oligodendrocytes, or NG2+ cells. After rat SCI, the mRNA expression of PTK7 was significantly increased, while its spatio-temporal and cellular protein expression patterns also suffered evident changes in the injured region. Briefly, the expression of PTK7 in the affected areas was observed in axons, reactive astrocytes, NG2+ and fibronectin-expressing cells, and in a subpopulation of reactive microglia/macrophages and blood vessels. Finally, in both healthy and traumatically injured human spinal cords, PTK7 expression pattern was similar to that observed in the rat, although some specific differences were found. In conclusion, we demonstrate for the first time that PTK7 is constitutively expressed in the healthy adult rat and human spinal cord and that its expression pattern clearly varied after rat and human SCI which, to our knowledge, constitutes the first experimental evidence pointing to the potential involvement of this co-receptor in physiological and pathological spinal cord functioning.
Collapse
|
32
|
Antibody-drug conjugates for lung cancer in the era of personalized oncology. Semin Cancer Biol 2019; 69:268-278. [PMID: 31899248 DOI: 10.1016/j.semcancer.2019.12.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 12/11/2022]
Abstract
With 9.6 million deaths in 2018, cancer represents one of the most common causes of death, both in men and women. Despite recent advances in the understanding of molecular mechanisms involved in cancer development and progression, treatment options are still limited. Limitations of traditional chemotherapy include the lack of selectivity and the unfavorable safety profile. The efficacy of targeted therapies (e.g., tyrosine kinase inhibitors) is also limited by their cytostatic action, which inhibits tumor cell proliferation without inducing tumor cell death, and by the risk of acquired resistance. Antibody-drug conjugates (ADCs), a newly developed class of engineered anticancer drugs, consist of recombinant monoclonal antibodies against tumor-specific antigens that are covalently bound to cytotoxic agents. They have been designed to overcome the limitations of traditional chemotherapy and targeted therapies by combining the target selectivity of monoclonal antibodies with the high potency of cytotoxic drugs. Currently, ADCs that have received regulatory approval include brentuximab vedotin for CD30-positive Hodgkin lymphoma and trastuzumab emtansine for human epidermal growth factor receptor 2-positive breast cancer. However, over 80 novel ADCs are actively being investigated in preclinical studies and early-phase clinical trials. In this review, we will provide a comprehensive overview of the biological rational, efficacy and safety of ADCs as therapeutic agents against non-small cell lung cancer and small cell lung cancer.
Collapse
|
33
|
Abstract
Developmental signaling pathways control a vast array of biological processes during embryogenesis and in adult life. The WNT pathway was discovered simultaneously in cancer and development. Recent advances have expanded the role of WNT to a wide range of pathologies in humans. Here, we discuss the WNT pathway and its role in human disease and some of the advances in WNT-related treatments.
Collapse
|
34
|
Revach OY, Sandler O, Samuels Y, Geiger B. Cross-Talk between Receptor Tyrosine Kinases AXL and ERBB3 Regulates Invadopodia Formation in Melanoma Cells. Cancer Res 2019; 79:2634-2648. [PMID: 30914429 DOI: 10.1158/0008-5472.can-18-2316] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/16/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
Abstract
The invasive phenotype of metastatic cancer cells is accompanied by the formation of actin-rich invadopodia, which adhere to the extracellular matrix and degrade it. In this study, we explored the role of the tyrosine kinome in the formation of invadopodia in metastatic melanoma cells. Using a microscopy-based siRNA screen, we identified a series of regulators, the knockdown of which either suppresses (e.g., TYK2, IGFR1, ERBB3, TYRO3, FES, ALK, PTK7) or enhances (e.g., ABL2, AXL, CSK) invadopodia formation and function. Notably, the receptor tyrosine kinase AXL displayed a dual regulatory function, where both depletion or overexpression enhanced invadopodia formation and activity. This apparent contradiction was attributed to the capacity of AXL to directly stimulate invadopodia, yet its suppression upregulates the ERBB3 signaling pathway, which can also activate core invadopodia regulators and enhance invadopodia function. Bioinformatic analysis of multiple melanoma cell lines points to an inverse expression pattern of AXL and ERBB3. High expression of AXL in melanoma cells is associated with high expression of invadopodia components and an invasive phenotype. These results provide new insights into the complexity of metastasis-promoting mechanisms and suggest that targeting of multiple invadopodia signaling networks may serve as a potential anti-invasion therapy in melanoma. SIGNIFICANCE: These findings uncover a unique interplay between AXL and ERBB3 in invadopodia regulation that points to the need for combined therapy in order to prevent invadopodia-mediated metastasis in melanoma.
Collapse
Affiliation(s)
- Or-Yam Revach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Oded Sandler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
35
|
Abstract
Receptor tyrosine kinases (RTKs) play important roles in cell growth, motility, differentiation, and survival. These single-pass membrane proteins are grouped into subfamilies based on the similarity of their extracellular domains. They are generally thought to be activated by ligand binding, which promotes homodimerization and then autophosphorylation in trans. However, RTK interactions are more complicated, as RTKs can interact in the absence of ligand and heterodimerize within and across subfamilies. Here, we review the known cross-subfamily RTK heterointeractions and their possible biological implications, as well as the methodologies which have been used to study them. Moreover, we demonstrate how thermodynamic models can be used to study RTKs and to explain many of the complicated biological effects which have been described in the literature. Finally, we discuss the concept of the RTK interactome: a putative, extensive network of interactions between the RTKs. This RTK interactome can produce unique signaling outputs; can amplify, inhibit, and modify signaling; and can allow for signaling backups. The existence of the RTK interactome could provide an explanation for the irreproducibility of experimental data from different studies and for the failure of some RTK inhibitors to produce the desired therapeutic effects. We argue that a deeper knowledge of RTK interactome thermodynamics can lead to a better understanding of fundamental RTK signaling processes in health and disease. We further argue that there is a need for quantitative, thermodynamic studies that probe the strengths of the interactions between RTKs and their ligands and between different RTKs.
Collapse
Affiliation(s)
- Michael D. Paul
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|
36
|
Lei Y, Kim S, Chen Z, Cao X, Zhu H, Yang W, Shaw GM, Zheng Y, Zhang T, Wang H, Finnell RH. Variants identified in PTK7 associated with neural tube defects. Mol Genet Genomic Med 2019; 7:e00584. [PMID: 30689296 PMCID: PMC6465732 DOI: 10.1002/mgg3.584] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/21/2018] [Accepted: 12/31/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Variants in planar cell polarity (PCP) pathway genes have been repeatedly implicated in the pathogenesis of NTDs in both mouse models and in human cohorts. Mouse models indicate that the homogenous disruption of the Ptk7 gene, a PCP regulator, results in craniorachischisis; while embryos that are doubly heterozygous for Ptk7XST87 and Vangl2Lp mutations present with spina bifida. METHODS In this study, we initially sequenced exons of the human PTK7 gene in 192 spina bifida patients and 190 controls from a California population. A phase II validation study was performed in 343 Chinese NTD cohort. Functional assays including immunoblotting and immunoprecipitation were used to study identified variants effect on PTK7 function. RESULTS We identified three rare (MAF <0.001) missense heterozygous PTK7 variants (NM_001270398.1:c.581C>T, p.Arg630Ser and p.Tyr725Phe) in the spina bifida patients. In our functional analyses, p.Arg630Ser affected PTK7 mutant protein stability and increased interaction with Dvl2, while the p.Thr186Met variant decreased PTK7 interactions with Dvl2. No novel predicted-to-be-damaging variant or function-disrupted PTK7 variant was identified among the control subjects. We subsequently re-sequenced the PTK7 CDS region in 343 NTDs from China to validate the association between PTK7 and NTDs. The frequency of PTK7 rare missense variants in the Chinese NTD samples is significantly higher than in gnomAD controls. CONCLUSION Our study suggests that rare missense variants in PTK7 contribute to the genetic risk of NTDs.
Collapse
Affiliation(s)
- Yunping Lei
- Department of Nutritional SciencesDell Pediatric Research Institute, University of Texas at Austin Dell Medical SchoolAustinTexas
- Present address:
Center for Precision Environmental Health, Departments of Molecular and Cellular Biology and MedicineBaylor College of MedicineHoustonTexas77030
| | - Sung‐Eun Kim
- Department of Nutritional SciencesDell Pediatric Research Institute, University of Texas at Austin Dell Medical SchoolAustinTexas
| | - Zhongzhong Chen
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and DevelopmentFudan UniversityShanghaiChina
| | - Xuanye Cao
- Departments of Molecular and Cellular Biology and MedicineBaylor College of MedicineHoustonTexas
| | - Huiping Zhu
- Department of Nutritional SciencesDell Pediatric Research Institute, University of Texas at Austin Dell Medical SchoolAustinTexas
- Present address:
Asuragen Inc.2150 Woodward St #100AustinTX78744
| | - Wei Yang
- Department of Pediatrics, Division of NeonatologyStanford University School of MedicineStanfordCalifornia
| | - Gary M. Shaw
- Department of Pediatrics, Division of NeonatologyStanford University School of MedicineStanfordCalifornia
| | - Yufang Zheng
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and DevelopmentFudan UniversityShanghaiChina
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and NutriomicsCapital Institute of PediatricsBeijingChina
| | - Hong‐Yan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and DevelopmentFudan UniversityShanghaiChina
| | - Richard H. Finnell
- Department of Nutritional SciencesDell Pediatric Research Institute, University of Texas at Austin Dell Medical SchoolAustinTexas
- Collaborative Innovation Center for Genetics & Development, School of Life SciencesFudan UniversityShanghaiChina
| |
Collapse
|
37
|
The Increased PTK7 Expression Is a Malignant Factor in Cervical Cancer. DISEASE MARKERS 2019; 2019:5380197. [PMID: 30944666 PMCID: PMC6421733 DOI: 10.1155/2019/5380197] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022]
Abstract
Cervical cancer is one of the most common malignant neoplasms in gynecology. Protein tyrosine kinase 7 (PTK7) with an inactive kinase domain is an important regulator of multiple Wnt pathways under normal and various pathological conditions and overexpressed in various tumors; however, the clinical and biological significance of PTK7 in cervical cancer is still unknown. In the present study, the protein expression level of PTK7 was detected in clinical cervical cancer patient samples, and the relationship between PTK7 expression and clinicopathological features was analyzed. In addition, the Kaplan-Meier method was performed to estimate the overall survival (OS) and progression-free survival (PFS) of patients to investigate the clinicopathological significance of PTK7 expression. Functional assays demonstrated that knocking down PTK7 might inhibit the ability of cancer cells to proliferate and invade or migrate, both in vivo and in vitro. Thus, PTK7 might serve as a potential target for cervical cancer.
Collapse
|
38
|
Darville LNF, Sokolowski BHA. Label-free quantitative mass spectrometry analysis of differential protein expression in the developing cochlear sensory epithelium. Proteome Sci 2018; 16:15. [PMID: 30127667 PMCID: PMC6091194 DOI: 10.1186/s12953-018-0144-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 07/26/2018] [Indexed: 12/27/2022] Open
Abstract
Background The sensory epithelium of the inner ear converts the mechanical energy of sound to electro-chemical energy recognized by the central nervous system. This process is mediated by receptor cells known as hair cells that express proteins in a timely fashion with the onset of hearing. Methods The proteomes of 3, 14, and 30 day-old mice cochlear sensory epithelia were revealed, using label-free quantitative mass spectrometry (LTQ-Orbitrap). Statistical analysis using a one-way ANOVA followed by Bonferroni’s post-hoc test was used to show significant differences in protein expression. Ingenuity Pathway Analysis was used to observe networks of differentially expressed proteins, their biological processes, and associated diseases, while Cytoscape software was used to determine putative interactions with select biomarker proteins. These candidate biomarkers were further verified using Western blotting, while coimmunoprecipitation was used to verify putative partners determined using bioinformatics. Results We show that a comparison across all three proteomes shows that there are 447 differentially expressed proteins, with 387 differentially expressed between postnatal day 3 and 30. Ingenuity Pathway Analysis revealed ~ 62% of postnatal day 3 downregulated proteins are involved in neurological diseases. Several proteins are expressed exclusively on P3, including Parvin α, Drebrin1 (Drb1), Secreted protein acidic and cysteine rich (SPARC), Transmembrane emp24 domain-containing protein 10 (Tmed10). Coimmunoprecipitations showed that Parvin and SPARC interact with integrin-linked protein kinase and the large conductance calcium-activated potassium channel, respectively. Conclusions Quantitative mass spectrometry revealed the identification of numerous differentially regulated proteins over three days of postnatal development. These data provide insights into functional pathways regulating normal sensory and supporting cell development in the cochlea that include potential biomarkers. Interacting partners of two of these markers suggest the importance of these complexes in regulating cellular structure and synapse development. Electronic supplementary material The online version of this article (10.1186/s12953-018-0144-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lancia N F Darville
- Morsani College of Medicine, Department of Otolaryngology-HNS, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612 USA
| | - Bernd H A Sokolowski
- Morsani College of Medicine, Department of Otolaryngology-HNS, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612 USA
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Antibody-drug conjugates (ADCs) represent a promising new class of cancer therapeutics. Currently more than 60 ADCs are in clinical development, however, only very few trials focus on gynecologic malignancies. In this review, we summarize the most recent advances in ADC drug development with an emphasis on how this progress relates to patients diagnosed with gynecologic malignancies and breast cancer. RECENT FINDINGS The cytotoxic payloads of the majority of the ADCs that are currently in clinical trials for gynecologic malignancies or breast cancer are auristatins (MMAE, MMAF), maytansinoids (DM1, DM4), calicheamicin, pyrrolobenzodiazepines and SN-38. Both cleavable and noncleavable linkers are currently being investigated in clinical trials. A number of novel target antigens are currently being validated in ongoing clinical trials including folate receptor alpha, mesothelin, CA-125, NaPi2b, NOTCH3, protein tyrosine kinase-like 7, ephrin-A4, TROP2, CEACAM5, and LAMP1. For most ADCs currently in clinical development, dose-limiting toxicities appear to be unrelated to the targeted antigen but more tightly associated with the payload. Rational drug design involving optimization of the antibody, the linker and the conjugation chemistry is aimed at improving the therapeutic index of new ADCs. SUMMARY Antibody-drug conjugates can increase the efficacy and decrease the toxicity of their payloads in comparison with traditional cyctotoxic agents. A better and quicker translation of recent scientific advances in the field of ADCs into rational clinical trials for patients diagnosed with ovarian, endometrial or cervical cancer could create real improvements in tumor response, survival and quality of life for our patients.
Collapse
|
40
|
Zhao B, Chen Y, Hao Y, Yang N, Wang M, Mei M, Wang J, Qiu X, Wu X. Transcriptomic analysis reveals differentially expressed genes associated with wool length in rabbit. Anim Genet 2018; 49:428-437. [DOI: 10.1111/age.12701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2018] [Indexed: 12/24/2022]
Affiliation(s)
- B. Zhao
- College of Animal Science and Technology; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - Y. Chen
- College of Animal Science and Technology; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - Y. Hao
- Joint International Research Laboratory of Agriculture & Agri-Product Safety; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - N. Yang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - M. Wang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - M. Mei
- College of Animal Science and Technology; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - J. Wang
- College of Animal Science and Technology; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - X. Qiu
- College of Animal Science and Technology; Yangzhou University; 225009 Yangzhou Jiangsu China
| | - X. Wu
- College of Animal Science and Technology; Yangzhou University; 225009 Yangzhou Jiangsu China
| |
Collapse
|
41
|
Li W, Wang L, Wang Y, Jiang W. Binding-induced nicking site reconstruction strategy for quantitative detection of membrane protein on living cell. Talanta 2018; 189:383-388. [PMID: 30086935 DOI: 10.1016/j.talanta.2018.06.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/06/2018] [Accepted: 06/09/2018] [Indexed: 01/01/2023]
Abstract
Here, a binding-induced nicking site reconstruction strategy has been fabricated for quantitative detection of membrane protein on living cell. Taking protein tyrosine kinase-7 (PTK7) as model analyst, first, an aptamer probe was designed with an aptamer sequence, a trigger sequence and a nicking site. In the absence of PTK7, the aptamer sequence could partially hybridize with the trigger sequence, forming a stem-loop structure. And the two complementary sequences of the nicking site were separated, which could not be recognized by nicking enzyme. In the presence of PTK7, the aptamer probe and PTK7 binding caused the reconstruction of the probe, leading to the hybridization of the two separated nicking site sequences. Then, the nicking site could be identified and nicked, yielding the release of the trigger sequence. Next, the trigger sequence could initiate the homogeneous cascade amplification, producing multiple G-quadruplex structures. By inserting the N-Methyl Mesoporphyrin IX (NMM), enhanced fluorescence signal could be acquired. Through the binding-induced nicking site reconstruction, the trigger sequence could be released on the surface of living cell and became more accessible. By combining the cascade rolling circle amplification (RCA) and hybridization chain reaction (HCR), high sensitivity was achieved with a detection limit of 0.3 fM. Moreover, Quantitative assay of PTK7 on living cancer cells and normal cells were performed, suggesting that the proposed method was sensitive enough to detect changes in PTK7 expression. Thus, this strategy provided a novel and reliable method for membrane protein expression assay on living cell.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Natural Products Chemical Biological, Ministry of Education, School of Pharmacy, Shandong University, 250012 Jinan, PR China
| | - Lei Wang
- Key Laboratory of Natural Products Chemical Biological, Ministry of Education, School of Pharmacy, Shandong University, 250012 Jinan, PR China
| | - Yan Wang
- The 88th Hospital of PLA, 270100 Tai'an, PR China.
| | - Wei Jiang
- Key Laboratory of Natural Products Chemical Biological, Ministry of Education, School of Pharmacy, Shandong University, 250012 Jinan, PR China; School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, PR China.
| |
Collapse
|
42
|
Abstract
Epithelial tubes are crucial to the function of organ systems including the excretory, gastrointestinal, cardiovascular, and pulmonary. Studies in the last two decades using in vitro organotypic systems and a variety of animal models have substantiated a large number of the morphogenetic mechanisms required to form epithelial tubes in development and regeneration. Many of these mechanisms modulate the differentiation and proliferation events necessary for generating the cell movements and changes in cell shape to delineate the wide variety of epithelial tube sizes, lengths, and conformations. For instance, when coupled with oriented cell division, proliferation itself plays a role in changes in tube shape and their directed expansion. Most of these processes are regulated in response to signaling inputs from adjacent cells or soluble factors from the environment. Despite the great deal of recent investigation in this direction, the knowledge we have about the signaling pathways associated with all epithelial tubulogenesis in development and regeneration is still very limited.
Collapse
|
43
|
|
44
|
Suresh J, Harmston N, Lim KK, Kaur P, Jin HJ, Lusk JB, Petretto E, Tolwinski NS. An embryonic system to assess direct and indirect Wnt transcriptional targets. Sci Rep 2017; 7:11092. [PMID: 28894169 PMCID: PMC5593962 DOI: 10.1038/s41598-017-11519-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023] Open
Abstract
During animal development, complex signals determine and organize a vast number of tissues using a very small number of signal transduction pathways. These developmental signaling pathways determine cell fates through a coordinated transcriptional response that remains poorly understood. The Wnt pathway is involved in a variety of these cellular functions, and its signals are transmitted in part through a β-catenin/TCF transcriptional complex. Here we report an in vivo Drosophila assay that can be used to distinguish between activation, de-repression and repression of transcriptional responses, separating upstream and downstream pathway activation and canonical/non-canonical Wnt signals in embryos. We find specific sets of genes downstream of both β-catenin and TCF with an additional group of genes regulated by Wnt, while the non-canonical Wnt4 regulates a separate cohort of genes. We correlate transcriptional changes with phenotypic outcomes of cell differentiation and embryo size, showing our model can be used to characterize developmental signaling compartmentalization in vivo.
Collapse
Affiliation(s)
- Jahnavi Suresh
- Yale-NUS College, 12 College Ave West, #01- 201, Singapore, 138610, Republic of Singapore
| | - Nathan Harmston
- Duke-NUS Medical School, 8 College Road, 169857, Singapore, Republic of Singapore
| | - Ka Keat Lim
- Duke-NUS Medical School, 8 College Road, 169857, Singapore, Republic of Singapore
| | - Prameet Kaur
- Yale-NUS College, 12 College Ave West, #01- 201, Singapore, 138610, Republic of Singapore
| | - Helen Jingshu Jin
- Yale-NUS College, 12 College Ave West, #01- 201, Singapore, 138610, Republic of Singapore
| | - Jay B Lusk
- Yale-NUS College, 12 College Ave West, #01- 201, Singapore, 138610, Republic of Singapore
| | - Enrico Petretto
- Duke-NUS Medical School, 8 College Road, 169857, Singapore, Republic of Singapore
| | - Nicholas S Tolwinski
- Yale-NUS College, 12 College Ave West, #01- 201, Singapore, 138610, Republic of Singapore. .,Department of Biological Sciences, National University of Singapore, Block MD6, Centre for Translational Medicine, Yong Loo Lin School of Medicine, 14 Medical Drive, Level 10 South, 10-02M, Singapore, 117599, Republic of Singapore.
| |
Collapse
|
45
|
Hussain M, Xu C, Lu M, Wu X, Tang L, Wu X. Wnt/β-catenin signaling links embryonic lung development and asthmatic airway remodeling. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3226-3242. [PMID: 28866134 DOI: 10.1016/j.bbadis.2017.08.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/10/2017] [Accepted: 08/29/2017] [Indexed: 12/23/2022]
Abstract
Embryonic lung development requires reciprocal endodermal-mesodermal interactions; mediated by various signaling proteins. Wnt/β-catenin is a signaling protein that exhibits the pivotal role in lung development, injury and repair while aberrant expression of Wnt/β-catenin signaling leads to asthmatic airway remodeling: characterized by hyperplasia and hypertrophy of airway smooth muscle cells, alveolar and vascular damage goblet cells metaplasia, and deposition of extracellular matrix; resulting in decreased lung compliance and increased airway resistance. The substantial evidence suggests that Wnt/β-catenin signaling links embryonic lung development and asthmatic airway remodeling. Here, we summarized the recent advances related to the mechanistic role of Wnt/β-catenin signaling in lung development, consequences of aberrant expression or deletion of Wnt/β-catenin signaling in expansion and progression of asthmatic airway remodeling, and linking early-impaired pulmonary development and airway remodeling later in life. Finally, we emphasized all possible recent potential therapeutic significance and future prospectives, that are adaptable for therapeutic intervention to treat asthmatic airway remodeling.
Collapse
Affiliation(s)
- Musaddique Hussain
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City 310058, China; The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City 310058, China.
| | - Chengyun Xu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City 310058, China; The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City 310058, China
| | - Meiping Lu
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City 310006, China
| | - Xiling Wu
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City 310006, China.
| | - Lanfang Tang
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City 310006, China
| | - Ximei Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City 310058, China; The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City 310058, China.
| |
Collapse
|
46
|
Liu K, Song G, Zhang X, Li Q, Zhao Y, Zhou Y, Xiong R, Hu X, Tang Z, Feng G. PTK7 is a novel oncogenic target for esophageal squamous cell carcinoma. World J Surg Oncol 2017; 15:105. [PMID: 28545451 PMCID: PMC5445388 DOI: 10.1186/s12957-017-1172-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/16/2017] [Indexed: 12/22/2022] Open
Abstract
Background Overexpression of PTK7 has been found in multiple cancers and has been proposed to serve as a prognostic marker for intrahepatic cholangiocarcinoma. Its role in esophageal cancer, however, remains to be clarified. We hypothesize that PTK7 positively regulates tumorigenesis of esophageal cancer. Methods We examined PTK7 expression pattern in human esophageal squamous carcinoma by Oncomine expression analysis and by immunohistochemistry (IHC) staining. We knocked down PTK7 in two esophageal squamous cell carcinoma cell lines, TE-5, and TE-9, by siRNA, and evaluated cell proliferation, apoptosis, and migration ofPTK7-defective cells. Expressions of major apoptotic regulators and effectors were also determined by quantitative real-time PCR in PTK7-defective cells. We further overexpressed PTK7 in the cell to evaluate its effects on cell proliferation, apoptosis, and migration. Results Both Oncomine expression and IHC analyses showed that PTK7 is overexpressed in clinical esophageal squamous cell carcinoma tumors. PTK7 siRNA suppressed cell growth and promoted apoptosis of TE-5 and TE-9. PTK7-defective cells further displayed reduced cellular migration that was concomitant with upregulation of E-cadherin. Conversely, overexpression of PTK7 promotes cell proliferation and invasion, while apoptosis of the PTK7-overexpressing cells is repressed. Notably, major apoptotic regulators, such as p53 and caspases, are significantly upregulated in siPTK7 cells. Conclusions PTK7 plays an oncogenic role in tumorigenesis and metastasis of esophageal squamous carcinoma. PTK7 achieves its oncogenic function in esophageal squamous cell carcinoma partially through the negative regulation of apoptosis.
Collapse
Affiliation(s)
- Kang Liu
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, 637000, Nanchong, Sichuan Province, People's Republic of China.,Biotherapy Center, Nanchong Central Hospital, Nanchong, Sichuan, People's Republic of China
| | - Guiqin Song
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, 637000, Nanchong, Sichuan Province, People's Republic of China.,Department of Biology, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Xuqian Zhang
- Department of Pathology, Nanchong Central Hospital, Nanchong, Sichuan Province, China
| | - Qiujiang Li
- Clinical college of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Yunxia Zhao
- Clinical college of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Yuchuan Zhou
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, 637000, Nanchong, Sichuan Province, People's Republic of China.,Biotherapy Center, Nanchong Central Hospital, Nanchong, Sichuan, People's Republic of China
| | - Rong Xiong
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, 637000, Nanchong, Sichuan Province, People's Republic of China.,Biotherapy Center, Nanchong Central Hospital, Nanchong, Sichuan, People's Republic of China
| | - Xin Hu
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, 637000, Nanchong, Sichuan Province, People's Republic of China.,Biotherapy Center, Nanchong Central Hospital, Nanchong, Sichuan, People's Republic of China
| | - Zhirong Tang
- Department of Pathology, Nanchong Central Hospital, Nanchong, Sichuan Province, China
| | - Gang Feng
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, 637000, Nanchong, Sichuan Province, People's Republic of China. .,Biotherapy Center, Nanchong Central Hospital, Nanchong, Sichuan, People's Republic of China.
| |
Collapse
|
47
|
Berger H, Breuer M, Peradziryi H, Podleschny M, Jacob R, Borchers A. PTK7 localization and protein stability is affected by canonical Wnt ligands. J Cell Sci 2017; 130:1890-1903. [PMID: 28420671 DOI: 10.1242/jcs.198580] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/07/2017] [Indexed: 01/03/2023] Open
Abstract
Protein tyrosine kinase 7 (PTK7) is an evolutionarily conserved transmembrane receptor with important roles in embryonic development and disease. Originally identified as a gene upregulated in colon cancer, it was later shown to regulate planar cell polarity (PCP) and directional cell movement. PTK7 is a Wnt co-receptor; however, its role in Wnt signaling remains controversial. Here, we find evidence that places PTK7 at the intersection of canonical and non-canonical Wnt signaling pathways. In presence of canonical Wnt ligands PTK7 is subject to caveolin-mediated endocytosis, while it is unaffected by non-canonical Wnt ligands. PTK7 endocytosis is dependent on the presence of the PTK7 co-receptor Fz7 (also known as Fzd7) and results in lysosomal degradation of PTK7. As we previously observed that PTK7 activates non-canonical PCP Wnt signaling but inhibits canonical Wnt signaling, our data suggest a mutual inhibition of canonical and PTK7 Wnt signaling. PTK7 likely suppresses canonical Wnt signaling by binding canonical Wnt ligands thereby preventing their interaction with Wnt receptors that would otherwise support canonical Wnt signaling. Conversely, if canonical Wnt proteins interact with the PTK7 receptor, they induce its internalization and degradation.
Collapse
Affiliation(s)
- Hanna Berger
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Marlen Breuer
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, Marburg 35043, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Hanna Peradziryi
- Institute for Clinical Research, Georg-August Universität Göttingen, Göttingen 37075, Germany
| | - Martina Podleschny
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg 35037, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, Marburg 35043, Germany .,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg 35043, Germany
| |
Collapse
|
48
|
Berger H, Wodarz A, Borchers A. PTK7 Faces the Wnt in Development and Disease. Front Cell Dev Biol 2017; 5:31. [PMID: 28424771 PMCID: PMC5380734 DOI: 10.3389/fcell.2017.00031] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/21/2017] [Indexed: 12/15/2022] Open
Abstract
PTK7 (protein tyrosine kinase 7) is an evolutionarily conserved transmembrane receptor regulating various processes in embryonic development and tissue homeostasis. On a cellular level PTK7 affects the establishment of cell polarity, the regulation of cell movement and migration as well as cell invasion. The PTK7 receptor has been shown to interact with ligands, co-receptors, and intracellular transducers of Wnt signaling pathways, pointing to a function in the fine-tuning of the Wnt signaling network. Here we will review recent findings implicating PTK7 at the crossroads of Wnt signaling pathways in development and disease.
Collapse
Affiliation(s)
- Hanna Berger
- Department of Biology, Molecular Embryology, Philipps-Universität MarburgMarburg, Germany
| | - Andreas Wodarz
- Department of Anatomy I, Molecular Cell Biology, University of CologneCologne, Germany.,Cluster of Excellence - Cellular Stress Responses in Aging-Associated Diseases, University of CologneCologne, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-Universität MarburgMarburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität MarburgMarburg, Germany
| |
Collapse
|
49
|
Leitner M, Poturnayova A, Lamprecht C, Weich S, Snejdarkova M, Karpisova I, Hianik T, Ebner A. Characterization of the specific interaction between the DNA aptamer sgc8c and protein tyrosine kinase-7 receptors at the surface of T-cells by biosensing AFM. Anal Bioanal Chem 2017; 409:2767-2776. [PMID: 28229174 PMCID: PMC5366180 DOI: 10.1007/s00216-017-0238-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/18/2017] [Accepted: 01/31/2017] [Indexed: 01/10/2023]
Abstract
We studied the interaction of the specific DNA aptamer sgc8c immobilized at the AFM tip with its corresponding receptor, the protein tyrosine kinase-7 (PTK7) embedded in the membrane of acute lymphoblastic leukemia (ALL) cells (Jurkat T-cells). Performing single molecule force spectroscopy (SMFS) experiments, we showed that the aptamer sgc8c bound with high probability (38.3 ± 7.48%) and high specificity to PTK7, as demonstrated by receptor blocking experiments and through comparison with the binding behavior of a nonspecific aptamer. The determined kinetic off-rate (koff = 5.16 s−1) indicates low dissociation of the sgc8c–PTK7 complex. In addition to the pulling force experiments, simultaneous topography and recognition imaging (TREC) experiments using AFM tips functionalized with sgc8c aptamers were realized on the outer regions surface of surface-immobilized Jurkat cells for the first time. This allowed determination of the distribution of PTK7 without any labeling and at near physiological conditions. As a result, we could show a homogeneous distribution of PTK7 molecules on the outer regions of ALL cells with a surface density of 325 ± 12 PTK7 receptors (or small receptor clusters) per μm2. The specific interaction of the DNA aptamer sgc8c and protein tyrosine kinase-7 (PTK7) on acute lymphoblastic leukemia (ALL) cells was characterized. AFM based single molecule force spectroscopy (SMFS) yielded a kinetic off-rate of 5.16 s−1 of the complex. Simultaneous topography and recognition imaging (TREC) revealed a PTK7 density of 325 ± 12 molecules or clusters per μm2 in the cell membrane ![]()
Collapse
Affiliation(s)
- Michael Leitner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Alexandra Poturnayova
- Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynska dolina F1, 842 48, Bratislava, Slovakia.,Institute of Biochemistry and Animal Genetics, Slovak Academy of Sciences, Moyzesova 61, 900 28, Ivanka pri Dunaji, Slovakia
| | - Constanze Lamprecht
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Sabine Weich
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Maja Snejdarkova
- Institute of Biochemistry and Animal Genetics, Slovak Academy of Sciences, Moyzesova 61, 900 28, Ivanka pri Dunaji, Slovakia
| | - Ivana Karpisova
- Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynska dolina F1, 842 48, Bratislava, Slovakia
| | - Tibor Hianik
- Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynska dolina F1, 842 48, Bratislava, Slovakia
| | - Andreas Ebner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria.
| |
Collapse
|
50
|
Damelin M, Bankovich A, Bernstein J, Lucas J, Chen L, Williams S, Park A, Aguilar J, Ernstoff E, Charati M, Dushin R, Aujay M, Lee C, Ramoth H, Milton M, Hampl J, Lazetic S, Pulito V, Rosfjord E, Sun Y, King L, Barletta F, Betts A, Guffroy M, Falahatpisheh H, O’Donnell CJ, Stull R, Pysz M, Escarpe P, Liu D, Foord O, Gerber HP, Sapra P, Dylla SJ. A PTK7-targeted antibody-drug conjugate reduces tumor-initiating cells and induces sustained tumor regressions. Sci Transl Med 2017; 9:9/372/eaag2611. [DOI: 10.1126/scitranslmed.aag2611] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/21/2016] [Accepted: 12/07/2016] [Indexed: 12/19/2022]
|