1
|
Arora H, Dhiman D, Kumar K, Venkatesu P. Fortification of thermal and structural stability of hemoglobin using choline chloride-based deep eutectic solvents. Phys Chem Chem Phys 2022; 24:29683-29692. [PMID: 36453254 DOI: 10.1039/d2cp03407g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Of late, DESs have occupied the centre stage due to their eco-friendly and resource-efficient nature and their low toxicity. In this work, we have investigated the structural and thermal stability of hemoglobin (Hb) in two choline chloride ([Ch]Cl)-based DESs namely urea [Ch]Cl-urea (DES1) and [Ch]Cl-glycerol (Gly); (DES 2). Different biophysical techniques reveal that the presence of DESs facilitates the stability of Hb in a concentration-dependent manner and the extent of stability is more pronounced in [Ch]Cl-Gly as compared to [Ch]Cl-urea. Additionally, for a better understanding of the role of DESs in modulating the thermal and structural stability of Hb, studies have been performed on Hb in the presence of individual constituents of DESs, i.e., [Ch]Cl, urea, and Gly. Altogether, it was observed that the effect on the stability of Hb was by the presence of the DESs rather than their individual constituents. For instance, urea itself is a destabilizing co-solvent for biomolecules. However, the harmful effects of urea were surpassed when a DES is formed in the presence of [Ch]Cl. Therefore, overall, it can be concluded that both DESs can be described as potential non-harmful, green, and promising solvents for enhancing the structural and thermal stability of Hb.
Collapse
Affiliation(s)
- Harshita Arora
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Diksha Dhiman
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Krishan Kumar
- Department of Chemistry, University of Delhi, Delhi, 110 007, India. .,Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Pannuru Venkatesu
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
2
|
Ribeiro CM, Souza M, Pelegrini BL, Palacios RS, Lima SM, Sato F, Bento AC, Baesso ML, Lima MMS. Ex vivo UV-vis and FTIR photoacoustic spectroscopy of natural nanoemulsions from cellulose nanocrystals and saponins topically applied into the skin: Diffusion rates and physicochemical evaluation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 236:112587. [PMID: 36283255 DOI: 10.1016/j.jphotobiol.2022.112587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022]
Abstract
Nanoemulsions are increasingly gaining importance in the development of topically applied medicine and cosmetic products because their small droplets favor the penetration rates of active compounds into the body. In this scenario, the measurements of their diffusion rates as well as eventual physicochemical changes in the target tissues are of utmost importance. It is also recognized that the use of natural surfactants can avoid allergic reactions as frequently observed for synthetic products. The natural saponins extracted from Sapindus Saponaria have the property of forming foam and are exploited as biocompatible and biodegradable, while cellulose nanocrystals are known to increase the stability of a formulation avoiding the coalescence of drops at the interface. Therefore, nanoemulsions combining natural saponins and cellulose nanocrystals are promising systems that may facilitate greater diffusion rates of molecules into the skin, being candidates to substitute synthetic formulations. This study applied the Photoacoustic Spectroscopy technique to measure the diffusion rates and the physicochemical properties of nanoemulsified formulations containing saponins and cellulose nanocrystals topically applied to the skin. The ex vivo study combined the first-time photoacoustic measurements performed in both ultraviolet-visible and mid-infrared spectral regions. The toxicity of these formulations in L929 cells was also evaluated. The results showed that the formulations were able to propagate throughout the skin to a depth of approximately 756 μm, reaching the dermal side. The non-observation of absorbing band shifting or new bands in the FTIR spectra suggests that there were no structural changes in the skin as well as in the formulations after the nanoemulsions administration. The cytotoxicity results showed that the increase of cellulose nanocrystals concentration decreased cellular toxicity. In conclusion, the results demonstrated the advantage of combining photoacoustic methods in the ultraviolet-visible and mid-infrared spectral regions to analyze drug diffusion and interaction with the skin tissues. Both methods complement each other, allowing the confirmation of the nanoemulsion diffusion through the skin and also suggesting there were no detectable physicochemical changes in the tissues. Formulations stabilized with saponins and cellulose nanocrystals showed great potential for the development of topically administered cosmetics and drugs.
Collapse
Affiliation(s)
- C M Ribeiro
- Departamento de Farmácia, Universidade Estadual de Maringá-UEM, 87020-900 Maringá, PR, Brazil
| | - M Souza
- Departamento de Física, Universidade Estadual de Maringá-UEM, 87020-900 Maringá, PR, Brazil
| | - B L Pelegrini
- Departamento de Farmácia, Universidade Estadual de Maringá-UEM, 87020-900 Maringá, PR, Brazil
| | - R S Palacios
- Departamento de Física, Universidade Estadual de Maringá-UEM, 87020-900 Maringá, PR, Brazil
| | - S M Lima
- Centro de Estudos em Recursos Naturais- CERNA, Universidade Estadual de Mato Grosso do Sul-UEMS, 351, Dourados, MS, Brazil
| | - F Sato
- Departamento de Física, Universidade Estadual de Maringá-UEM, 87020-900 Maringá, PR, Brazil
| | - A C Bento
- Departamento de Física, Universidade Estadual de Maringá-UEM, 87020-900 Maringá, PR, Brazil
| | - M L Baesso
- Departamento de Física, Universidade Estadual de Maringá-UEM, 87020-900 Maringá, PR, Brazil.
| | - M M S Lima
- Departamento de Farmácia, Universidade Estadual de Maringá-UEM, 87020-900 Maringá, PR, Brazil.
| |
Collapse
|
3
|
Characterization of the apo-form of extracellular hemoglobin of Glossoscolex paulistus (HbGp) and its stability in the presence of urea. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:449-462. [PMID: 32681183 DOI: 10.1007/s00249-020-01449-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/16/2020] [Accepted: 07/08/2020] [Indexed: 01/04/2023]
Abstract
The structural study of small heme-containing proteins, such as myoglobin, in the apo-form lacking heme has been extensively described, but the characterization and stability of the giant Glossoscolex paulistus hemoglobin (HbGp), in the absence of heme groups, has not been studied. Spectroscopic data show efficient extraction of the heme groups from the hemoglobin, with relatively small secondary and tertiary structural changes in apo-HbGp noticed compared to oxy-HbGp. Electrophoresis shows a partial precipitation of the trimer abc (significantly lower intensity of the corresponding band in the gel), due to extraction of heme groups, and the predominance of the intense monomeric d band, as well as of two linker bands. AUC and DLS data agree with SDS-PAGE in showing that the apo-HbGp undergoes dissociation into the d and abc subunits. Subunits d and abc are characterized by sedimentation coefficients and percentage contributions of 2.0 and 3.0 S and 76 and 24%, respectively. DLS data suggest that the apo-HbGp is unstable, and two populations are present in solution: one with a diameter around 6.0 nm, identified with the dissociated species, and a second one with diameter 100-180 nm, due to aggregated protein. Finally, the presence of urea promotes the exposure of the fluorescent probes, extrinsic ANS and intrinsic protein tryptophans to the aqueous solvent due to the unfolding process. An understanding of the effect of heme extraction on the stability of hemoproteins is important for biotechnological approaches such as the introduction of non-native prosthetic groups and development of artificial enzymes with designed properties.
Collapse
|
4
|
Carvalho FAO, Caruso CS, Nascimento ED, Oliveira TMBF, Bachega JFR, Tabak M. Oligomeric stability of Glossoscolex paulistus hemoglobin as a function of the storage time. Int J Biol Macromol 2019; 133:30-36. [PMID: 30986471 DOI: 10.1016/j.ijbiomac.2019.04.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 11/16/2022]
Abstract
Glossoscolex paulistus hemoglobin structure is composed of 144 globin chains and 36 polypeptide chains lacking the heme group, with a total molecular mass of 3600 kDa. The current study focuses on the oxy-HbGp oligomeric stability, as a function of the storage time, at pH 7.0, using dynamic light scattering, analytical ultracentrifugation (AUC), optical absorption and size exclusion chromatography (SEC). HbGp stored in Tris-HCl buffer, pH 7.0, at 4 °C, for two years remains in the native form, while 4-6 years HbGp stocks present typical hemichrome species absorption spectra. AUC and SEC analyses show that the contribution of HbGp-subunits, such as, dodecamer (abcd)3, tetramer abcd, trimer abc and monomer d, increases with the protein aging due to the lower stability of the HbGp with the time. The dissociation and the oxidation of the iron noted for the older protein solutions indicate that HbGp storage for periods of time longer than two years changes its ability to carry oxygen. Despite the reduction of HbGp stability and oxygen carrying capacity with aging, the protein stability is still larger as compared to mammalian hemoglobins. Thus, the extracellular hemoglobins are quite stable and resistant to the auto-oxidation process, making them of interest for biotechnological applications.
Collapse
Affiliation(s)
| | - Celia S Caruso
- Instituto de Química de São Carlos - Universidade de São Paulo, Brazil
| | - Evair D Nascimento
- Instituto de Ciências Exatas - Universidade Federal do Sul e Sudeste do Pará, Brazil
| | - Thiago Mielle B F Oliveira
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, Av. Tenente Raimundo Rocha, Cidade Universitária, 63048-080 Juazeiro do Norte, CE, Brazil
| | - José F R Bachega
- Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Brazil
| | - Marcel Tabak
- Instituto de Química de São Carlos - Universidade de São Paulo, Brazil
| |
Collapse
|
5
|
Lecrenier MC, Baeten V, Taira A, Abbas O. Synchronous fluorescence spectroscopy for detecting blood meal and blood products. Talanta 2018; 189:166-173. [PMID: 30086902 DOI: 10.1016/j.talanta.2018.06.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 11/18/2022]
Abstract
Fluorescence spectroscopy is a powerful method for protein analysis. Its sensitivity and selectivity allow its use for the detection of blood meal and blood products. This study proposes a novel approach for the detection of hemoglobin in animal feed by synchronous fluorescence spectroscopy (SFS). The objective was to develop a fast and easy method to detect hemoglobin powder and blood meal. Analyses were carried out on standard reference material (hemoglobin and albumin) in order to optimize SFS method conditions for hemoglobin detection. The method was then applied to protein extracts of commercial feed material and compound feed. The results showed that SFS spectra of blood meal and blood products (hemoglobin powder and plasma powder) could be used to characterize hemoglobin. Principal component analysis (PCA) applied to area-normalized SFS spectra of artificially adulterated samples made it possible to define a limit of detection of hemoglobin powder or blood meal of 0.5-1% depending on the feed material. The projection in the PCA graphs of SFS spectra of real commercial compound feeds known to contain or to be free from blood-derived products showed that it was possible to discriminate samples according to the presence of hemoglobin. These results confirmed that SFS is a promising screening method for the detection of hemoglobin in animal feed.
Collapse
Affiliation(s)
- Marie-Caroline Lecrenier
- Food and Feed Quality Unit of Agricultural Product Valorisation Department - Walloon Agricultural Research Centre, Gembloux, Belgium; University of Liège - ULiège, Liège, Belgium.
| | - Vincent Baeten
- Food and Feed Quality Unit of Agricultural Product Valorisation Department - Walloon Agricultural Research Centre, Gembloux, Belgium; Catholic University of Louvain - UCL, Louvain-la-Neuve, Belgium
| | - Aurélien Taira
- Catholic University of Louvain - UCL, Louvain-la-Neuve, Belgium
| | - Ouissam Abbas
- Food and Feed Quality Unit of Agricultural Product Valorisation Department - Walloon Agricultural Research Centre, Gembloux, Belgium
| |
Collapse
|
6
|
Libardi SH, Alves FR, Tabak M. Interaction of Glossoscolex paulistus extracellular hemoglobin with hydrogen peroxide: Formation and decay of ferryl-HbGp. Int J Biol Macromol 2018; 111:271-280. [PMID: 29305213 DOI: 10.1016/j.ijbiomac.2017.12.147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/12/2017] [Accepted: 12/28/2017] [Indexed: 11/30/2022]
Abstract
The giant extracellular hemoglobin from earthworm Glossoscolex paulistus (HbGp) reacts with hydrogen peroxide, displaying peroxidase activity in the presence of guaiacol. The formation of ferryl-HbGp (compound II) from the peroxidase cycle was studied in the present work. The hypervalent ferryl-HbGp species was formed directly by the reaction of oxy-HbGp and hydrogen peroxide. The oxy-HbGp heme groups (144) under different excess of H2O2, relative to heme, showed an influence in the total amount of ferryl-HbGp at the end of the reaction. The ferryl-HbGp was formed with second order rate constant of 27.1±0.5M-1s-1, at pH7.0 and 25°C. The increase of the pH value to 8.0 induces both faster formation and decay of ferryl-HbGp, together with oligomeric dissociation induced by the presence of H2O2, as observed by DLS. This effect of dissociation increases the heme exposure and decreases the ferryl-HbGp stability, affecting the rate constant as a parallel reaction. At pH7.0, high excess of H2O2, above 1:5 oxy-HbGp heme: H2O2, produces the aggregation of the protein. Our results show for the first time, for an extracellular giant hemoglobin, the possible effects of oxidative stress induced by hydrogen peroxide.
Collapse
Affiliation(s)
- Silvia H Libardi
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil.
| | - Fernanda R Alves
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Marcel Tabak
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
7
|
Glossoscolex paulistus hemoglobin with fluorescein isothiocyanate: Steady-state and time-resolved fluorescence. Int J Biol Macromol 2017; 98:777-785. [DOI: 10.1016/j.ijbiomac.2017.02.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 11/20/2022]
|
8
|
Caruso CS, Biazin E, Carvalho FA, Tabak M, Bachega JF. Metals content of Glossoscolex paulistus extracellular hemoglobin: Its peroxidase activity and the importance of these ions in the protein stability. J Inorg Biochem 2016; 161:63-72. [DOI: 10.1016/j.jinorgbio.2016.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/08/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
|
9
|
Carvalho FAO, Alves FR, Tabak M. Ionic surfactants-Glossoscolex paulistus hemoglobin interactions: Characterization of species in the solution. Int J Biol Macromol 2016; 92:670-681. [PMID: 27456123 DOI: 10.1016/j.ijbiomac.2016.07.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 12/18/2022]
Abstract
Glossoscolex paulistus hemoglobin (HbGp) is an oligomeric multisubunit protein with molecular mass of 3600kDa. In the current study, the interaction of sodium dodecyl sulfate (SDS) and cetyl trimethylammonium chloride (CTAC) surfactants with the monomer d and the whole oxy-HbGp, at pH 7.0, was investigated. For pure monomer d solution, SDS promotes the dimerization of subunit d, and the monomeric and dimeric forms have sedimentation coefficient values, s20,w, around 2.1-2.4 S and 2.9-3.2 S, respectively. Analytical ultracentrifugation (AUC) and isothermal titration calorimetry (ITC) data suggest that up to 26 DS- anions are bound to the monomer. In the presence of CTAC, only the monomeric form is observed in solution for subunit d. For the oxy-HbGp, SDS induces the dissociation into smaller subunits, such as, monomer d, trimer abc, and tetramer abcd, and unfolding without promoting the protein aggregation. On the other hand, lower CTAC concentration promotes protein aggregation, mainly of trimer, while higher concentration induces the unfolding of dissociated species. Our study provides strong evidence that surfactant effects upon the HbGp-subunits are different, and depend on the surfactant: protein concentration ratio and the charges of surfactant headgroups.
Collapse
Affiliation(s)
- Francisco A O Carvalho
- Instituto de Química de São Carlos, Universidade de São Paulo, Brazil; Faculdade de Química, Universidade Federal do Sul e Sudeste do Pará, Brazil.
| | - Fernanda R Alves
- Instituto de Química de São Carlos, Universidade de São Paulo, Brazil
| | - Marcel Tabak
- Instituto de Química de São Carlos, Universidade de São Paulo, Brazil
| |
Collapse
|
10
|
Barros AE, Carvalho FA, Alves FR, Carvalho JW, Tabak M. Denaturant effects on HbGp hemoglobin as monitored by 8-anilino-1-naphtalene-sulfonic acid (ANS) probe. Int J Biol Macromol 2015; 74:327-36. [DOI: 10.1016/j.ijbiomac.2014.12.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 10/24/2022]
|
11
|
Carvalho FAO, Alves FR, Carvalho JWP, Tabak M. Guanidine hydrochloride and urea effects upon thermal stability of Glossoscolex paulistus hemoglobin (HbGp). Int J Biol Macromol 2014; 74:18-28. [PMID: 25433131 DOI: 10.1016/j.ijbiomac.2014.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 11/16/2022]
Abstract
Glossoscolex paulistus hemoglobin (HbGp) has a molecular mass of 3600kDa. It belongs to the hexagonal bilayer hemoglobin class, which consists of highly cooperative respiratory macromolecules found in mollusks and annelids. The present work focusses on oxy-HbGp thermal stability, in the presence of urea and guanidine hydrochloride (GuHCl), monitored by several techniques. Initially, dynamic light scattering data show that the presence of GuHCl induces the protein oligomeric dissociation, followed by a significant 11-fold increase in the hydrodynamic diameter (DH) values, due to the formation of protein aggregates in solution. In contrast, urea promotes the HbGp oligomeric dissociation, followed by unfolding process at high temperatures, without aggregation. Circular dichroism data show that unfolding critical temperature (Tc) of oxy-HbGp decreases from 57°C, at 0.0 mol/L of the denaturant, to 45°C, in the presence of 3.5 mol/L of urea, suggesting the reduction of HbGp oligomeric stability. Moreover, differential scanning calorimetry results show that at lower GuHCl concentrations, some thermal stabilization of the hemoglobin is observed, whereas at higher concentrations, the reduction of stability takes place. Besides, HbGp is more stable in the presence of urea when compared with the guanidine effect, as deduced from the differences in the concentration range of denaturants.
Collapse
Affiliation(s)
| | - Fernanda R Alves
- Instituto de Química de São Carlos-Universidade de São Paulo, Brazil
| | - José W P Carvalho
- Instituto de Química de São Carlos-Universidade de São Paulo, Brazil; Universidade do Estado de Mato Grosso, MT, Brazil
| | - Marcel Tabak
- Instituto de Química de São Carlos-Universidade de São Paulo, Brazil
| |
Collapse
|
12
|
Alves FR, Carvalho FAO, Carvalho JWP, Tabak M. Glossoscolex paulistus extracellular hemoglobin (HbGp) oligomeric dissociation upon interaction with sodium dodecyl sulfate: Isothermal titration calorimetry (ITC). Biopolymers 2014; 101:1065-76. [DOI: 10.1002/bip.22506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Fernanda Rosa Alves
- Instituto de Química de São Carlos; Departamento de Química e Física Molecular, Universidade de São Paulo, São Carlos, SP; Brazil
| | - Francisco Adriano O. Carvalho
- Instituto de Química de São Carlos; Departamento de Química e Física Molecular, Universidade de São Paulo, São Carlos, SP; Brazil
| | - José Wilson P. Carvalho
- Instituto de Química de São Carlos; Departamento de Química e Física Molecular, Universidade de São Paulo, São Carlos, SP; Brazil
- Universidade do Estado de Mato Grosso; Campus Rene Barbour; Barra do Bugres MT Brazil
| | - Marcel Tabak
- Instituto de Química de São Carlos; Departamento de Química e Física Molecular, Universidade de São Paulo, São Carlos, SP; Brazil
| |
Collapse
|
13
|
Characterization of Rhinodrilus alatus hemoglobin (HbRa) and its subunits: Evidence for strong interaction with cationic surfactants DTAB and CTAC. Comp Biochem Physiol B Biochem Mol Biol 2014; 167:23-9. [DOI: 10.1016/j.cbpb.2013.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/23/2013] [Accepted: 09/23/2013] [Indexed: 11/15/2022]
|
14
|
Carvalho FAO, Carvalho JWP, Alves FR, Tabak M. pH effect upon HbGp oligomeric stability: characterization of the dissociated species by AUC and DLS studies. Int J Biol Macromol 2013; 59:333-41. [DOI: 10.1016/j.ijbiomac.2013.04.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
|
15
|
Li XL, Hu YJ, Mi R, Li XY, Li PQ, Ouyang Y. Spectroscopic exploring the affinities, characteristics, and mode of binding interaction of curcumin with DNA. Mol Biol Rep 2013; 40:4405-13. [DOI: 10.1007/s11033-013-2530-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/29/2013] [Indexed: 12/13/2022]
|
16
|
Carvalho JWP, Carvalho FA, Santiago PS, Tabak M. Thermal denaturation and aggregation of hemoglobin of Glossoscolex paulistus in acid and neutral media. Int J Biol Macromol 2013. [DOI: 10.1016/j.ijbiomac.2012.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Carvalho FA, Carvalho JWP, Santiago PS, Tabak M. Urea-induced unfolding of Glossoscolex paulistus hemoglobin, in oxy- and cyanomet-forms: A dissociation model. Int J Biol Macromol 2013; 52:340-8. [DOI: 10.1016/j.ijbiomac.2012.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/22/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
|