1
|
Yu T, Wang J, Zhou Y, Ma C, Bai R, Huang C, Wang S, Liu K, Han B. Harnessing Engineered Extracellular Vesicles from Mesenchymal Stem Cells as Therapeutic Scaffolds for Bone‐Related Diseases. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202402861] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Indexed: 10/05/2024]
Abstract
AbstractMesenchymal stem cells (MSCs) play a crucial role in maintaining bone homeostasis and are extensively explored for cell therapy in various bone‐related diseases. In addition to direct cell therapy, the secretion of extracellular vesicles (EVs) by MSCs has emerged as a promising alternative approach. MSC‐derived EVs (MSC‐EVs) offer equivalent therapeutic efficacy to MSCs while mitigating potential risks. These EVs possess unique properties that enable them to traverse biological barriers and deliver bioactive cargos to target cells. Furthermore, by employing modification and engineering strategies, the therapeutic effects and tissue targeting specificity of MSC‐EVs can be further enhanced to meet specific therapeutic needs. In this review, the mechanisms and advantages of MSC‐EV therapy in diseased bone tissues are highlighted. Through simple isolation and modification techniques, MSC‐EV‐based biomaterials have demonstrated great promise for bone regeneration. Finally, future perspectives on MSC‐EV therapy are presented, envisioning the development of next‐generation regenerative materials and bioactive agents for clinical translation in the field of bone regeneration.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Orthodontics Cranial‐Facial Growth and Development Center Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
- National Center for Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology NMPA Key Laboratory for Dental Materials NHC Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
| | - Jingwei Wang
- Department of Orthodontics Cranial‐Facial Growth and Development Center Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
- National Center for Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology NMPA Key Laboratory for Dental Materials NHC Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
| | - Yusai Zhou
- School of Materials Science and Engineering Beihang University Beijing 100191 P. R. China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Rushui Bai
- Department of Orthodontics Cranial‐Facial Growth and Development Center Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
- National Center for Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology NMPA Key Laboratory for Dental Materials NHC Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
| | - Cancan Huang
- Department of Orthodontics Cranial‐Facial Growth and Development Center Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
- National Center for Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology NMPA Key Laboratory for Dental Materials NHC Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
| | - Shidong Wang
- Musculoskeletal Tumor Center Peking University People's Hospital No.11 Xizhimen South St. Beijing 100044 P. R. China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Bing Han
- Department of Orthodontics Cranial‐Facial Growth and Development Center Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
- National Center for Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology NMPA Key Laboratory for Dental Materials NHC Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
| |
Collapse
|
2
|
Bouza C, Losada AP, Fernández C, Álvarez-Dios JA, de Azevedo AM, Barreiro A, Costas D, Quiroga MI, Martínez P, Vázquez S. A comprehensive coding and microRNA transcriptome of vertebral bone in postlarvae and juveniles of Senegalese sole (Solea senegalensis). Genomics 2024; 116:110802. [PMID: 38290593 DOI: 10.1016/j.ygeno.2024.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Understanding vertebral bone development is essential to prevent skeletal malformations in farmed fish related to genetic and environmental factors. This is an important issue in Solea senegalensis, with special impact of spinal anomalies in postlarval and juvenile stages. Vertebral bone transcriptomics in farmed fish mainly comes from coding genes, and barely on miRNA expression. Here, we used RNA-seq of spinal samples to obtain the first comprehensive coding and miRNA transcriptomic repertoire for postlarval and juvenile vertebral bone, covering different vertebral phenotypes and egg-incubation temperatures related to skeleton health in S. senegalensis. Coding genes, miRNA and pathways regulating bone development and growth were identified. Differential transcriptomic profiles and suggestive mRNA-miRNA interactions were found between postlarvae and juveniles. Bone-related genes and functions were associated with the extracellular matrix, development and regulatory processes, calcium binding, retinol and lipid metabolism or response to stimulus, including those revealed by the miRNA targets related to signaling, cellular and metabolic processes, growth, cell proliferation and biological adhesion. Pathway enrichment associated with fish skeleton were identified when comparing postlarvae and juveniles: growth and bone development functions in postlarvae, while actin cytoskeleton, focal adhesion and proteasome related to bone remodeling in juveniles. The transcriptome data disclosed candidate coding and miRNA gene markers related to bone cell processes, references for functional studies of the anosteocytic bone of S. senegalensis. This study establishes a broad transcriptomic foundation to study healthy and anomalous spines under early thermal conditions across life-stages in S. senegalensis, and for comparative analysis of skeleton homeostasis and pathology in fish and vertebrates.
Collapse
Affiliation(s)
- Carmen Bouza
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Ana P Losada
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carlos Fernández
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - José A Álvarez-Dios
- Department of Applied Mathematics, Faculty of Mathematics, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Ana Manuela de Azevedo
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Andrés Barreiro
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Damián Costas
- Centro de Investigación Mariña, Universidade de Vigo, ECIMAT, Vigo 36331, Spain
| | - María Isabel Quiroga
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Sonia Vázquez
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
3
|
Bian X, Jin L, Wang Y, Yuan M, Yao Z, Ning B, Gao W, Guo C. Riboflavin deficiency reduces bone mineral density in rats by compromising osteoblast function. J Nutr Biochem 2023; 122:109453. [PMID: 37788723 DOI: 10.1016/j.jnutbio.2023.109453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
Insufficient riboflavin intake has been associated with poor bone health. This study aimed to investigate the effect of riboflavin deficiency on bone health in vivo and in vitro. Riboflavin deficiency was successfully developed in rats and osteoblasts. The results indicated that bone mineral density, serum bone alkaline phosphatase, bone phosphorus, and bone calcium were significantly decreased while serum ionized calcium and osteocalcin were significantly increased in the riboflavin-deficient rats. Riboflavin deficiency also induced the reduction of Runx2, Osterix, and BMP-2/Smad1/5/9 cascade in the femur. These results were further verified in cellular experiments. Our findings demonstrated that alkaline phosphatase activities and calcified nodules were significantly decreased while intracellular osteocalcin and pro-collagen I c-terminal propeptide were significantly increased in the riboflavin-deficient osteoblasts. Additionally, the protein expression of Osterix, Runx2, and BMP-2/Smad1/5/9 cascade were significantly decreased while the protein expression of p-p38 MAPK were significantly increased in the riboflavin-deficient cells compared to the control cells. Blockage of p38 MAPK signaling pathway with SB203580 reversed these effects in riboflavin-deficient osteoblastic cells. Our data suggest that riboflavin deficiency causes osteoblast malfunction and retards bone matrix mineralization via p38 MAPK/BMP-2/Smad1/5/9 signaling pathway.
Collapse
Affiliation(s)
- Xiangyu Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Lu Jin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Yanxian Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Man Yuan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Zhanxin Yao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Baoan Ning
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Weina Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China.
| | - Changjiang Guo
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China.
| |
Collapse
|
4
|
Zhang Q, Long Y, Jin L, Li C, Long J. Non-coding RNAs regulate the BMP/Smad pathway during osteogenic differentiation of stem cells. Acta Histochem 2023; 125:151998. [PMID: 36630753 DOI: 10.1016/j.acthis.2023.151998] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
MicroRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) are involved in the regulation of bone metabolism. The BMP/Smad pathway is a key signaling pathway for classical regulation of osteogenic differentiation. Non-coding RNAs (ncRNAs) and the BMP/Smad pathway both have important roles for osteogenic differentiation of stem cells, bone regeneration, and development of bone diseases. There is increasing evidence that ncRNAs interact with the BMP/Smad pathway to regulate not only osteogenic differentiation of stem cells but also progression of bone diseases, such as osteoporosis (OP), myeloma, and osteonecrosis of the femoral head (ONFH), by controlling the expression of bone disease-related genes. Therefore, ncRNAs that interact with BMP/Smad pathway molecules are potential targets for bone regeneration as well as bone disease diagnosis, prevention, and treatment. However, despite extensive studies on ncRNAs associated with the BMP/Smad pathway and osteogenic differentiation of stem cells, there is a lack of comparability. Moreover, some bone disease-associated ncRNAs with low abundance can be difficult to detect and there is a lack of mature delivery systems for their stable translocation to target sites, thus limiting their application. In this review, we summarize the research progress on interactions between ncRNAs and the BMP/Smad pathway during osteogenic differentiation of various stem cells and in the regulation of bone regeneration and bone diseases.
Collapse
Affiliation(s)
- Qiuling Zhang
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, PR China; Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Yifei Long
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, PR China
| | - Liangyu Jin
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, PR China; Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Chenghao Li
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, PR China; Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu 610041, PR China.
| | - Jie Long
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, PR China; Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
5
|
Moreira M, Soliño L, Marques CL, Laizé V, Pousão-Ferreira P, Costa PR, Soares F. Cytotoxic and Hemolytic Activities of Extracts of the Fish Parasite Dinoflagellate Amyloodinium ocellatum. Toxins (Basel) 2022; 14:toxins14070467. [PMID: 35878205 PMCID: PMC9316444 DOI: 10.3390/toxins14070467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
The dinoflagellate Amyloodinium ocellatum is the etiological agent of a parasitic disease named amyloodiniosis. Mortalities of diseased fish are usually attributed to anoxia, osmoregulatory impairment, or opportunistic bacterial infections. Nevertheless, the phylogenetic proximity of A. ocellatum to a group of toxin-producing dinoflagellates from Pfiesteria, Parvodinium and Paulsenella genera suggests that it may produce toxin-like compounds, adding a new dimension to the possible cause of mortalities in A. ocellatum outbreaks. To address this question, extracts prepared from different life stages of the parasite were tested in vitro for cytotoxic effects using two cell lines derived from branchial arches (ABSa15) and the caudal fin (CFSa1) of the gilthead seabream (Sparus aurata), and for hemolytic effects using erythrocytes purified from the blood of gilthead seabream juveniles. Cytotoxicity and a strong hemolytic effect, similar to those observed for Karlodinium toxins, were observed for the less polar extracts of the parasitic stage (trophont). A similar trend was observed for the less polar extracts of the infective stage (dinospores), although cell viability was only affected in the ABSa15 line. These results suggest that A. ocellatum produces tissue-specific toxic compounds that may have a role in the attachment of the dinospores’ and trophonts’ feeding process.
Collapse
Affiliation(s)
- Márcio Moreira
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- IPMA—Portuguese Institute for the Ocean and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Lucía Soliño
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- IPMA—Portuguese Institute for the Ocean and Atmosphere, Av. Alfredo Magalhães Ramalho, n° 6, 1495-165 Algés, Portugal
| | - Cátia L. Marques
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- IPMA—Portuguese Institute for the Ocean and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Vincent Laizé
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Pedro Pousão-Ferreira
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- IPMA—Portuguese Institute for the Ocean and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Pedro Reis Costa
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- IPMA—Portuguese Institute for the Ocean and Atmosphere, Av. Alfredo Magalhães Ramalho, n° 6, 1495-165 Algés, Portugal
| | - Florbela Soares
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- IPMA—Portuguese Institute for the Ocean and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
- Correspondence:
| |
Collapse
|
6
|
Yang C, Zhou Q, Ma Q, Wang L, Yang Y, Chen G. Differentially Expressed miRNAs and mRNAs in Regenerated Scales of Rainbow Trout ( Oncorhynchus mykiss) under Salinity Acclimation. Animals (Basel) 2022; 12:ani12101265. [PMID: 35625112 PMCID: PMC9137548 DOI: 10.3390/ani12101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
In order to explore the potential effects of salinity acclimation on bone metabolism of rainbow trout (Oncorhynchus mykiss), transcriptional information of regenerated scales under salinity acclimation (sea water, SW) was compared to those of fish under fresh water (FW) environments. According to the high-throughput sequencing results, a total of 2620 significantly differentially expressed genes (DEGs) were identified in the data of SW vs. FW. Compared with the FW group, six significantly downregulated and 44 significantly upregulated miRNAs were identified in the SW scales (p < 0.05). Furthermore, a total of 994 significantly differentially expressed target genes (DETGs) were identified from the 50 significantly differentially expressed miRNAs (DE miRNAs). Gene ontology analysis of the aforementioned DETGs was similar to the results of the differentially expressed genes (DEGs) obtained from mRNA-seq data, these genes were mainly related to ion metabolism. KEGG enrichment analysis of the DEGs and DETGs suggested that many significantly enriched pathways were related to the energy metabolism pathway.
Collapse
Affiliation(s)
- Changgeng Yang
- Life Science & Technology School, Lingnan Normal University, Zhanjiang 524048, China;
| | - Qiling Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; (Q.Z.); (L.W.); (Y.Y.); (G.C.)
| | - Qian Ma
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; (Q.Z.); (L.W.); (Y.Y.); (G.C.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
- Correspondence:
| | - Liuyong Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; (Q.Z.); (L.W.); (Y.Y.); (G.C.)
| | - Yunsheng Yang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; (Q.Z.); (L.W.); (Y.Y.); (G.C.)
| | - Gang Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; (Q.Z.); (L.W.); (Y.Y.); (G.C.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| |
Collapse
|
7
|
Effects of BMSC-Derived EVs on Bone Metabolism. Pharmaceutics 2022; 14:pharmaceutics14051012. [PMID: 35631601 PMCID: PMC9146387 DOI: 10.3390/pharmaceutics14051012] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
Extracellular vesicles (EVs) are small membrane vesicles that can be secreted by most cells. EVs can be released into the extracellular environment through exocytosis, transporting endogenous cargo (proteins, lipids, RNAs, etc.) to target cells and thereby triggering the release of these biomolecules and participating in various physiological and pathological processes. Among them, EVs derived from bone marrow mesenchymal stem cells (BMSC-EVs) have similar therapeutic effects to BMSCs, including repairing damaged tissues, inhibiting macrophage polarization and promoting angiogenesis. In addition, BMSC-EVs, as efficient and feasible natural nanocarriers for drug delivery, have the advantages of low immunogenicity, no ethical controversy, good stability and easy storage, thus providing a promising therapeutic strategy for many diseases. In particular, BMSC-EVs show great potential in the treatment of bone metabolic diseases. This article reviews the mechanism of BMSC-EVs in bone formation and bone resorption, which provides new insights for future research on therapeutic strategies for bone metabolic diseases.
Collapse
|
8
|
Liu W, Huang J, Chen F, Xie D, Wang L, Ye C, Zhu Q, Li X, Li X, Yang L. MSC-derived small extracellular vesicles overexpressing miR-20a promoted the osteointegration of porous titanium alloy by enhancing osteogenesis via targeting BAMBI. Stem Cell Res Ther 2021; 12:348. [PMID: 34134765 PMCID: PMC8207591 DOI: 10.1186/s13287-021-02303-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/22/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Patients with osteoporosis have a high risk of implant loosening due to poor osteointegration, possibly leading to implant failure, implant revision, and refracture. RNA interference therapy is an emerging epigenetic treatment, and we found that miR-20a could enhance osteogenesis. Moreover, small extracellular vesicles (sEVs) derived from bone marrow mesenchymal stem cells (hBM-MSCs) were utilized as nanoscale carriers for the protection and transportation of miR-20a (sEV-20a). In this study, we intended to determine whether sEVs overexpressing miR-20a could exert a superior effect on osteoporotic bone defects and the underlying mechanism. METHODS For evaluating the effect of sEV-20a on osteogenesis, in vitro and in vivo studies were performed. In vitro, we first showed that miR-20a was upregulated in the osteogenic process and overexpressed sEVs with miR-20a by the transfection method. Then, the proliferation, migration, and osteogenic differentiation abilities of hBM-MSCs treated with sEV-20a were detected by CCK-8 assays, alkaline phosphatase staining and alizarin red staining, qRT-PCR, and western blot. In vivo, we established an osteoporotic bone defect model and evaluated the effect of sEV-20a on bone formation by micro-CT, sequential fluorescent labeling, and histological analysis. To further explore the mechanism, we applied a bioinformatics method to identify the potential target of miR-20a. RESULTS In vitro, sEV-20a was successfully established and proved to promote the migration and osteogenesis of hBM-MSCs. In vivo, sEV-20a promoted osteointegration in an osteoporotic rat model. To further elucidate the related mechanism, we proved that miR-20a could enhance osteogenesis by targeting BAMBI. CONCLUSIONS Collectively, the in vitro and in vivo results confirmed that MSC-derived sEV-20a therapy effectively promoted osteoporotic porous titanium alloy osteointegration via pro-osteogenic effects by targeting BAMBI.
Collapse
Affiliation(s)
- Wei Liu
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003 China
| | - Jinghuan Huang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Feng Chen
- College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Dong Xie
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003 China
| | - Longqing Wang
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003 China
| | - Cheng Ye
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003 China
| | - Qi Zhu
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003 China
| | - Xiang Li
- School of Mechanical Engineering, Shanghai Jiao Tong University, State Key Laboratory of Mechanical System and Vibration, Shanghai, 200240 China
| | - Xiaolin Li
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Lili Yang
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003 China
| |
Collapse
|
9
|
Wang H, Shen Y. MicroRNA‑20a negatively regulates the growth and osteoclastogenesis of THP‑1 cells by downregulating PPARγ. Mol Med Rep 2019; 20:4271-4276. [PMID: 31545439 DOI: 10.3892/mmr.2019.10676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/09/2018] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to explore the mechanisms through which microRNA (miR)‑20a may be involved in the differentiation of THP‑1 human acute monocytic leukemia cells into osteoclasts. THP‑1 cells were differentiated into macrophages (osteoclast precursors) and subsequently into osteoclast cells. The expression levels of miR‑20a in THP‑1 cells were significantly reduced in a time‑dependent manner during phorbol‑12‑myristate‑13‑acetate (PMA), macrophage colony‑stimulating factor (M‑CSF) and receptor activator of nuclear factor‑κB ligand RANKL‑induced osteoclastogenesis. Following transfection with a miR‑20a mimics, the levels of miR‑20a in PMA‑treated THP‑1 cells increased more than 40‑fold as compared with expression in the control cells. In addition, the overexpression of miR‑20a inhibited proliferation, initiated S phase cell cycle arrest and induced apoptosis of PMA‑treated THP‑1 cells. Additionally, miR‑20a mimics treatment notably decreased the levels of tartrate‑resistant acid phosphatase, nuclear factor of activated T‑cells, cytoplasmic 1 and peroxisome proliferator‑activated receptor γ (PPARγ) during THP‑1 cell further differentiation progress. In summary, miR‑20a may negatively regulate the proliferation and osteoclastogenesis of THP‑1 cells during its osteoclast differentiation progress by downregulating PPARγ.
Collapse
Affiliation(s)
- Huining Wang
- Department of Periodontics, Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Yuqin Shen
- Department of Periodontics, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
10
|
Farzaneh M, Alishahi M, Derakhshan Z, Sarani NH, Attari F, Khoshnam SE. The Expression and Functional Roles of miRNAs in Embryonic and Lineage-Specific Stem Cells. Curr Stem Cell Res Ther 2019; 14:278-289. [PMID: 30674265 DOI: 10.2174/1574888x14666190123162402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/15/2018] [Accepted: 01/03/2019] [Indexed: 01/01/2023]
Abstract
The discovery of small non-coding RNAs began an interesting era in cellular and molecular biology. To date, miRNAs are the best recognized non-coding RNAs for maintenance and differentiation of pluripotent stem cells including embryonic stem cells (ES), induced pluripotent stem cells (iPSC), and cancer stem cells. ES cells are defined by their ability to self-renew, teratoma formation, and to produce numerous types of differentiated cells. Dual capacity of ES cells for self-renewal and differentiation is controlled by specific interaction with the neighboring cells and intrinsic signaling pathways from the level of transcription to translation. The ES cells have been the suitable model for evaluating the function of non-coding RNAs and in specific miRNAs. So far, the general function of the miRNAs in ES cells has been assessed in mammalian and non-mammalian stem cells. Nowadays, the evolution of sequencing technology led to the discovery of numerous miRNAs in human and mouse ES cells that their expression levels significantly changes during proliferation and differentiation. Several miRNAs have been identified in ectoderm, mesoderm, and endoderm cells, as well. This review would focus on recent knowledge about the expression and functional roles of miRNAs in embryonic and lineage-specific stem cells. It also describes that miRNAs might have essential roles in orchestrating the Waddington's landscape structure during development.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masoumeh Alishahi
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Derakhshan
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda H Sarani
- Faculty of Paramedical, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnoosh Attari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Seyed E Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Wang F, Yang QW, Zhao WJ, Du QY, Chang ZJ. Effects of short-time exposure to atrazine on miRNA expression profiles in the gonad of common carp (Cyprinus carpio). BMC Genomics 2019; 20:587. [PMID: 31315571 PMCID: PMC6636164 DOI: 10.1186/s12864-019-5896-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Atrazine is widely used in agriculture and is a known endocrine disrupting chemical. Atrazine can seep into the water body through surface, posing a potential threat to the aquatic ecological environment and human drinking water source. In vertebrate, studies have shown that it can affect reproduction and development seriously, but its molecular mechanism for aquatic animals is unknown. Aquaculture is very common in China, especially common carp, whose females grow faster than males. However, the effects of atrazine on the reproduction of carp, especially miRNA, have not been investigated. RESULTS In this study, common carp (Cyprinus carpio) at two key developmental stages were exposed to atrazine in vitro. Sex ratio was observed to analyze the effect of atrazine on the sex. MiRNA expression profiles were analysed to identify miRNAs related to gonad development and to reveal the atrazine mechanisms interfering with gonad differentiation. The results showed that the sex ratio was biased towards females. Atrazine exposure caused significant alteration of multiple miRNAs. Predicted targets of differently-expressed miRNAs were involved in many reproductive biology signalling pathways. CONCLUSIONS Our results indicate that atrazine promoted the expression of female-biased genes by decreasing miRNAs in primordial gonad. In addition, our results indicate that atrazine can up-regulate aromatase expression through miRNAs, which supports the hypothesis that atrazine has endocrine-disrupting activity by altering the gene expression profile of the Hypothalamus-Pituitary-Gonad axis through its corresponding miRNAs.
Collapse
Affiliation(s)
- Fang Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Qian-Wen Yang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Wen-Jie Zhao
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Qi-Yan Du
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Zhong-Jie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China.
| |
Collapse
|
12
|
Mollazadeh S, Fazly Bazzaz BS, Neshati V, de Vries AAF, Naderi-Meshkin H, Mojarad M, Mirahmadi M, Neshati Z, Kerachian MA. Overexpression of MicroRNA-148b-3p stimulates osteogenesis of human bone marrow-derived mesenchymal stem cells: the role of MicroRNA-148b-3p in osteogenesis. BMC MEDICAL GENETICS 2019; 20:117. [PMID: 31262253 PMCID: PMC6604430 DOI: 10.1186/s12881-019-0854-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/24/2019] [Indexed: 12/23/2022]
Abstract
Background Mesenchymal stem cells (MSCs) are attractive choices in regenerative medicine and can be genetically modified to obtain better results in therapeutics. Bone development and metabolism are controlled by various factors including microRNAs (miRs) interference, which are small non-coding endogenous RNAs. Methods In the current study, the effects of forced miR-148b expression was evaluated on osteogenic activity. Human bone marrow-derived mesenchymal stem cells (BM-MSCs) were transduced with bicistronic lentiviral vector encoding hsa-miR-148b-3p or -5p and the enhanced green fluorescent protein. Fourteen days post-transduction, immunostaining as well as Western blotting were used to analyze osteogenesis. Results Overexpression of miR-148b-3p increased the osteogenic differentiation of human BM-MSCs as demonstrated by anenhancement of mineralized nodular formation and an increase in the levels of osteoblastic differentiation biomarkers, alkaline phosphatase and collagen type I. Conclusions Since lentivirally overexpressed miR-148b-3p increased osteogenic differentiation capability of BM-MSCs, this miR could be applied as a therapeutic modulator to optimize bone function. Electronic supplementary material The online version of this article (10.1186/s12881-019-0854-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Food and Drug Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vajiheh Neshati
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Antoine A F de Vries
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hojjat Naderi-Meshkin
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Majid Mojarad
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Mirahmadi
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Zeinab Neshati
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Prakash R, John AA, Singh D. miR‐409‐5p negatively regulates Wnt/Beta catenin signaling pathway by targeting Lrp‐8. J Cell Physiol 2019; 234:23507-23517. [DOI: 10.1002/jcp.28919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Ravi Prakash
- Division of Endocrinology, Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR‐Central Drug Research Institute Lucknow India
| | - Aijaz A John
- Division of Endocrinology, Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR‐Central Drug Research Institute Lucknow India
| | - Divya Singh
- Division of Endocrinology, Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR‐Central Drug Research Institute Lucknow India
| |
Collapse
|
14
|
Ma Z, Zhang N, Qin JG, Fu M, Jiang S. Water temperature induces jaw deformity and bone morphogenetic proteins (BMPs) gene expression in golden pompano Trachinotus ovatus larvae. SPRINGERPLUS 2016; 5:1475. [PMID: 27652050 PMCID: PMC5010545 DOI: 10.1186/s40064-016-3142-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 08/23/2016] [Indexed: 11/18/2022]
Abstract
Golden pompano Trachinotus ovatus larvae were kept at 26, 29 and 33 °C for 15 days from 3-day post hatching (DPH) to 18 DPH to test temperature-dependent growth and jaw malformation. The growth, survival, jaw deformity and the gene expressions of bone morphogenetic proteins (BMPs) were used as criteria to examine the fish response to temperature manipulation. The growth rate of fish at 29 or 33 °C was significantly faster than fish at 26 °C, while fish survival at 29 °C was significantly higher than fish at 33 °C. Jaw deformity was significantly affected by water temperature. The highest jaw deformity occurred on fish at 33 °C, and the lowest jaw deformity was at 26 °C. The expressions of all BMP genes except BMP10 were significantly affected by water temperature. The highest gene expression of BMP2 was on fish at 29 °C, and the lowest expression was at 33 °C. For the BMP4 gene, the highest and lowest expressions were found on fish at 33 and 26 °C, respectively. The present study indicates that jaw deformity of golden pompano larvae increases with increasing temperature, and the gene expression of BMP4 proteins coincides with high jaw deformity and water temperature elevation.
Collapse
Affiliation(s)
- Zhenhua Ma
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300 China ; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300 China
| | - Nan Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300 China
| | - Jian G Qin
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 Australia
| | - Mingjun Fu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300 China
| | - Shigui Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300 China
| |
Collapse
|
15
|
Abstract
Transforming growth factor β (TGF-β) and related growth factors are secreted pleiotropic factors that play critical roles in embryogenesis and adult tissue homeostasis by regulating cell proliferation, differentiation, death, and migration. The TGF-β family members signal via heteromeric complexes of type I and type II receptors, which activate members of the Smad family of signal transducers. The main attribute of the TGF-β signaling pathway is context-dependence. Depending on the concentration and type of ligand, target tissue, and developmental stage, TGF-β family members transmit distinct signals. Deregulation of TGF-β signaling contributes to developmental defects and human diseases. More than a decade of studies have revealed the framework by which TGF-βs encode a context-dependent signal, which includes various positive and negative modifiers of the principal elements of the signaling pathway, the receptors, and the Smad proteins. In this review, we first introduce some basic components of the TGF-β signaling pathways and their actions, and then discuss posttranslational modifications and modulatory partners that modify the outcome of the signaling and contribute to its context-dependence, including small noncoding RNAs.
Collapse
Affiliation(s)
- Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94143
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Rosa J, Tiago DM, Marques CL, Vijayakumar P, Fonseca L, Cancela ML, Laizé V. Central role of betaine-homocysteine S-methyltransferase 3 in chondral ossification and evidence for sub-functionalization in neoteleost fish. Biochim Biophys Acta Gen Subj 2016; 1860:1373-87. [PMID: 27036080 DOI: 10.1016/j.bbagen.2016.03.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/21/2016] [Accepted: 03/28/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND To better understand the complex mechanisms of bone formation it is fundamental that genes central to signaling/regulatory pathways and matrix formation are identified. Cell systems were used to analyze genes differentially expressed during extracellular matrix mineralization and bhmt3, coding for a betaine-homocysteine S-methyltransferase, was shown to be down-regulated in mineralizing gilthead seabream cells. METHODS Levels and sites of bhmt3 expression were determined by qPCR and in situ hybridization throughout seabream development and in adult tissues. Transcriptional regulation of bhmt3 was assessed from the activity of promoter constructs controlling luciferase gene expression. Molecular phylogeny of vertebrate BHMT was determined from maximum likelihood analysis of available sequences. RESULTS bhmt3 transcript is abundant in calcified tissues and localized in cartilaginous structures undergoing endo/perichondral ossification. Promoter activity is regulated by transcription factors involved in bone and cartilage development, further demonstrating the central role of Bhmt3 in chondrogenesis and/or osteogenesis. Molecular phylogeny revealed the explosive diversity of bhmt genes in neoteleost fish, while tissue distribution of bhmt genes in seabream suggested that neoteleostean Bhmt may have undergone several steps of sub-functionalization. CONCLUSIONS Data on bhmt3 gene expression and promoter activity evidences a novel function for betaine-homocysteine S-methyltransferase in bone and cartilage development, while phylogenetic analysis provides new insights into the evolution of vertebrate BHMTs and suggests that multiple gene duplication events occurred in neoteleost fish lineage. GENERAL SIGNIFICANCE High and specific expression of Bhmt3 in gilthead seabream calcified tissues suggests that bone-specific betaine-homocysteine S-methyltransferases could represent a suitable marker of chondral ossification.
Collapse
Affiliation(s)
- Joana Rosa
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal; PhD Program in Biomedical Sciences, Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - Daniel M Tiago
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Cátia L Marques
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | | | - Luis Fonseca
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.
| |
Collapse
|
17
|
The Regulatory Roles of MicroRNAs in Bone Remodeling and Perspectives as Biomarkers in Osteoporosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1652417. [PMID: 27073801 PMCID: PMC4814634 DOI: 10.1155/2016/1652417] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 02/05/2023]
Abstract
MicroRNAs are involved in many cellular and molecular activities and played important roles in many biological and pathological processes, such as tissue formation, cancer development, diabetes, neurodegenerative diseases, and cardiovascular diseases. Recently, it has been reported that microRNAs can modulate the differentiation and activities of osteoblasts and osteoclasts, the key cells that are involved in bone remodeling process. Meanwhile, the results from our and other research groups showed that the expression profiles of microRNAs in the serum and bone tissues are significantly different in postmenopausal women with or without fractures compared to the control. Therefore, it can be postulated that microRNAs might play important roles in bone remodeling and that they are very likely to be involved in the pathological process of postmenopausal osteoporosis. In this review, we will present the updated research on the regulatory roles of microRNAs in osteoblasts and osteoclasts and the expression profiles of microRNAs in osteoporosis and osteoporotic fracture patients. The perspective of serum microRNAs as novel biomarkers in bone loss disorders such as osteoporosis has also been discussed.
Collapse
|
18
|
Wang J, Zhang C, Zhang Z, Zheng Z, Sun D, Yang Q, Hadadi C, Li D, Xu X, Xiong M, Zhou Q, Guo M, Wang Y, Tang C, Xu G, Yang K, Zhong N, Lu W. A Functional Variant rs6435156C > T in BMPR2 is Associated With Increased Risk of Chronic Obstructive Pulmonary Disease (COPD) in Southern Chinese Population. EBioMedicine 2016; 5:167-74. [PMID: 27077124 PMCID: PMC4816816 DOI: 10.1016/j.ebiom.2016.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUNDS Bone morphogenetic protein receptor type 2 (BMPR2) signaling is anti-inflammatory. Decreased BMPR2 expression was seen in lung tissue from chronic obstructive pulmonary disease (COPD) patients. METHODS The selected single nucleotide polymorphisms (SNPs) in BMPR2 were genotyped with polymerase chain reaction (PCR) ligase detection reaction. The effects of SNPs on gene expression were analyzed with luciferase assays. The mRNA and protein expression levels of BMPR2 in peripheral blood mononuclear cells (PBMCs) from COPD patients were determined by quantitative PCR and western blotting, respectively. FINDINGS Two SNPs, rs6435156C > T and rs1048829G > T in the 3'-untranslated region (3'UTR) of BMPR2 were selected and genotyped in COPD case and healthy control subjects from southern Chinese population. Both of them were found associated with significantly increased COPD risk (adjusted odds ratio [OR] = 1.58 with 95% confidence interval [CI] = 1.14-2.15, P = 0.0056 for rs6435156C > T; adjusted OR = 1.47 and 95% CI = 1.10-1.97, P = 0.0092 for rs1048829G > T). Older age, cigarette smoking, family history of cancer and COPD were all factors that interacted with rs6435156C > T and rs1048829G > T causing increased COPD risk. Cigarette smokers with rs6435156 (CT + TT) or rs1048829 (GT + TT) were more susceptible to COPD than that with the rs6435156CC or rs1048829GG genotypes. In A549 human alveolar epithelial cells, luciferase reporter assays revealed that introduction of 3'UTR of BMPR2 plasmids carrying rs6435156T allele but not rs1048829T led to lower luciferase activity than the wild-type C or G alleles. Comparing to rs6435156CC, treatment with hsa-miR-20a mimics deceased whereas hsa-miR-20a inhibitor restored the luciferase reporter activity in cells transfected with constructs carrying rs6435156TT. BMPR2 mRNA and protein expressions were significantly lower in PBMCs from COPD smokers than that in non-smokers. COPD patients carrying rs6435156T allele had less BMPR2 expression in PBMCs. INTERPRETATION This study demonstrated that both rs6435156C > T and rs1048829G > T variants in BMPR2 contributed to increased susceptibility to COPD. The T variants of rs6435156 increased COPD risk likely by binding with hsa-miR-20a, thus leading to downregulated BMPR2 expression in lung epithelial and immune cells.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Department of Respiration, Inner Mongolia Autonomous Region People's Hospital, Hohhot 010017, Inner Mongolia, China; Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Chenting Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zili Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zeguang Zheng
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dejun Sun
- Department of Respiration, Inner Mongolia Autonomous Region People's Hospital, Hohhot 010017, Inner Mongolia, China
| | - Quan Yang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cyrus Hadadi
- Geisinger Medical Center, 100 North Academy Avenue, Danville, PA 17822, USA
| | - Defu Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoming Xu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingmei Xiong
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qipeng Zhou
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meihua Guo
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingfeng Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chun Tang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guihua Xu
- Department of Respiration, Inner Mongolia Autonomous Region People's Hospital, Hohhot 010017, Inner Mongolia, China
| | - Kai Yang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
19
|
Marques CL, Fernández I, Viegas MN, Cox CJ, Martel P, Rosa J, Cancela ML, Laizé V. Comparative analysis of zebrafish bone morphogenetic proteins 2, 4 and 16: molecular and evolutionary perspectives. Cell Mol Life Sci 2016; 73:841-57. [PMID: 26341094 PMCID: PMC11108344 DOI: 10.1007/s00018-015-2024-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 07/27/2015] [Accepted: 08/14/2015] [Indexed: 11/24/2022]
Abstract
BMP2, BMP4 and BMP16 form a subfamily of bone morphogenetic proteins acting as pleiotropic growth factors during development and as bone inducers during osteogenesis. BMP16 is the most recent member of this subfamily and basic data regarding protein structure and function, and spatio-temporal gene expression is still scarce. In this work, insights on BMP16 were provided through the comparative analysis of structural and functional data for zebrafish BMP2a, BMP2b, BMP4 and BMP16 genes and proteins, determined from three-dimensional models, patterns of gene expression during development and in adult tissues, regulation by retinoic acid and capacity to activate BMP-signaling pathway. Structures of Bmp2a, Bmp2b, Bmp4 and Bmp16 were found to be remarkably similar; with residues involved in receptor binding being highly conserved. All proteins could activate the BMP-signaling pathway, suggesting that they share a common function. On the contrary, stage- and tissue-specific expression of bmp2, bmp4 and bmp16 suggested the genes might be differentially regulated (e.g. different transcription factors, enhancers and/or regulatory modules) but also that they are involved in distinct physiological processes, although with the same function. Retinoic acid, a morphogen known to interact with BMP-signaling during bone formation, was shown to down-regulate the expression of bmp2, bmp4 and bmp16, although to different extents. Taxonomic and phylogenetic analyses indicated that bmp16 diverged before bmp2 and bmp4, is not restricted to teleost fish lineage as previously reported, and that it probably arose from a whole genomic duplication event that occurred early in vertebrate evolution and disappeared in various tetrapod lineages through independent events.
Collapse
Affiliation(s)
- Cátia L Marques
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- PhD Program in Biomedical Sciences, University of Algarve, Faro, Portugal
- Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - Ignacio Fernández
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Michael N Viegas
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Cymon J Cox
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Paulo Martel
- Centre for Molecular and Structural Biomedicine (CBME/IBB-LA), University of Algarve, Faro, Portugal
| | - Joana Rosa
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- PhD Program in Biomedical Sciences, University of Algarve, Faro, Portugal
- Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
- Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal.
| |
Collapse
|
20
|
Zhang YR, Ka K, Zhang GC, Zhang H, Shang Y, Zhao GQ, Huang WH. Repair of peripheral nerve defects with chemically extracted acellular nerve allografts loaded with neurotrophic factors-transfected bone marrow mesenchymal stem cells. Neural Regen Res 2015; 10:1498-506. [PMID: 26604913 PMCID: PMC4625518 DOI: 10.4103/1673-5374.165523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Chemically extracted acellular nerve allografts loaded with brain-derived neurotrophic factor-transfected or ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells have been shown to repair sciatic nerve injury better than chemically extracted acellular nerve allografts alone, or chemically extracted acellular nerve allografts loaded with bone marrow mesenchymal stem cells. We hypothesized that these allografts compounded with both brain-derived neurotrophic factor- and ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells may demonstrate even better effects in the repair of peripheral nerve injury. We cultured bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor and/or ciliary neurotrophic factor and used them to treat sciatic nerve injury in rats. We observed an increase in sciatic functional index, triceps wet weight recovery rate, myelin thickness, number of myelinated nerve fibers, amplitude of motor-evoked potentials and nerve conduction velocity, and a shortened latency of motor-evoked potentials when allografts loaded with both neurotrophic factors were used, compared with allografts loaded with just one factor. Thus, the combination of both brain-derived neurotrophic factor and ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells can greatly improve nerve injury.
Collapse
Affiliation(s)
- Yan-Ru Zhang
- Medical College, Henan Polytechnic University, Jiaozuo, Henan Province, China ; Institute of Clinical Anatomy, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ka Ka
- Medical College, Henan Polytechnic University, Jiaozuo, Henan Province, China
| | - Ge-Chen Zhang
- Department of Orthopedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hui Zhang
- Department of Orthopedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yan Shang
- Department of Laboratory Medicine, Children's Hospital of Zhengzhou, Zhengzhou, Henan Province, China
| | - Guo-Qiang Zhao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Wen-Hua Huang
- Institute of Clinical Anatomy, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
21
|
Marques CL, Cancela ML, Laizé V. Transcriptional regulation of gilthead seabream bone morphogenetic protein (BMP) 2 gene by bone- and cartilage-related transcription factors. Gene 2015; 576:229-36. [PMID: 26456102 DOI: 10.1016/j.gene.2015.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 09/04/2015] [Accepted: 10/04/2015] [Indexed: 01/30/2023]
Abstract
Bone morphogenetic protein (BMP) 2 belongs to the transforming growth factor β (TGFβ) superfamily of cytokines and growth factors. While it plays important roles in embryo morphogenesis and organogenesis, BMP2 is also critical to bone and cartilage formation. Protein structure and function have been remarkably conserved throughout evolution and BMP2 transcription has been proposed to be tightly regulated, although few data is available. In this work we report the cloning and functional analysis of gilthead seabream BMP2 promoter. As in other vertebrates, seabream BMP2 gene has a 5′ non-coding exon, a feature already present in DPP gene, the fruit fly ortholog of vertebrate BMP2 gene, and maintained throughout evolution. In silico analysis of seabream BMP2 promoter revealed several binding sites for bone and cartilage related transcription factors (TFs) and their functionality was evaluated using promoter-luciferase constructions and TF-expressing vectors. Runt-related transcription factor 3 (RUNX3) was shown to negatively regulate BMP2 transcription and combination with the core binding factor β (CBFβ) further reduced transcriptional activity of the promoter. Although to a lesser extent, myocyte enhancer factor 2C (MEF2C) had also a negative effect on the regulation of BMP2 gene transcription, when associated with SRY (sex determining region Y)-box 9 (SOX9b). Finally, v-ets avian erythroblastosis virus E26 oncogene homolog 1 (ETS1) was able to slightly enhance BMP2 transcription. Data reported here provides new insights toward the better understanding of the transcriptional regulation of BMP2 gene in a bone and cartilage context.
Collapse
Affiliation(s)
- Cátia L Marques
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal; PhD Program in Biomedical Sciences, University of Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.
| |
Collapse
|
22
|
Silva I, Conceição N. Cloning, characterization and analysis of the 5′ regulatory region of zebrafish xpd gene. Comp Biochem Physiol B Biochem Mol Biol 2015; 185:47-53. [DOI: 10.1016/j.cbpb.2015.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/24/2015] [Accepted: 04/01/2015] [Indexed: 12/22/2022]
|
23
|
Bizuayehu TT, Johansen SD, Puvanendran V, Toften H, Babiak I. Temperature during early development has long-term effects on microRNA expression in Atlantic cod. BMC Genomics 2015; 16:305. [PMID: 25881242 PMCID: PMC4403832 DOI: 10.1186/s12864-015-1503-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/27/2015] [Indexed: 12/22/2022] Open
Abstract
Background Environmental temperature has serious implications in life cycle of aquatic ectotherms. Understanding the molecular mechanisms of temperature acclimation and adaptation of marine organisms is of the uttermost importance for ecology, fisheries, and aquaculture, as it allows modeling the effects of global warming on population dynamics. Regulatory molecules are major modulators of acclimation and adaptation; among them, microRNAs (miRNAs) are versatile and substantial contributors to regulatory networks of development and adaptive plasticity. However, their role in thermal plasticity is poorly known. We have asked whether the temperature and its shift during the early ontogeny (embryonic and larval development) affect the miRNA repertoire of Atlantic cod (Gadus morhua), and if thermal experience has long-term consequences in the miRNA profile. Results We characterized miRNA during different developmental stages and in juvenile tissues using next generation sequencing. We identified 389 putative miRNA precursor loci, 120 novel precursor miRNAs, and 281 mature miRNAs. Some miRNAs showed stage- or tissue-enriched expression and miRNAs, such as the miR-17 ~ 92 cluster, myomiRs (miR-206), neuromiRs (miR-9, miR-124), miR-130b, and miR-430 showed differential expression in different temperature regimes. Long-term effect of embryonic incubation temperature was revealed on expression of some miRNAs in juvenile pituitary (miR-449), gonad (miR-27c, miR-30c, and miR-200a), and liver (let-7 h, miR-7a, miR-22, miR-34c, miR-132a, miR-192, miR-221, miR-451, miR-2188, and miR-7550), but not in brain. Some of differentially expressed miRNAs in the liver were confirmed using LNA-based rt-qPCR. The effect of temperature on methylation status of selected miRNA promoter regions was mostly inconclusive. Conclusions Temperature elevation by several degrees during embryonic and larval developmental stages significantly alters the miRNA profile, both short-term and long-term. Our results suggest that a further rise in seas temperature might affect life history of Atlantic cod. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1503-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Steinar D Johansen
- University of Nordland, Faculty of Biosciences and Aquaculture, Post Box 1490, 8049, Bodø, Norway. .,Arctic University of Norway, FHS, RNA Lab, Dept Med Biol, N-9037, Tromsø, Norway.
| | | | - Hilde Toften
- Nofima AS, Muninbakken 9-13, P.O. box 6122, NO, 9291, Tromsø, Norway.
| | - Igor Babiak
- University of Nordland, Faculty of Biosciences and Aquaculture, Post Box 1490, 8049, Bodø, Norway.
| |
Collapse
|
24
|
Roberto VP, Tiago DM, Silva IAL, Cancela ML. MiR-29a is an enhancer of mineral deposition in bone-derived systems. Arch Biochem Biophys 2014; 564:173-83. [PMID: 25241053 DOI: 10.1016/j.abb.2014.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/07/2014] [Accepted: 09/10/2014] [Indexed: 01/04/2023]
Abstract
MicroRNAs (miRNAs) provide a mechanism for fine-tuning of intricate cellular processes through post-transcriptional regulation. Emerging evidences indicate that miRNAs play key roles in regulation of osteogenesis. The miR-29 family was previously implicated in mammalian osteoblast differentiation by targeting extracellular matrix molecules and modulating Wnt signaling. Nevertheless, the function of miR-29 in bone formation and homeostasis is not completely understood. Here, we provide novel insights into the biological effect of miR-29a overexpression in a mineralogenic cell system (ABSa15). MiR-29a gain-of-function resulted in significant increase of extracellular matrix mineralization, probably due to accelerated differentiation. We also demonstrated for the first time that miR-29a induced β-catenin protein levels, implying a stimulation of canonical Wnt signaling. Our data also suggests that SPARC is a conserved target of miR-29a, and may contribute to the phenotype observed in ABSa15 cells. Finally, we provide evidences for miR-29a conservation throughout evolution based on sequence homology, synteny analysis and expression patterns. Concluding, miR-29a is a key player in osteogenic differentiation, leading to increased mineralization in vitro, and this function seems to be conserved throughout vertebrate evolution by interaction with canonical Wnt signaling and conservation of targets.
Collapse
Affiliation(s)
- V P Roberto
- Centre of Marine Sciences, University of Algarve, Faro, Portugal; PhD Program in Biomedical Sciences, DCBM, University of Algarve, Portugal.
| | - D M Tiago
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.
| | - I A L Silva
- Centre of Marine Sciences, University of Algarve, Faro, Portugal; PhD Program in Biomedical Sciences, DCBM, University of Algarve, Portugal.
| | - M L Cancela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal.
| |
Collapse
|
25
|
van der Eerden BCJ. MicroRNAs in the skeleton: cell-restricted or potent intercellular communicators? Arch Biochem Biophys 2014; 561:46-55. [PMID: 24832391 DOI: 10.1016/j.abb.2014.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/24/2014] [Accepted: 04/26/2014] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) play a fundamental role in cell proliferation, differentiation and apoptosis and have been associated with many diseases and physiological states. Within the skeleton, both the bone forming cells, osteoblasts, and the bone degrading cells, osteoclasts, are mostly being stimulated by miRNAs through downregulation of inhibitors of bone cell differentiation. Besides miRNAs affecting master genes of bone cell differentiation and function in a cell-restricted manner, evidence is gathering that miRNAs are excreted into the local environment but also into the circulation, implicating a role for miRNAs in nearby or even distant target cells. In this review, the most recent novel miRNAs implicated in bone cell differentiation regulation will be described but also their potential paracrine or endocrine role, thus reinforcing the concept that miRNAs may function as powerful communicators between cell types or tissues.
Collapse
|
26
|
Fish: a suitable system to model human bone disorders and discover drugs with osteogenic or osteotoxic activities. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.ddmod.2014.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|