1
|
Kumar A, Saha M, Saraswat J, Behera K, Trivedi S. Interaction between antidepressant drug trazodone with double-stranded DNA: Multi-spectroscopic and computational analysis. Int J Biol Macromol 2024; 277:134113. [PMID: 39048004 DOI: 10.1016/j.ijbiomac.2024.134113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Trazodone (TZD) is an antidepressant drug used to treat major depressive and sleeping disorders. Elevated doses of trazodone are associated with central nervous system depression, which manifests as nausea, drowsiness, confusion, vertigo, exhaustion, etc. To develop a clinically viable active pharmaceutical compound with minimal adverse effects, it is imperative to possess a comprehensive knowledge of the drug's action mechanism on DNA. Hence, we investigate the mode of interaction between trazodone and DNA utilizing various spectroscopic and computational techniques. Studies using UV-vis titration showed that the DNA and trazodone have an effective interaction. The magnitude of the Stern-Volmer constant (KSV) has been calculated to be 5.84 × 106 M-1 by the Lehrer equation from a steady-state fluorescence study. UV-vis absorption, DNA melting, dye displacement, and circular dichroism studies suggested that trazodone binds with DNA in minor grooves. Molecular docking and molecular dynamic simulation demonstrated that the TZD-DNA system was stable, and the mode of binding was minor groove. Furthermore, ionic strength investigation demonstrates that DNA and trazodone do not have a substantial electrostatic binding interaction.
Collapse
Affiliation(s)
- Ambrish Kumar
- Centre of Advanced Studies, Department of Chemistry, Banaras Hindu University, Varanasi 221005, India
| | - Moumita Saha
- Centre of Advanced Studies, Department of Chemistry, Banaras Hindu University, Varanasi 221005, India
| | - Juhi Saraswat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Kamalakanta Behera
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India.
| | - Shruti Trivedi
- Centre of Advanced Studies, Department of Chemistry, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Qais FA, Furkan M, Altaf M, Ahmad I, Khan RH. Exploring the mechanism of interaction of glipizide with DNA: Combined in vitro and bioinformatics approach. Int J Biol Macromol 2024; 267:131573. [PMID: 38614188 DOI: 10.1016/j.ijbiomac.2024.131573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
DNA, vital for biological processes, encodes hereditary data for protein synthesis, shaping cell structure and function. Since revealing its structure, DNA has become a target for various therapeutically vital molecules, spanning antidiabetic to anticancer drugs. These agents engage with DNA-associated proteins, DNA-RNA hybrids, or bind directly to the DNA helix, triggering diverse downstream effects. These interactions disrupt vital enzymes and proteins essential for maintaining cell structure and function. Analysing drug-DNA interactions has significantly advanced our understanding of drug mechanisms. Glipizide, an antidiabetic drug, is known to cause DNA damage in adipocytes. However, its extract mechanism of DNA interaction is unknown. This study delves into the interaction between glipizide and DNA utilizing various biophysical tools and computational technique to gain insights into the interaction mechanism. Analysis of UV-visible and fluorescence data reveals the formation of complex between DNA and glipizide. The binding affinity of glipizide to DNA was of moderate strength. Examination of thermodynamic parameters at different temperatures suggests that the binding was entropically spontaneous and energetically favourable. Various experiments such as thermal melting assays, viscosity measurement, and dye displacement assays confirmed the minor grove nature of binding of glipizide with DNA. Molecular dynamics studies confirmed the glipizide forms stable complex with DNA when simulated by mimicking the physiological conditions. The binding was mainly favoured by hydrogen bonds and glipizide slightly reduced nucleotide fluctuations of DNA. The study deciphers the mechanism of interaction of glipizide with DNA at molecular levels.
Collapse
Affiliation(s)
- Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Furkan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Mohammad Altaf
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
3
|
Kumar D, Gauri, Kaur N. Multispectroscopic and computational techniques to study the interaction of anthraquinone appended sensor with calf thymus DNA. J Biomol Struct Dyn 2024; 42:4370-4378. [PMID: 37227792 DOI: 10.1080/07391102.2023.2216302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
An anthraquinone based derivative (AQ) has been designed and synthesized to find its applications for the interactions with calf thymus DNA (ctDNA) involving various spectroscopic techniques, thermodynamic and computational approaches. The UV-vis studies pointed to interaction of AQ with ctDNA via groove binding mode, which has been further supported well by the ionic strength studies, viscosity measurement, circular dichroism and melting temperature (Tm) curves. These findings have been further validated by dye-displacement assay and molecular docking studies. The analysis of thermodynamic parameters supports that the AQ-ctDNA binding is entropy favoured and enthalpy disfavoured and main acting binding interaction is hydrophobic interaction. The outcomes of the molecular modelling suggested that AQ might have entered the A-T abundant area of the ctDNA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Chemistry, Panjab University, Chandigarh, India
| | - Gauri
- Department of Chemistry, Panjab University, Chandigarh, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, India
| |
Collapse
|
4
|
Radwan AS, Salim MM, Elkhoudary MM, Hadad GM, Shaldam MA, Belal F, Magdy G. Study of the binding interaction of salmon sperm DNA with nintedanib, a tyrosine kinase inhibitor using multi-spectroscopic, thermodynamic, and in silico approaches. J Biomol Struct Dyn 2024; 42:1170-1180. [PMID: 37079322 DOI: 10.1080/07391102.2023.2202776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/28/2023] [Indexed: 04/21/2023]
Abstract
The study of the intermolecular binding interaction of small molecules with DNA can guide the rational drug design with greater efficacy and improved or more selective activity. In the current study, nintedanib's binding interaction with salmon sperm DNA (ssDNA) was thoroughly investigated using UV-vis spectrophotometry, spectrofluorimetry, ionic strength measurements, viscosity measurements, thermodynamics, molecular docking, and molecular dynamic simulation techniques under physiologically simulated conditions (pH 7.4). The obtained experimental results showed that nintedanib and ssDNA had an apparent binding interaction. Nintedanib's binding constant (Kb) with ssDNA, as determined using the Benesi-Hildebrand plot, was 7.9 × 104 M-1 at 298 K, indicating a moderate binding affinity. The primary binding contact forces were hydrophobic and hydrogen bonding interactions, as verified by the enthalpy and entropy changes (ΔH0 and ΔS0), which were - 16.25 kJ.mol-1 and 39.30 J mol-1 K-1, respectively. According to the results of UV-vis spectrophotometry, viscosity assays, and competitive binding interactions with ethidium bromide or rhodamine B, the binding mode of nintedanib to ssDNA was minor groove. Molecular docking and molecular dynamic simulation studies showed that nintedanib fitted into the B-DNA minor groove's AT-rich region with high stability. This study can contribute to further understanding of nintedanib's molecular mechanisms and pharmacological effects.
Collapse
Affiliation(s)
- Aya Saad Radwan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Mohamed M Salim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mahmoud M Elkhoudary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Ghada M Hadad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Moataz A Shaldam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Galal Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
5
|
Aslan M, Aydın F, Levent A. Voltammetric studies and spectroscopic investigations of the interaction of an anticancer drug bevacizumab-DNA and analytical applications of disposable pencil graphite sensor. Talanta 2023; 265:124893. [DOI: https:/doi.org/10.1016/j.talanta.2023.124893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
|
6
|
Aslan M, Aydın F, Levent A. Voltammetric studies and spectroscopic investigations of the interaction of an anticancer drug bevacizumab-DNA and analytical applications of disposable pencil graphite sensor. Talanta 2023; 265:124893. [PMID: 37437394 DOI: 10.1016/j.talanta.2023.124893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/24/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023]
Abstract
A sensitive, simple, fast electrochemical biosensor for the DNA interaction of bevacizumab (BEVA), which is used as a targeted drug in cancer treatment, was developed using the differential pulse voltammetry (DPV) technique with pencil graphite electrode (PGE). In the work, PGE was electrochemically activated in a supporting electrolyte medium of +1.4 V/60 s (PBS pH 3.0). Surface characterization of PGE was carried out by SEM, EDX, EIS, and CV techniques. Determination and electrochemical properties of BEVA were examined with CV and DPV techniques. BEVA gave a distinct analytical signal on the PGE surface at a potential of +0.90 V (vs. Ag/AgCl). In the procedure proposed in this study, BEVA gave a linear response on PGE in PBS (pH 3.0 containing 0.02 M NaCl) (0.1 mg mL-1 - 0.7 mg mL-1) with LOD and LOQ values of 0.026 mg mL-1 and 0.086 μg mL-1, respectively. BEVA was reacted with 20 μg mL-1 DNA in PBS for 150 s and analytical peak signals for adenine and guanine bases were evaluated. The interaction between BEVA-DNA was supported by UV-Vis. Absorption spectrometry and the binding constant was determined as 7.3 × 104.
Collapse
Affiliation(s)
- Mehmet Aslan
- Department of Chemistry, Faculty of Sciences, Dicle University, Diyarbakir, Turkey
| | - Fırat Aydın
- Department of Chemistry, Faculty of Sciences, Dicle University, Diyarbakir, Turkey
| | - Abdulkadir Levent
- Department of Chemistry, Faculty of Arts and Sciences, Batman University, Batman, Turkey.
| |
Collapse
|
7
|
Fatima S, Hussain I, Ahmed S, Tabish M. In vitro and in silico binding studies of phytochemical isochroman with calf thymus DNA using multi-spectroscopic and computational modelling techniques. J Biomol Struct Dyn 2023; 41:8795-8809. [PMID: 36281697 DOI: 10.1080/07391102.2022.2137243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/11/2022] [Indexed: 10/31/2022]
Abstract
A wide range of therapeutic molecules uses deoxyribonucleic acid (DNA) as an intracellular target. The interaction of small molecules to DNA is a key feature in pharmacology and plays a vital role in the development of novel and more efficient drugs with increased selective activity and enhanced therapeutic effectiveness. Isochroman (IC) is a constituent of Olea europea plant, which has been shown to exhibit several beneficial pharmacological activities. At present, its interaction studies using calf thymus DNA (ct-DNA) have not been explained. A set of multi-spectroscopic techniques has been performed to determine the interaction mechanism of isochroman with ct-DNA. Absorption spectra and quenching in fluorescence studies show that isochroman and ct-DNA form a complex. The static mode of quenching was determined by the Stern-Volmer plot. The value of binding constant, Kb = 4.0 × 103 M-1 revealed moderate type of binding. Effects of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) and ionic strength were studied to examine the isochroman binding to ct-DNA. Potassium iodide (KI) quenching effects and competitive binding studies clearly showed that isochroman binds in the minor groove of ct-DNA. Circular dichroic and DNA melting experiments also confirmed these results. The experimental outputs were further corroborated via in silico computational modelling studies. Lipinski's rule of 5 and SwissADME showed drug-likeness and oral bioavailability scores. Protox ІІ online software predicts oral and organ toxicity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sana Fatima
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, Uttar Pradesh, India
| | - Irfan Hussain
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, Uttar Pradesh, India
| | - Shahbaz Ahmed
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, Uttar Pradesh, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
8
|
Luikham S, Yanthan S, Bhattacharyya J. Mechanistic investigation into the binding property of Yohimbe towards natural polymeric DNAs. Sci Rep 2023; 13:15487. [PMID: 37726357 PMCID: PMC10509242 DOI: 10.1038/s41598-023-40713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
DNA interactions with multivalent ligand(s) have increasingly become the subject of substantial research. For several small molecules with therapeutic potential, nucleic acids serve as their primary molecular target. Such interaction has been shown to affect transcription or replication, ultimately leading to apoptotic cell death. As a result, researchers are becoming increasingly interested in understanding how small molecules interact with DNA making it possible to develop new, DNA-specific drugs. The bioactive indole alkaloid, Yohimbe (Yohimbine; Yh) has been broadly studied in pharmacological properties while its binding mode to DNA has not been explicated so far. This study adopted molecular modelling and multi-spectroscopic methods to investigate the interaction between Yohimbine and herring testes (HT DNA) in physiological conditions. Minor hypochromic and bathochromic shifts of fluorescence intensity were observed, suggesting the binding of Yh to HT DNA. The Scatchard plot analyses using the McGhee-von Hipple method revealed non-cooperative binding and affinities in the range of 105 M-1. The thermodynamic parameters suggested exothermic binding, which was favoured by negative enthalpy and positive entropy changes from temperature-dependent fluorescence experiments. Salt-dependent fluorescence suggested that the interaction between the ligand and DNA was governed by non-polyelectrolytic forces. The results of iodide quenching, urea denaturation assay, dye displacement, and in silico molecular docking, suggested groove binding of Yh to HT DNA. Thus, the groove binding mechanism of interaction was validated by both biophysical and computational techniques. The structural elucidation and energetic profiling of Yh's interaction with naturally occurring polymeric DNA can be useful to the development of DNA-targeted therapeutics.
Collapse
Affiliation(s)
- Soching Luikham
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland, 797103, India
| | - Senchumbeni Yanthan
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland, 797103, India
| | - Jhimli Bhattacharyya
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland, 797103, India.
| |
Collapse
|
9
|
de Almeida LC, Calil FA, Moreno NC, Rezende-Teixeira P, de Moraes LAB, Jimenez PC, Menck CFM, Machado-Neto JA, Costa-Lotufo LV. Exploring pradimicin-IRD antineoplastic mechanisms and related DNA repair pathways. Chem Biol Interact 2023; 371:110342. [PMID: 36634904 DOI: 10.1016/j.cbi.2023.110342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
DNA-targeting agents have a significant clinical use, although toxicity remains an issue that plays against their widespread application. Understanding the mechanism of action and DNA damage response elicited by such compounds might contribute to the improvement of their use in anticancer chemotherapy. In a previous study, our research group characterized a new DNA-targeting agent - pradimicin-IRD. Since DNA-targeting agents and DNA repair are close-related subjects, the present study used in silico-modelling and a transcriptomic approach seeking to characterize the DNA repair pathways activated in HCT 116 cells following pradimicin-IRD treatment. Molecular docking analysis showed pradimicin-IRD as a DNA intercalating agent and a potential inhibitor of DNA-binding proteins. Furthermore, the transcriptomic study highlighted DNA repair functions related to genes modulated by pradimicin-IRD, such as nucleotide excision repair, telomeres maintenance and double-strand break repair. When validating these functions, PCNA protein levels decreased after exposure to pradimicin. Furthermore, molecular docking analysis suggested DNA-pradimicin-PCNA interaction. In addition, hTERT and POLH showed reduced mRNA levels after 6 h of treatment with pradimicin-IRD. Moreover, POLH-deficient cells displayed higher resistance to pradimicin-IRD than POLH-proficient cells and the compound prevented formation of the POLH/DNA complex (molecular docking). Since the modulation of DNA repair genes by pradimicin-IRD is TP53-independent, unlike doxorubicin, dissimilarities between the mechanism of action and the DNA damage response of pradimicin-IRD and doxorubicin open new insights for further studies of pradimicin-IRD as a new antineoplastic compound.
Collapse
Affiliation(s)
- Larissa Costa de Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Felipe Antunes Calil
- Ludwig Institute for Cancer Research, School of Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Natália Cestari Moreno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; National Institute of Child Health and Human Development, National Institutes of Health (NIH), USA; Institute of Chemistry, University of Sao Paulo (USP), Brazil
| | - Paula Rezende-Teixeira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | - João Agostinho Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Rahman Y, Afrin S, Perwez A, Ansari MO, Sarwar T, Ahmed S, Rizvi MA, Shadab GGHA, Tabish M. Nizatidine interacts with ct-DNA causing genotoxicity and cytotoxicity: an assessment by in vitro, in vivo, and in silico studies. J Biomol Struct Dyn 2023; 41:538-549. [PMID: 34856883 DOI: 10.1080/07391102.2021.2008496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
H2 receptor antagonists are the medication given for treating stomach ulcers, but lately, reports have shown their role in healing several malignant ulcers. The present work entails the interaction of H2 blocker nizatidine with calf thymus (ct)-DNA for determining the binding mode and energetics of the interaction. Multi-spectroscopic, calorimetric, viscometric and bioinformatic analysis revealed that nizatidine interacted with ct-DNA via groove-binding mode and is characterised by exothermic reaction. Moreover, assessment of genotoxic potential of nizatidine in vitro was carried out in peripheral human lymphocytes by alkaline comet assay. DNA damage occurred at high concentrations of nizatidine. Genotoxicity of nizatidine was also evaluated in vivo by assessing cytogenetic biomarkers viz. micronuclei formation and chromosomal aberration test. Nizatidine was able to induce micronuclei formation and chromosomal damage at high dose. Additionally, cytotoxic activity of nizatidine was determined in cancer cell lines, namely HeLa and HCT-116 and compared with the normal human cell line HEK-293 employing MTT assay. It was observed that nizatidine was more toxic towards HeLa and HCT-116 than HEK-293. Cell morphology analysis by compound inverted microscopy further strengthens the finding obtained through MTT assay.
Collapse
Affiliation(s)
- Yusra Rahman
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, India
| | - Shumaila Afrin
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, India
| | - Ahmad Perwez
- Department of Biosciences, Jamia Millia Islamia, New Delhi
| | - Mohd Owais Ansari
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Tarique Sarwar
- Department of Biosciences, Jamia Millia Islamia, New Delhi
| | - Shahbaz Ahmed
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, India
| | | | - G G Hammad A Shadab
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, India
| |
Collapse
|
11
|
Multi-spectroscopic, thermodynamic, and molecular docking/dynamic approaches for characterization of the binding interaction between calf thymus DNA and palbociclib. Sci Rep 2022; 12:14723. [PMID: 36042232 PMCID: PMC9427788 DOI: 10.1038/s41598-022-19015-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Studying the binding interaction between biological macromolecules and small molecules has formed the core of different research aspects. The interaction of palbociclib with calf thymus DNA at simulated physiological conditions (pH 7.4) was studied using different approaches, including spectrophotometry, spectrofluorimetry, FT-IR spectroscopy, viscosity measurements, ionic strength measurements, thermodynamic, molecular dynamic simulation, and docking studies. The obtained findings showed an apparent binding interaction between palbociclib and calf thymus DNA. Groove binding mode was confirmed from the findings of competitive binding studies with ethidium bromide or rhodamine B, UV–Vis spectrophotometry, and viscosity assessment. The binding constant (Kb) at 298 K calculated from the Benesi–Hildebrand equation was found to be 6.42 × 103 M−1. The enthalpy and entropy changes (∆H0 and ∆S0) were − 33.09 kJ mol−1 and 61.78 J mol−1 K−1, respectively, showing that hydrophobic and hydrogen bonds constitute the primary binding forces. As indicated by the molecular docking results, palbociclib fits into the AT-rich region of the B-DNA minor groove with four base pairs long binding site. The dynamic performance and stability of the formed complex were also evaluated using molecular dynamic simulation studies. The in vitro study of the intermolecular binding interaction of palbociclib with calf thymus DNA could guide future clinical and pharmacological studies for the rational drug scheming with enhanced or more selective activity and greater efficacy.
Collapse
|
12
|
Ponkarpagam S, Vennila KN, Elango KP. Intercalation of diafenthiuron insecticide with calf thymus DNA: spectroscopic and molecular dynamics analysis. J Biomol Struct Dyn 2022:1-9. [PMID: 35848349 DOI: 10.1080/07391102.2022.2098824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A series of biophysical experiments like UV-Vis, fluorescence, circular dichroism (CD), competitive displacement assays, voltammetric studies, viscosity measurements and denaturation effect and metadynamics simulation studies were performed to establish the mode of binding of diafenthiuron (DF) insecticide with calf thymus DNA (CT-DNA). Analysis of absorption and fluorescence spectra in Tris-HCl buffer of pH 7.4 indicates the formation of a complex between DF and CT-DNA and the binding constant of which is in the order of 104 M-1. Competitive displacement assay with ethidium bromide (EB) and Hoechst 33258 suggests that the most probable mode of binding of DF with CT-DNA may be via intercalation mode. The results of other experiments such as CD spectral studies, viscosity measurements and the effect of denaturation agent urea support the intercalation of DF with CT-DNA. Thermodynamic parameters (ΔHo, ΔSo and ΔGo) reveal that hydrogen bonds (H-bonds) or van der Waals (vdW) force is the main binding force in the spontaneous interaction between DF and CT-DNA. Molecular dynamics (MD) simulation studies confirmed the intercalation of DF into the base pairs of CT-DNA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Ponkarpagam
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| | - K N Vennila
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| |
Collapse
|
13
|
Goswami S, Ghosh R, Prasanthan P, Kishore N. Mode of interaction of altretamine with calf thymus DNA: biophysical insights. J Biomol Struct Dyn 2022; 41:3728-3740. [PMID: 35343872 DOI: 10.1080/07391102.2022.2054472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Insights into drug-DNA interactions have importance in medicinal chemistry as it has a major role in the evolution of new therapeutic drugs. Therefore, binding studies of small molecules with DNA are of significant interest. Spectroscopy, coupled with measurements of viscosity and molecular docking studies were employed to obtain mechanistic insights into the binding of altretamine with calf thymus DNA (CT-DNA). The UV-visible spectroscopic measurements study confirmed altretamine-CT-DNA complex formation with affinity constant ([15.68 ± 0.04] × 103 M-1), a value associated with groove binding phenomenon. The associated thermodynamic signatures suggest enthalpically driven interactions. The values of standard molar free energy change (ΔGmo) -(23.93 ± 0.23) kJ mol-1, enthalpy change (ΔvHHmo) -(50.84 ± 0.19) kJ mol-1 and entropy change (ΔSmo) -(90.29 ± 0.12) JK-1 mol-1 indicate the binding is thermodynamically favorable and an important role of the hydrogen bonds and Van der Waals interactions in the binding of altretamine with CT-DNA. Circular dichroism spectroscopy indicated insignificant conformational changes in the DNA backbone upon interaction with altretamine suggesting no distortion and/or unstacking of the base pairs in the DNA helix. UV-melting study suggested that the thermal stability of the DNA backbone is not affected by the binding of the drug. Competitive displacement assays with ethidium bromide, Hoechst-33258 and DAPI established the binding of altretamine with CT-DNA in the minor groove. The mode of binding was further confirmed by viscosity and molecular docking studies. Molecular docking further ascertained binding of altretamine in the minor groove of the CT-DNA, preferably with the A-T rich sequences.
Collapse
Affiliation(s)
- Sathi Goswami
- Department of Chemistry, Indian Institute of Technology Bombay, Maharashtra, India
| | - Ritutama Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Maharashtra, India
| | - Pooja Prasanthan
- Department of Chemistry, Indian Institute of Technology Bombay, Maharashtra, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Maharashtra, India
| |
Collapse
|
14
|
Yasmeen S, Qais FA, Rana M, Islam A, Rahisuddin. Binding and thermodynamic study of thalidomide with calf thymus DNA: Spectroscopic and computational approaches. Int J Biol Macromol 2022; 207:644-655. [PMID: 35278515 DOI: 10.1016/j.ijbiomac.2022.03.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/09/2023]
Abstract
The thalidomide-DNA interactions have been investigated in detail by numerous biophysical techniques such as UV-vis, dye displacement assay, viscosity, cyclic voltammetry, circular dichroism, molecular docking, molecular dynamic simulation, FT-IR and 1H NMR spectroscopy. CD spectroscopy, thermal denaturation and viscosity measurement explained that thalidomide is groove binder. Molecular docking analysis highlighted that thalidomide binds trough minor groove of calf thymus DNA which also confirmed from dye displacement experiment. To our knowledge, this is the first instance thalidomide was shown to binds with calf thymus DNA. Molecular dynamic simulation indicated that the thalidomide-DNA system was stabilized by electrostatic attraction as the main interaction and mode of binding is minor groove. Our study provides a better understanding to the DNA-thalidomide binding affinity and it mechanism. Overall, all these in formations can be used for further understanding the pharmacological effects of thalidomide.
Collapse
Affiliation(s)
- Shama Yasmeen
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Manish Rana
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Rahisuddin
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
15
|
Naik R, Pawar S, Seetharamappa J. Elucidating the binding mechanism of a cholesterol absorption inhibitor with a serum albumin: spectroscopic, zeta potential, voltammetric and computational studies. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Parveen M, Aslam A, Siddiqui S, Tabish M, Alam M. Structure elucidation, DNA binding and molecular docking studies of natural compounds isolated from Crateva religiosa leaves. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Gan C, Cheng R, Cai K, Wang X, Xie C, Xu T, Yuan C. Interaction of calf thymus DNA and glucose-based gemini cationic surfactants with different spacer length: A spectroscopy and DLS study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120606. [PMID: 34802935 DOI: 10.1016/j.saa.2021.120606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The interactions between calf thymus DNA and a series of glucose-based cationic gemini surfactants 1a-1c with different spacer length, n = 4, 6 and 8, were studied by UV absorption, fluorescence spectroscopy, circular dichroism, FT-IR, dynamic light scattering and zeta potential measurements. The results showed that all the surfactants could interact with DNA efficiently. On addition of increasing concentration of the surfactants, UV absorption hypochromicity with insignificant blue shift were observed, until the DNA signal disappeared. The surfactant 1c was more efficient in the reduction of absorption intensity of DNA. According to the fluorescence quenching experiments by ethidium bromide exclusion, 1c exhibited the highest binding properties, with the binding constant at 3.25 × 108 L·mol-1. The spectroscopy study indicated that the surfactants bound with the DNA by a non-intercalative mode, mainly electrostatic interaction between the positively charged headgroups of the surfactants and negatively charged phosphate groups of DNA at low concentration, and the hydrophobic interaction among the alkyl chains at high concentration. The conformation of DNA during the interaction process could be kept B-form of DNA. For 1c, the DNA molecules can be compacted to about 103 nm in hydrodynamic diameter at 0.2 mM, while the minimum sizes of DNA were 140 nm and 133 nm, respectively, in the presence of 1a and 1b. The impact of the cationic gemini surfactants on the DNA compaction and condensation would shed light on their potential applications in gene delivery.
Collapse
Affiliation(s)
- Changsheng Gan
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| | - Rong Cheng
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Kunliang Cai
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Xiaonan Wang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Chenkun Xie
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Tiantian Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Chuanxun Yuan
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| |
Collapse
|
18
|
Neelakantan M, Latha V, Thalamuthu S. Polyaromatic ring containing β-diketone derivatives with antiproliferative activity toward human breast cancer cell lines: Synthesis, structure, DNA binding and molecular docking. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Cytotoxic and genotoxic evaluation of dipyridamole and its alternative therapeutic potential in cancer therapy: an in vitro and in vivo approach. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Ameen F, Siddiqui S, Jahan I, Nayeem SM, Rehman SU, Tabish M. Studying the interaction of scopolamine with calf-thymus DNA: An in-vitro and in-silico approach and genotoxicity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120391. [PMID: 34571375 DOI: 10.1016/j.saa.2021.120391] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Scopolamine is used to treat various CNS disorder like urinary incontinence, motion sickness, spasmic movements. Despite its pharmaceutical properties, its interaction with DNA is not yet reported. In this article, the interaction between scopolamine and ct-DNA is reported using a combination of biophysical techniques. UV-visible and steady-state fluorescence spectroscopy were used to study interaction and complex formation. Competitive displacement assays and potassium iodide quenching confirmed the mode of binding between scopolamine and DNA. Structural changes induced in the ct-DNA in the presence of scopolamine were evaluated by CD spectroscopy. The plasmid nicking and NBT assay confirmed the genotoxic effect of scopolamine. In-silico study by molecular docking and molecular dynamics simulation revealed the mode of interaction, major stabilizing forces as well as the nucleotide sequences to which the scopolamine binds.
Collapse
Affiliation(s)
- Faisal Ameen
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, U.P. 202002, India
| | - Sharmin Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, U.P. 202002, India
| | - Ishrat Jahan
- Department of Chemistry, Faculty of Science, A.M. University, Aligarh, U.P. 202002, India
| | - Shahid M Nayeem
- Department of Chemistry, Faculty of Science, A.M. University, Aligarh, U.P. 202002, India
| | - Sayeed Ur Rehman
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, U.P. 202002, India.
| |
Collapse
|
21
|
Hussain I, Fatima S, Ahmed S, Tabish M. Deciphering the biomolecular interaction of β-resorcylic acid with human lysozyme: A biophysical and bioinformatics outlook. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Hussain I, Fatima S, Siddiqui S, Ahmed S, Tabish M. Exploring the binding mechanism of β-resorcylic acid with calf thymus DNA: Insights from multi-spectroscopic, thermodynamic and bioinformatics approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119952. [PMID: 34052761 DOI: 10.1016/j.saa.2021.119952] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
β-resorcylic acid (BR) is a phytochemical which is widely used in the food industry as a flavouring agent and preservative. It has also been found to exhibit antibacterial action against several types of food-borne bacteria. DNA is the main molecular target for many small molecules of therapeutic importance. Hence, the interest is rapidly growing among the researchers to elucidate the interaction between small molecules and DNA. Thus, paving the way to design novel DNA-specific drugs. In this study, an attempt was made to examine the mechanism of binding of BR with calf thymus DNA (ctDNA) with the help of various experiments based on spectroscopy and in silico studies. The spectroscopic studies like UV absorption and fluorescence affirmed the complex formation between BR and ctDNA. The observed binding constant was in the order of 103 M-1 which is indicative of the groove binding mechanism. These findings were further verified by dye-displacement assay, potassium iodide quenching, urea denaturation assay, the study of the effect of ssDNA, circular dichroism and DNA thermal denaturing studies. Different temperature-based fluorescence and isothermal titration calorimetry (ITC) experiments were employed to evaluate thermodynamic parameters. The analysis of thermodynamic parameters supports the enthalpically driven, exothermic and spontaneous nature of the reaction between BR and ctDNA. The forces involved in the binding process were mainly found to be hydrogen bonding, van der Waals and hydrophobic interactions. The results obtained from the molecular docking and molecular dynamics (MD) simulation were consistent with the in vitro experiments, which support the groove binding mode of BR with ctDNA.
Collapse
Affiliation(s)
- Irfan Hussain
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, U.P. 202002, India
| | - Sana Fatima
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, U.P. 202002, India
| | - Sharmin Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, U.P. 202002, India
| | - Shahbaz Ahmed
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, U.P. 202002, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, U.P. 202002, India.
| |
Collapse
|
23
|
Chakraborty A, Ghosh R, Biswas A. Interaction of constituents of MDT regimen for leprosy with Mycobacterium leprae HSP18: impact on its structure and function. FEBS J 2021; 289:832-853. [PMID: 34555271 DOI: 10.1111/febs.16212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022]
Abstract
Mycobacterium leprae, the causative organism of leprosy, harbors many antigenic proteins, and one such protein is the 18-kDa antigen. This protein belongs to the small heat shock protein family and is commonly known as HSP18. Its chaperone function plays an important role in the growth and survival of M. leprae inside infected hosts. HSP18/18-kDa antigen is often used as a diagnostic marker for determining the efficacy of multidrug therapy (MDT) in leprosy. However, whether MDT drugs (dapsone, clofazimine, and rifampicin) do interact with HSP18 and how these interactions affect its structure and chaperone function is still unclear. Here, we report evidence of HSP18-dapsone/clofazimine/rifampicin interaction and its impact on the structure and chaperone function of HSP18. These three drugs interact efficiently with HSP18 (having submicromolar binding affinity) with 1 : 1 stoichiometry. Binding of these MDT drugs to the 'α-crystallin domain' of HSP18 alters its secondary structure and tryptophan micro-environment. Furthermore, surface hydrophobicity, oligomeric size, and thermostability of the protein are reduced upon interaction with these three drugs. Eventually, all these structural alterations synergistically decrease the chaperone function of HSP18. Interestingly, the effect of rifampicin on the structure, stability, and chaperone function of this mycobacterial small heat shock protein is more pronounced than the other two MDT drugs. This reduction in the chaperone function of HSP18 may additionally abate M. leprae survivability during multidrug treatment. Altogether, this study provides a possible foundation for rational designing and development of suitable HSP18 inhibitors in the context of effective treatment of leprosy.
Collapse
Affiliation(s)
- Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, India
| | - Rajesh Ghosh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, India
| |
Collapse
|
24
|
Fu L, Liu G, Zhao D, Yuan L, Lu K. Interaction of two peptide drugs with biomacromolecules analyzed by molecular docking and multi-spectroscopic methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119673. [PMID: 33751958 DOI: 10.1016/j.saa.2021.119673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/08/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Peptide drugs, which are mainly used for the treatment of AIDS, myeloma, and breast cancer, have evolved rapidly owing to their high efficacy and low side effects. The interaction mechanisms of two peptide drugs with two biological macromolecules (protein and DNA), which are of great significance in disease prevention and drug design, were investigated using molecular docking, fluorescence spectroscopy, circular dichroism (CD) spectroscopy, UV-visible spectroscopy and viscosity measurements. The interaction between a series of common drugs and ovalbumin (OVA) was simulated by molecular docking, and two peptide drugs with the highest energy values, namely atazanavir and carfilzomib, were selected; the binding energy values of these drugs with OVA were -59.20 and -55.93 kcal/mol, respectively. The Kb values of the interaction of the two drugs with OVA/DNA were in the range of 104-107 M-1, and the binding affinity of the drugs was stronger with OVA than with DNA. Hydrogen bonds and van der Waals forces were very important for the binding between drugs and OVA through molecular docking studies, and it was consistent with experimental results (ΔH < 0, ΔH < 0). The synchronous fluorescence spectrum showed that the interaction caused a change to the original structure of OVA, and atazanavir had a greater effect on OVA than carfilzomib. CD spectrum analysis also demonstrated that the conformation of OVA changed slightly. The interaction between atazanavir and DNA was mainly driven by hydrophobic forces (ΔH > 0 and ΔH > 0), whereas the major interaction forces involved in the binding of carfilzomib with DNA were hydrogen bonds and van der Waals forces. DNA melting studies, UV-visible spectroscopy, CD spectroscopy and viscosity measurements established that the interaction between the drugs and DNA was groove binding.
Collapse
Affiliation(s)
- Linna Fu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China; School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou 450044, China
| | - Guangbin Liu
- Chemical College, Zhengzhou University, Zhengzhou 450001, China
| | - Dongxin Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Libo Yuan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Kui Lu
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou 450044, China.
| |
Collapse
|
25
|
Wang R, Li J, Niu DB, Xu FY, Zeng XA. Protective effect of baicalein on DNA oxidative damage and its binding mechanism with DNA: An in vitro and molecular docking study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119605. [PMID: 33667888 DOI: 10.1016/j.saa.2021.119605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
In this work, the protective effect of baicalein on DNA oxidative damage and its possible protection mechanisms were investigated. 2-thiobarbituric acid (TBA) colorimetry and agarose gel electrophoresis study found that baicalein protected the deoxyribose residue and double-stranded backbone of DNA from the damage of hydroxyl radicals. Antioxidant analysis results showed that baicalein has excellent radicals scavenging effects and Fe2+ chelating ability, which might be the mechanism of baicalein protecting DNA. DNA binding studies indicated that baicalein bound to the minor groove of DNA with moderate binding affinity (K = (7.35 ± 0.91) × 103 M-1). Hydrogen bonding and van der Waals forces played a major role in driving the binding process. Molecular docking further confirmed the experimental results. This binding could stabilize DNA double helix structure, thereby protecting DNA from oxidative damage. This study may provide theoretical basis for designing new functional foods of baicalein for DNA damage protection.
Collapse
Affiliation(s)
- Rui Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Jian Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - De-Bao Niu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Fei-Yue Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| |
Collapse
|
26
|
Farsad SA, Haghaei H, Shaban M, Zakariazadeh M, Soltani S. Investigations of the molecular mechanism of diltiazem binding to human serum albumin in the presence of metal ions, glucose and urea. J Biomol Struct Dyn 2021; 40:6868-6879. [PMID: 33666142 DOI: 10.1080/07391102.2021.1891137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The molecular mechanism and thermodynamic properties of the interaction between diltiazem (DTZ) and human serum albumin (HSA), has been studied in vitro using spectroscopic techniques (UV-Vis, fluorescence, FTIR), and molecular docking methods. The effect of acidic and basic pH, glucose, urea, and metal ions on the DTZ-HSA binding has been investigated as well. According to the results, there is a 1:1 interaction between DTZ and HSA, while the quenching mechanism is static up to 313 K. The apparent binding constant was 2.09 × 106 M-1 that indicates a strong binding between DTZ and HSA. DTZ binding was increased in acidic pH while its binding was slowly decreased in the presence of glucose, urea, and metal ions. Thermodynamic studies showed that DTZ binds to HSA via an exothermic and spontaneous reaction via hydrogen bonding and electrostatic interactions. The conformational alteration of HSA is obvious according to the FTIR study. The site marker competitive study confirmed the binding of DTZ to the warfarin binding site. Molecular docking studies showed that DTZ binds to subdomain IB (-9.22 kcal mol-1) and subdomain IIIA (-9.03 kcal mol-1) with a higher tendency. Also, the results showed that the oxygen and nitrogen atoms of hydroxyl and amino functional groups of DTZ facilitate hydrogen bond formation. HighlightsStrong binding of diltiazem to HSA was studied and confirmed by fluorescence quenching titrations.Diltiazem binding to HSA reduces in the presence of metal ions, glucose, urea and alkaline pH.Diltiazem binding to HSA is exothermic and spontaneous.
Collapse
Affiliation(s)
- Sara Asadi Farsad
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Haghaei
- Nutrition and Food Sciences Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Shaban
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Zakariazadeh
- Department of Biochemistry, Faculty of Sciences, Payame Noor University, Tehran, Iran
| | - Somaieh Soltani
- Drug Applied Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Zhu M, Hu X, Zhang Y, Pan J, Zhang G. Revealing the groove binding characteristics of plant growth regulator 3-indoleacetic acid with calf thymus DNA. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
28
|
Alves JEF, de Oliveira JF, de Lima Souza TRC, de Moura RO, de Carvalho Júnior LB, Alves de Lima MDC, de Almeida SMV. Novel indole-thiazole and indole-thiazolidinone derivatives as DNA groove binders. Int J Biol Macromol 2021; 170:622-635. [PMID: 33359805 DOI: 10.1016/j.ijbiomac.2020.12.153] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022]
Abstract
In this study, we report the synthesis of eight novel indole-thiazole and indole-thiazolidinone derivatives, as well as their ability to interact with DNA, analysed through the UV-vis absorption, fluorescence, circular dichroism (CD), viscosity techniques and molecular docking. The ctDNA interaction analysis demonstrated different spectroscopic effects and the affinity constants (Kb) calculated by the UV-vis absorption method were between 2.08 × 105 and 6.99 × 106 M-1, whereas in the fluorescence suppression constants (Ksv) ranged between 0.38 and 0.77 × 104 M-1 and 0.60-7.59 × 104 M-1 using Ethidium Bromide (EB) and 4',6-Diamidino-2-phenylindole (DAPI) as fluorescent probes, respectively. Most derivatives did not alter significantly the secondary structure of the ctDNA according to the CD results. None of the compounds was able to change the relative viscosity of the ctDNA. These results prove that compounds interact with ctDNA via groove binding, which was confirmed by A-T rich oligonucleotide sequence assay with compound JF-252, suggesting the importance of both the phenyl ring coupled to C-4 thiazole ring and the bromo-unsubstituted indole nucleus.
Collapse
Affiliation(s)
| | | | | | - Ricardo Olímpio de Moura
- Departamento de Ciências Farmacêuticas, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba e Bodocongo, Campina Grande, PB 58429-500, Brazil
| | | | - Maria do Carmo Alves de Lima
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, 50670-901, Brazil
| | - Sinara Mônica Vitalino de Almeida
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, 50670-901, Brazil; Laboratório de Biologia Molecular, Universidade de Pernambuco (UPE), Multicampi Garanhuns, Garanhuns, PE 55290-000, Brazil.
| |
Collapse
|
29
|
Dindar ÇK, Erkmen C, Yıldırım S, Bozal-Palabiyik B, Uslu B. Interaction of citalopram and escitalopram with calf Thymus DNA: A spectrofluorometric, voltammetric, and liquid chromatographic approach. J Pharm Biomed Anal 2021; 195:113891. [PMID: 33422834 DOI: 10.1016/j.jpba.2021.113891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022]
Abstract
Citalopram (CIT) and its S-enantiomer, escitalopram (ESC), are antidepressants belonging to the class called selective serotonin reuptake inhibitors and have many different pharmacological and biological properties. Understanding the interaction mechanism of small drug molecules with DNA both helps in the development of new DNA-targeted drugs and provides more in-depth knowledge for controlling gene expression. In this study, the interaction of CIT and ESC with double-stranded calf thymus DNA (ct-dsDNA) was investigated for the first time. Spectrofluorometric, liquid chromatographic, and voltammetric response profiles of drugs and ct-dsDNA at different concentrations showed DNA-drug complex formation. Calculated binding constants were greater with all three techniques for ESC compared to CIT and were of the order of 103-104, which is in accordance with those of well-known groove binders. The results also showed the significant effect of chirality on complex formation. The thermodynamic parameters, including free energy change (ΔG < 0) and enthalpy change (ΔH < 0) obtained at different temperatures, indicated that complex formation was mainly driven by hydrogen bonding and van der Waals forces for both drugs. The results of this study may enhance the understanding of the interaction between CIT or ESC and ct-dsDNA and can be considered as the pioneer for future studies to uncover possible hidden phenotypes of these compounds.
Collapse
Affiliation(s)
- Çiğdem Kanbeş Dindar
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | - Cem Erkmen
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | - Sercan Yıldırım
- Karadeniz Technical University, Faculty of Pharmacy, Department of Analytical Chemistry, 61080, Trabzon, Turkey
| | - Burcin Bozal-Palabiyik
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | - Bengi Uslu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| |
Collapse
|
30
|
Kumar CBP, Raghu MS, Prasad KNN, Chandrasekhar S, Jayanna BK, Alharthi FA, Prashanth MK, Kumar KY. Investigation of biological activity of 2,3-disubstituted quinazolin-4(1H)-ones against Mycobacterium tuberculosis and DNA via docking, spectroscopy and DFT studies. NEW J CHEM 2021. [DOI: 10.1039/d0nj03800h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Docking studies, structural data of DNA binding and molecular dynamics simulations of substituted quinazolin-4(1H)-ones.
Collapse
Affiliation(s)
| | - M. S. Raghu
- Department of Chemistry
- New Horizon College of Engineering
- Bengaluru 560 103
- India
| | - K. N. N. Prasad
- Department of Physics
- B N M Institute of Technology
- Bengaluru-560 070
- India
| | - S. Chandrasekhar
- Department of Physics
- B N M Institute of Technology
- Bengaluru-560 070
- India
| | - B. K. Jayanna
- Department of Chemistry
- B N M Institute of Technology
- Bengaluru-560 070
- India
| | - Fahad A. Alharthi
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh
- Saudi Arabia
| | - M. K. Prashanth
- Department of Chemistry
- B N M Institute of Technology
- Bengaluru-560 070
- India
| | - K. Yogesh Kumar
- Department of Chemistry
- School of Engineering and Technology
- Jain University
- Ramanagara
- India
| |
Collapse
|
31
|
Raghu MS, Pradeep Kumar CB, Prashanth MK, Yogesh Kumar K, Prathibha BS, Kanthimathi G, Alissa SA, Alghulikah HA, Osman SM. Novel 1,3,5-triazine-based pyrazole derivatives as potential antitumor agents and EFGR kinase inhibitors: synthesis, cytotoxicity, DNA binding, molecular docking and DFT studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj02419a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of new 1,3,5-triazine-based pyrazole derivatives as effective anticancer agents.
Collapse
Affiliation(s)
- M. S. Raghu
- Department of Chemistry, New Horizon College of Engineering
- Bengaluru 560 103
- India
| | | | - M. K. Prashanth
- Department of Chemistry, B N M Institute of Technology
- Bengaluru 560 070
- India
| | - K. Yogesh Kumar
- Department of Chemistry, School of Engineering and Technology, Jain University
- Ramanagara
- India
| | - B. S. Prathibha
- Department of Chemistry, B N M Institute of Technology
- Bengaluru 560 070
- India
| | - G. Kanthimathi
- Department of Chemistry, Ramco Institute of Technology
- Rajapalayam
- India
| | - Siham Abdulrahman Alissa
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University
- Riyadh 11671
- Saudi Arabia
| | - Hanan Abdulrahman Alghulikah
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University
- Riyadh 11671
- Saudi Arabia
| | - Sameh M. Osman
- Department of Chemistry, College of Science, King Saud University
- Riyadh
- Saudi Arabia
| |
Collapse
|
32
|
Sharifinia S, Hajibabaei F, Salehzadeh S, Hosseinpour Moghadam N, Khazalpour S. Probing the Strength and Mechanism of Binding Between Amifampridine and Calf Thymus DNA. DNA Cell Biol 2020; 39:2134-2142. [PMID: 33090906 DOI: 10.1089/dna.2020.5618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this work, we have investigated the strength and mechanism of amifampridine (3,4-Diaminopyridine/3,4-DAP) interaction with calf thymus DNA (ct-DNA). The existence and the strength of interaction are evaluated using circular dichroism (CD), UV-vis absorption, and differential pulse voltammogram studies. Results from UV-vis absorption technique indicate that amifampridine can significantly interact with DNA through a binding constant of Kb = 1.66 × 105 M-1 at 298 K. The mechanism of the interaction between amifampridine and DNA is also studied using ionic effect investigations, competitive fluorescence experiments, viscosity measurements, and molecular docking studies. The viscosity results indicate that amifampridine can bind to DNA via intercalation binding mode. Competitive fluorescence experiments using Acridine Orange (AO) and Hoechst 33258 (HO) probes also reveal that amifampridine binds to DNA via an intercalation mode of binding. Finally, the molecular docking studies also suggest that amifampridine tends to bind with the G-C rich region of DNA.
Collapse
|
33
|
Ameen F, Siddiqui S, Kausar T, Nayeem SM, Sarwar T, Rizvi MMA, Rehman SU, Tabish M. Interaction of memantine with calf thymus DNA: an in-vitro and in-silico approach and cytotoxic effect on the cancerous cell lines. J Biomol Struct Dyn 2020; 40:1216-1229. [DOI: 10.1080/07391102.2020.1823886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Faisal Ameen
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, India
| | - Sharmin Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, India
| | - Tasneem Kausar
- Department of Chemistry, Faculty of Science, A.M. University, Aligarh, India
| | - Shahid M. Nayeem
- Department of Chemistry, Faculty of Science, A.M. University, Aligarh, India
| | - Tarique Sarwar
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | - Sayeed ur Rehman
- Department of Biochemistry, School of Chemical and Life Sciences, New Delhi, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, India
| |
Collapse
|
34
|
Jameel M, Jamal K, Alam MF, Ameen F, Younus H, Siddique HR. Interaction of thiamethoxam with DNA: Hazardous effect on biochemical and biological parameters of the exposed organism. CHEMOSPHERE 2020; 254:126875. [PMID: 32361544 DOI: 10.1016/j.chemosphere.2020.126875] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
In the present scenario, insecticides/pesticides are used intensively to control the various insect pests. Indiscriminate use of these insecticides/pesticides affects the structure and function of the ecosystem. In this context, a thorough toxicological study of each insecticide/pesticide is a must to understand the hazardous effect of these chemicals on the target and non-target organisms. The present study was aimed to understand the hazardous effect of thiamethoxam against the Spodoptera litura. Different concentrations (20-80 μg/mL) of thiamethoxam were prepared, and fourth instar larvae of S. litura were allowed to feed for 12-72 h. We first examined the interaction of thiamethoxam with DNA. Next, treated and non-treated larvae were assessed for different biological parameters such as mortality, emergence, fecundity, fertility, longevities, and biochemical parameters. Our result showed that thiamethoxam directly interacts with the DNA and significantly influenced the different biological and biochemical parameters of exposed the organisms. We observed a significant change in stress enzymes such as SOD, CAT, and GST. A similar observation was also made with the oxidative marker for lipid damage, MDA and DNA damage, 8-OHdG, respectively. In conclusion, our results suggest that improper use of synthetic chemical insecticides influenced both biological and biochemical parameters through oxidative stress and probably damage the genetic material.
Collapse
Affiliation(s)
- Mohd Jameel
- Department of Zoology, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Khowaja Jamal
- Department of Zoology, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| | - Md Fazle Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Faisal Ameen
- Department of Biochemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Hifzur R Siddique
- Department of Zoology, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| |
Collapse
|
35
|
Wani TA, Alsaif N, Bakheit AH, Zargar S, Al-Mehizia AA, Khan AA. Interaction of an abiraterone with calf thymus DNA: Investigation with spectroscopic technique and modelling studies. Bioorg Chem 2020; 100:103957. [DOI: 10.1016/j.bioorg.2020.103957] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 01/11/2023]
|
36
|
Wang R, Li N, Hu X, Pan J, Zhang G, Zeng X, Gong D. Characterizing the binding of tert-butylhydroquinone and its oxidation product tert-butylquinone with calf thymus DNA in vitro. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Khan S, Ahmad R, Naseem I. Elucidating the interaction of aminophylline with calf thymus DNA using multispectroscopic and molecular docking approach. J Biomol Struct Dyn 2020; 39:970-976. [PMID: 31994973 DOI: 10.1080/07391102.2020.1722240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aminophylline (Am) is a methylxanthine compound clinically applied for chronic lung diseases like asthma, bronchitis or emphysema. Chemically, it comprises theophylline and ethylenediamine in a ratio 2:1. For the widening of the therapeutic window of any class of drug or for the designing of the newer therapeutic compound, an insight into the binding mechanics of available drugs with DNA is quite imperative. In view of that, here in this study we have investigated binding mechanics of aminophylline molecule with calf thymus DNA (Ct-DNA) using various spectroscopic techniques as well as molecular docking approach. Spectral analysis employing UV-visible and fluorescence approach confirmed the formation of aminophylline-Ct-DNA complex. The binding constant was calculated as 3.5 × 104 M-1 with 0.90 as the value of binding site suggestive of minor groove binding mode of aminophylline. The groove binding mode was further confirmed through spectrofluorimetric experiments like competitive displacement assay employing ethidium bromide, hoechst and rhodamine 6 G dyes as well as iodide quenching studies. The circular dichroic spectral evaluation and molecular docking study finally validated the minor groove binding mode of aminophylline with binding energy calculated as -4.5 Kcal/mol.
Collapse
Affiliation(s)
- Saniyya Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Rizwan Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Imrana Naseem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
38
|
Siddiqui S, Mujeeb A, Ameen F, Ishqi HM, Rehman SU, Tabish M. Investigating the mechanism of binding of nalidixic acid with deoxyribonucleic acid and serum albumin: a biophysical and molecular docking approaches. J Biomol Struct Dyn 2020; 39:570-585. [PMID: 31910794 DOI: 10.1080/07391102.2020.1711808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nalidixic acid is a bacterial DNA gyrase inhibitor and the first member of the synthetic quinolone antibiotics. It is used in the treatment of various infectious diseases like urinary tract infections, respiratory infections, sexually transmitted diseases, acute bronchitis, and sinusitis. Interactions studies are of great significance as it will be beneficial for designing new therapeutic molecules with preferable plasma solubility and its efficacy. In this paper, we have aim to ascertain the binding mode of nalidixic acid with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) through various biophysical and in silico method. UV-visible absorption and fluorescence spectroscopic experiments confirmed the formation of a complex between nalidixic acid with ct-DNA. The binding constant is in the range of 103 M-1, indicating the groove binding mode between ct-DNA and nalidixic acid. Groove binding mode was also validated by competitive displacement assay, potassium iodide quenching experiment, circular dichroism, DNA melting studies. In the case of BSA, UV-visible absorption and fluorescence spectroscopic experiments confirmed the formation of a complex between nalidixic acid with BSA. The value of a binding constant in the case of BSA was found to be 1.517 × 105 M-1. The site marker displacement experiment revealed the binding location of nalidixic acid to a site I in BSA. Secondary structural and microenvironmental changes also studied through circular dichroism and three-dimensional fluorescence. Furthermore, the synchronous fluorescence spectra of BSA with nalidixic acid showed that there were changes in the microenvironment around tryptophan residues. In silico molecular docking further confirmed the binding of nalidixic acid to site I in BSA and the minor groove of DNA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sharmin Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, India
| | - Anam Mujeeb
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, India
| | - Faisal Ameen
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, India
| | - Hassan Mubarak Ishqi
- Molecular Genetics Laboratory, National Institute of Immunology, New Delhi, India
| | | | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, India
| |
Collapse
|
39
|
Kou SB, Lou YY, Zhou KL, Wang BL, Lin ZY, Shi JH. In vitro exploration of interaction behavior between calf thymus DNA and fenhexamid with the help of multi-spectroscopic methods and molecular dynamics simulations. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.112067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Roque Marques KM, do Desterro MR, de Arruda SM, de Araújo Neto LN, do Carmo Alves de Lima M, de Almeida SMV, da Silva ECD, de Aquino TM, da Silva-Júnior EF, de Araújo-Júnior JX, de M Silva M, de A Dantas MD, Santos JCC, Figueiredo IM, Bazin MA, Marchand P, da Silva TG, Mendonça Junior FJB. 5-Nitro-Thiophene-Thiosemicarbazone Derivatives Present Antitumor Activity Mediated by Apoptosis and DNA Intercalation. Curr Top Med Chem 2019; 19:1075-1091. [PMID: 31223089 DOI: 10.2174/1568026619666190621120304] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Considering the need for the development of new antitumor drugs, associated with the great antitumor potential of thiophene and thiosemicarbazonic derivatives, in this work we promote molecular hybridization approach to synthesize new compounds with increased anticancer activity. OBJECTIVE Investigate the antitumor activity and their likely mechanisms of action of a series of N-substituted 2-(5-nitro-thiophene)-thiosemicarbazone derivatives. METHODS Methods were performed in vitro (cytotoxicity, cell cycle progression, morphological analysis, mitochondrial membrane potential evaluation and topoisomerase assay), spectroscopic (DNA interaction studies), and in silico studies (docking and molecular modelling). RESULTS Most of the compounds presented significant inhibitory activity; the NCIH-292 cell line was the most resistant, and the HL-60 cell line was the most sensitive. The most promising compound was LNN-05 with IC50 values ranging from 0.5 to 1.9 µg.mL-1. The in vitro studies revealed that LNN-05 was able to depolarize (dose-dependently) the mitochondrial membrane, induceG1 phase cell cycle arrest noticeably, promote morphological cell changes associated with apoptosis in chronic human myelocytic leukaemia (K-562) cells, and presented no topoisomerase II inhibition. Spectroscopic UV-vis and molecular fluorescence studies showed that LNN compounds interact with ctDNA forming supramolecular complexes. Intercalation between nitrogenous bases was revealed through KI quenching and competitive ethidium bromide assays. Docking and Molecular Dynamics suggested that 5-nitro-thiophene-thiosemicarbazone compounds interact against the larger DNA groove, and corroborating the spectroscopic results, may assume an intercalating interaction mode. CONCLUSION Our findings highlight 5-nitro-thiophene-thiosemicarbazone derivatives, especially LNN-05, as a promising new class of compounds for further studies to provide new anticancer therapies.
Collapse
Affiliation(s)
- Karla Mirella Roque Marques
- Bioactive Products Prospecting Laboratory, Department of Antibiotics, Federal University of Pernambuco, Recife-PE, Brazil
| | - Maria Rodrigues do Desterro
- Bioactive Products Prospecting Laboratory, Department of Antibiotics, Federal University of Pernambuco, Recife-PE, Brazil
| | - Sandrine Maria de Arruda
- Bioactive Products Prospecting Laboratory, Department of Antibiotics, Federal University of Pernambuco, Recife-PE, Brazil
| | - Luiz Nascimento de Araújo Neto
- Laboratory of Chemistry and Therapeutic Innovation, Department of Antibiotics, Federal University of Pernambuco, Recife-PE, Brazil
| | - Maria do Carmo Alves de Lima
- Laboratory of Chemistry and Therapeutic Innovation, Department of Antibiotics, Federal University of Pernambuco, Recife-PE, Brazil
| | | | - Edjan Carlos Dantas da Silva
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio-AL, Brazil
| | - Thiago Mendonça de Aquino
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio-AL, Brazil
| | | | - João Xavier de Araújo-Júnior
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio-AL, Brazil
| | - Marina de M Silva
- Laboratory of Development and Instrumentation in Analytical Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio-AL, Brazil
| | - Maria Dayanne de A Dantas
- Laboratory of Development and Instrumentation in Analytical Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio-AL, Brazil
| | - Josué Carinhanha C Santos
- Laboratory of Development and Instrumentation in Analytical Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio-AL, Brazil
| | - Isis M Figueiredo
- Laboratory of Development and Instrumentation in Analytical Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio-AL, Brazil
| | - Marc-Antoine Bazin
- Universite de Nantes, Cibles et medicaments des infections et du cancer, IICiMed, EA1155, F-44000 Nantes, France
| | - Pascal Marchand
- Universite de Nantes, Cibles et medicaments des infections et du cancer, IICiMed, EA1155, F-44000 Nantes, France
| | - Teresinha Gonçalves da Silva
- Bioactive Products Prospecting Laboratory, Department of Antibiotics, Federal University of Pernambuco, Recife-PE, Brazil
| | | |
Collapse
|
41
|
Synthesis, characterization, anti-proliferative properties and DNA binding of benzochromene derivatives: Increased Bax/Bcl-2 ratio and caspase-dependent apoptosis in colorectal cancer cell line. Bioorg Chem 2019; 93:103329. [PMID: 31590040 DOI: 10.1016/j.bioorg.2019.103329] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/19/2019] [Accepted: 09/28/2019] [Indexed: 01/13/2023]
Abstract
3-Amino-1-aryl-1H-benzo[f]chromene-2-carbonitrile derivatives were synthesized from three-component reaction of arylaldehyde, malononitrile and 2-naphthol in the presence of 1, 4-bis(4-ferrocenylbutyl)piperazine as a new catalyst. Cytotoxic potencies of the compounds were tested on HT-29 cells. 3-Amino-1-(4-fluorophenyl)-1H-benzo[f]chromene-2-carbonitrile (4c) was more active among these compounds and was selected for further studies. Apoptosis was investigated by acridine orange/ethidium bromide (AO/EtBr) double staining and flow cytometry. The qRT-PCR was used to analyze the expression of pro- and anti-apoptotic genes. The binding attributes of 4c with calf thymus DNA (ctDNA) was examined using multi-spectroscopic measurements. We found that 4c had potent cytotoxic activity against HT-29 cells with an IC50 value of 60 µM through induction of cell cycle arrest in the sub-G1 phase and apoptosis. RT-PCR analysis demonstrated down-regulation of Bcl-2 expression, while the expression of Bax, caspase-3, -8 and -9 genes was up-regulated in HT-29 cells incubated with 4c compared with control cells. These studies revealed that 4c interacts with DNA through groove binding mode with the intrinsic binding constant (Kb) of 3 × 102 M-1. Thus, 4c is a valuable candidate for further evaluation as a new series of potent chemotherapeutic family in colon cancer treatment.
Collapse
|
42
|
Shahabadi N, Abbasi AR, Moshtkob A, Hadidi S. Design, synthesis and DNA interaction studies of new fluorescent platinum complex containing anti-HIV drug didanosine. J Biomol Struct Dyn 2019; 38:2837-2848. [DOI: 10.1080/07391102.2019.1658643] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Reza Abbasi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Institute of Nano Science and Nano Technology, Razi University, Kermanshah, Iran
| | - Ayda Moshtkob
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Saba Hadidi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
43
|
Topkaya SN, Cetin AE. Determination of Electrochemical Interaction between 2‐(1H‐benzimidazol‐2‐yl) Phenol and DNA Sequences. ELECTROANAL 2019. [DOI: 10.1002/elan.201900199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Seda Nur Topkaya
- Department of Analytical Chemistry, Faculty of PharmacyIzmir Katip Celebi University 35620, Cigli Izmir TURKEY
| | | |
Collapse
|
44
|
Aramesh-Boroujeni Z, Jahani S, Khorasani-Motlagh M, Kerman K, Noroozifar M. Evaluation of DNA, BSA binding, DNA cleavage and antimicrobial activity of ytterbium(III) complex containing 2,2'-bipyridine ligand. J Biomol Struct Dyn 2019; 38:1711-1725. [DOI: 10.1080/07391102.2019.1617788] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zahra Aramesh-Boroujeni
- Department of Clinical Laboratory, AlZahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Shohreh Jahani
- Nano Bioeletrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | | | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Meissam Noroozifar
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Farooqi SI, Arshad N, Perveen F, Channar PA, Saeed A, Javed A. Aroylthiourea derivatives of ciprofloxacin drug as DNA binder: Theoretical, spectroscopic and electrochemical studies along with cytotoxicity assessment. Arch Biochem Biophys 2019; 666:83-98. [DOI: 10.1016/j.abb.2019.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/18/2019] [Accepted: 03/31/2019] [Indexed: 11/26/2022]
|
46
|
Wang R, Hu X, Pan J, Zhang G, Gong D. Interaction of isoeugenol with calf thymus DNA and its protective effect on DNA oxidative damage. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Chakraborty A, Panda AK, Ghosh R, Roy I, Biswas A. Depicting the DNA binding and photo-nuclease ability of anti-mycobacterial drug rifampicin: A biophysical and molecular docking perspective. Int J Biol Macromol 2019; 127:187-196. [DOI: 10.1016/j.ijbiomac.2019.01.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/25/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
|
48
|
Chakraborty A, Panda AK, Ghosh R, Biswas A. DNA minor groove binding of a well known anti-mycobacterial drug dapsone: A spectroscopic, viscometric and molecular docking study. Arch Biochem Biophys 2019; 665:107-113. [PMID: 30851241 DOI: 10.1016/j.abb.2019.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/18/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
Dapsone is a sulfone drug mainly used as anti-microbial and anti-inflammatory agent for the treatment of various diseases including leprosy. Recently, its interaction with protein (bovine serum albumin) is evidenced. But, the binding propensity of this anti-mycobacterial drug towards DNA is still unknown. Also, the mode of dapsone-DNA interaction (if any) is still an unknown quantity. In this study, we have taken a thorough attempt to understand these two unknown aspects using various biophysical and in silico molecular docking techniques. Both UV-visible and fluorescence titrimetric studies indicated that dapsone binds to CT-DNA with a binding constant in order of 104 M-1. Circular dichroism, thermal denaturation and viscosity experiments revealed that dapsone binds to the grooves of CT-DNA. Competitive DNA binding studies clearly indicated the minor groove binding property of this anti-mycobacterial drug. Molecular docking provided detailed information about the formation of hydrogen bonding in the dapsone-DNA complex. This in silico study further revealed that dapsone binds to the AT-rich region of the minor groove of DNA having a relative binding energy of -6.22 kcal mol-1. Overall, all these findings evolved from this study can be used for better understanding the medicinal importance of dapsone.
Collapse
Affiliation(s)
- Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Alok Kumar Panda
- School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar, 751024, Odisha, India
| | - Rajesh Ghosh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
| |
Collapse
|
49
|
Shi JH, Lou YY, Zhou KL, Pan DQ. Exploration of intermolecular interaction of calf thymus DNA with sulfosulfuron using multi-spectroscopic and molecular docking techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:209-216. [PMID: 29935392 DOI: 10.1016/j.saa.2018.06.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/21/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
As a sulfonylurea herbicide, sulfosulfuron is extensively applied in controlling broad-leaves and weeds in agriculture. It may cause a potential risk for human and herbivores health due to its widely application and residue in crops and fruits. The study of the binding characteristics of calf thymus DNA (ct-DNA) with sulfosulfuron was performed through a series of spectroscopic techniques and computer simulation. The experimental results showed sulfosulfuron interacted with ct-DNA through the groove binding. The negative values of thermodynamic parameter (ΔH0, ΔS0 and ΔG0) revealed that the reaction of sulfosulfuron with DNA could proceed spontaneously, and the hydrogen bonding and van der Waals forces were essential to sulfosulfuron-ct-DNA binding, which was further verified by molecular docking study. Meanwhile, the electrostatic and hydrophobic interactions also played a supporting function for the interaction of sulfosulfuron with ct-DNA. The circular dichroism (CD) results exhibited a minor change in the secondary structure of ct-DNA during interaction process. Moreover, the conformation of sulfosulfuron had the obvious change after binding to DNA, which suggested that the flexibility of sulfosulfuron contributed to stabilizing the sulfosulfuron-ct-DNA complex.
Collapse
Affiliation(s)
- Jie-Hua Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Yan-Yue Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Kai-Li Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dong-Qi Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
50
|
Al Qumaizi KI, Anwer R, Ahmad N, Alosaimi SM, Fatma T. Study on the interaction of antidiabetic drug Pioglitazone with calf thymus DNA using spectroscopic techniques. J Mol Recognit 2018; 31:e2735. [DOI: 10.1002/jmr.2735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Khalid I. Al Qumaizi
- Department of Family Medicine, College of Medicine; Al Imam Mohammad Ibn Saud Islamic University (IMSIU); Riyadh Kingdom of Saudi Arabia
| | - Razique Anwer
- Department of Biomedical Sciences, College of Medicine; Al Imam Mohammad Ibn Saud Islamic University (IMSIU); Riyadh Kingdom of Saudi Arabia
| | - Nazia Ahmad
- Department of Biosciences; Jamia Millia Islamia (Central University); New Delhi India
| | - Saleh M. Alosaimi
- Department of Family Medicine, College of Medicine; King Saud bin Abdulaziz University for Health Sciences (KSAU-HS); Riyadh Kingdom of Saudi Arabia
| | - Tasneem Fatma
- Department of Biosciences; Jamia Millia Islamia (Central University); New Delhi India
| |
Collapse
|