1
|
Mauger M, Makarchuk I, Molter Y, Sansone A, Melin F, Chaignon P, Schaeffer P, Adam P, Schünemann V, Hellwig P, Ferreri C, Chatgilialoglu C, Seemann M. Towards Bacterial Resistance via the Membrane Strategy: Enzymatic, Biophysical and Biomimetic Studies of the Lipid cis-trans Isomerase of Pseudomonas aeruginosa. Chembiochem 2024:e202400844. [PMID: 39541259 DOI: 10.1002/cbic.202400844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
The lipid cis-trans isomerase (Cti) is a periplasmic heme-c enzyme found in several bacteria including Pseudomonas aeruginosa, a pathogen known for causing nosocomial infections. This metalloenzyme catalyzes the cis-trans isomerization of unsaturated fatty acids in order to rapidly modulate membrane fluidity in response to stresses that impede bacterial growth. As a consequence, breakthrough in the elucidation of the mechanism of this metalloenzyme might lead to new strategies to combat bacterial antibiotic resistance. We report the first comprehensive biochemical, electrochemical and spectroscopic characterization of a Cti enzyme. This has been possible by the successful purification of Cti from P. aeruginosa (Pa-Cti) in favorable yields with enzyme activity of 0.41 μmol/min/mg when tested with palmitoleic acid. Through a synergistic approach involving enzymology, site-directed mutagenesis, Raman spectroscopy, Mössbauer spectroscopy and electrochemistry, we identified the heme coordination and redox state, pinpointing Met163 as the sixth ligand of the FeII of heme-c in Pa-Cti. Significantly, the development of an innovative assay based on liposomes demonstrated for the first time that Cti catalyzes cis-trans isomerization directly using phospholipids as substrates without the need of protein partners, answering the important question about the substrate of Cti within the bacterial membrane.
Collapse
Affiliation(s)
- Mickaël Mauger
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg UMR 7177, Université de Strasbourg, CNRS, 67000, Strasbourg, France
| | - Iryna Makarchuk
- Laboratoire de Bioélectrochimie et Spectroscopie, Chimie de la Matière Complexe UMR 7140, Université de Strasbourg, CNRS, 67000, Strasbourg, France
| | - Yasmin Molter
- Department of Physics, University of Kaiserslautern-Landau, Erwin-Schrödinger-Str. 46, 67663, Kaiserslautern, Germany
| | - Anna Sansone
- Institute for Organic Synthesis and Photoreactivity, National Research Council, 40129, Bologna, Italy
| | - Frédéric Melin
- Laboratoire de Bioélectrochimie et Spectroscopie, Chimie de la Matière Complexe UMR 7140, Université de Strasbourg, CNRS, 67000, Strasbourg, France
| | - Philippe Chaignon
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg UMR 7177, Université de Strasbourg, CNRS, 67000, Strasbourg, France
| | - Philippe Schaeffer
- Equipe Biogéochimie Moléculaire, Institut de Chimie de Strasbourg UMR 7177, Université de Strasbourg, CNRS, 67000, Strasbourg, France
| | - Pierre Adam
- Equipe Biogéochimie Moléculaire, Institut de Chimie de Strasbourg UMR 7177, Université de Strasbourg, CNRS, 67000, Strasbourg, France
| | - Volker Schünemann
- Department of Physics, University of Kaiserslautern-Landau, Erwin-Schrödinger-Str. 46, 67663, Kaiserslautern, Germany
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, Chimie de la Matière Complexe UMR 7140, Université de Strasbourg, CNRS, 67000, Strasbourg, France
- Institut Universitaire de France (IUF), France
| | - Carla Ferreri
- Institute for Organic Synthesis and Photoreactivity, National Research Council, 40129, Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- Institute for Organic Synthesis and Photoreactivity, National Research Council, 40129, Bologna, Italy
- Center for Advanced Technologies, Adam Mickiewicz University, 61-614, Poznań, Poland
| | - Myriam Seemann
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg UMR 7177, Université de Strasbourg, CNRS, 67000, Strasbourg, France
| |
Collapse
|
2
|
Palermo JC, Colombo MC, Scocozza MF, Murgida DH, Estrin DA, Bari SE. Reduction of metmyoglobin by inorganic disulfide species. J Inorg Biochem 2023; 245:112256. [PMID: 37244768 DOI: 10.1016/j.jinorgbio.2023.112256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
The mechanism of the metal centered reduction of metmyoglobin (MbFeIII) by inorganic disulfide species has been studied by combined spectroscopic and kinetic analyses, under argon atmosphere. The process is kinetically characterized by biexponential time traces, for variable ratios of excess disulfide to protein, in the pH interval 6.6-8.0. Using UV-vis and resonance Raman spectroscopies, we observed that MbFeIII is converted into a low spin hexacoordinated ferric complex, tentatively assigned as MbFeIII(HSS-)/MbFeIII(SS2-), in an initial fast step. The complex is slowly converted into a pentacoordinated ferrous form, assigned as MbFeII according to the resonance Raman records. The reduction is a pH-dependent process, but independent of the initial disulfide concentration, suggesting the unimolecular decomposition of the intermediate complex following a reductive homolysis. We estimated the rate of the fast formation of the complex at pH 7.4 (kon = 3.7 × 103 M-1 s-1), and a pKa2 = 7.5 for the equilibrium MbFeIII(HSS-)/MbFeIII(SS2-). Also, we estimated the rate for the slow reduction at the same pH (kred = 10-2 s-1). A reaction mechanism compliant with the experimental results is proposed. This mechanistic study provides a differential kinetic signature for the reactions of disulfide compared to sulfide species on metmyoglobin, which may be considered in other hemeprotein systems.
Collapse
Affiliation(s)
- Juan Cruz Palermo
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - Melisa Carllinni Colombo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - Magalí F Scocozza
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - Daniel H Murgida
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - Darío A Estrin
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - Sara E Bari
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Scocozza M, Vieyra F, Battaglini F, Martins LO, Murgida DH. Electrochemical Actuation of a DyP Peroxidase: A Facile Method for Drastic Improvement of the Catalytic Performance. ACS Catal 2023; 13:7437-7449. [PMID: 37288089 PMCID: PMC10243304 DOI: 10.1021/acscatal.3c01530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/20/2023] [Indexed: 06/09/2023]
Abstract
Dye decolorizing peroxidases (DyP) have attracted interest for applications such as dye-containing wastewater remediation and biomass processing. So far, efforts to improve operational pH ranges, activities, and stabilities have focused on site-directed mutagenesis and directed evolution strategies. Here, we show that the performance of the DyP from Bacillus subtilis can be drastically boosted without the need for complex molecular biology procedures by simply activating the enzyme electrochemically in the absence of externally added H2O2. Under these conditions, the enzyme shows specific activities toward a variety of chemically different substrates that are significantly higher than in its canonical operation. Moreover, it presents much broader pH activity profiles with the maxima shifted toward neutral to alkaline. We also show that the enzyme can be successfully immobilized on biocompatible electrodes. When actuated electrochemically, the enzymatic electrodes have two orders of magnitude higher turnover numbers than with the standard H2O2-dependent operation and preserve about 30% of the initial electrocatalytic activity after 5 days of operation-storage cycles.
Collapse
Affiliation(s)
- Magalí
F. Scocozza
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto
de Química Física de Los Materiales, Medio Ambiente
y Energía (INQUIMAE), CONICET-Universidad
de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Francisco Vieyra
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto
de Química Física de Los Materiales, Medio Ambiente
y Energía (INQUIMAE), CONICET-Universidad
de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Fernando Battaglini
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto
de Química Física de Los Materiales, Medio Ambiente
y Energía (INQUIMAE), CONICET-Universidad
de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Ligia O. Martins
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto
de Química Física de Los Materiales, Medio Ambiente
y Energía (INQUIMAE), CONICET-Universidad
de Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
4
|
Xie H, Song L, Katz S, Zhu J, Liu Y, Tang J, Cai L, Hildebrandt P, Han XX. Electron transfer between cytochrome c and microsomal monooxygenase generates reactive oxygen species that accelerates apoptosis. Redox Biol 2022; 53:102340. [PMID: 35609401 PMCID: PMC9130584 DOI: 10.1016/j.redox.2022.102340] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/20/2022] Open
Abstract
Generation of reactive oxygen species (ROS) are possibly induced by the crosstalk between mitochondria and endoplasmic reticula, which is physiologically important in apoptosis. Cytochrome c (Cyt c) is believed to play a crucial role in such signaling pathway by interrupting the coupling within microsomal monooxygenase (MMO). In this study, the correlation of ROS production with the electron transfer between Cyt c and the MMO system is investigated by resonance Raman (RR) spectroscopy. Binding of Cyt c to MMO is found to induce the production of ROS, which is quantitatively determined by the in-situ RR spectroscopy reflecting the interactions of Cyt c with generated ROS. The amount of ROS that is produced from isolated endoplasmic reticulum depends on the redox state of the Cyt c, indicating the important role of oxidized Cyt c in accelerating apoptosis. The role of electron transfer from MMO to Cyt c in the apoptotic mitochondria-endoplasmic reticulum pathway is accordingly proposed. This study is of significance for a deeper understanding of how Cyt c regulates apoptotic pathways through the endoplasmic reticulum, and thus may provide a rational basis for the design of antitumor drugs for cancer therapy.
Collapse
Affiliation(s)
- Han Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Li Song
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, 130012, PR China
| | - Sagie Katz
- Department of Chemistry, Technische Universität Berlin, 10623, Berlin, Germany
| | - Jinyu Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yawen Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jinping Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, 130012, PR China
| | - Peter Hildebrandt
- Department of Chemistry, Technische Universität Berlin, 10623, Berlin, Germany.
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
5
|
Oviedo-Rouco S, Spedalieri C, Scocozza MF, Tomasina F, Tórtora V, Radi R, Murgida DH. Correlated electric field modulation of electron transfer parameters and the access to alternative conformations of multifunctional cytochrome c. Bioelectrochemistry 2022; 143:107956. [PMID: 34624727 DOI: 10.1016/j.bioelechem.2021.107956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022]
Abstract
Cytochrome c (Cytc) is a multifunctional protein that, in its native conformation, shuttles electrons in the mitochondrial respiratory chain. Conformational transitions that involve replacement of the heme distal ligand lead to the gain of alternative peroxidase activity, which is crucial for membrane permeabilization during apoptosis. Using a time-resolved SERR spectroelectrochemical approach, we found that the key physicochemical parameters that characterize the electron transfer (ET) canonic function and those that determine the transition to alternative conformations are strongly correlated and are modulated by local electric fields (LEF) of biologically meaningful magnitude. The electron shuttling function is optimized at moderate LEFs of around 1 V nm-1. A decrease of the LEF is detrimental for ET as it rises the reorganization energy. Moreover, LEF values below and above the optimal for ET favor alternative conformations with peroxidase activity and downshifted reduction potentials. The underlying proposed mechanism is the LEF modulation of the flexibility of crucial protein segments, which produces a differential effect on the kinetic ET and conformational parameters of Cytc. These findings might be related to variations in the mitochondrial membrane potential during apoptosis, as the basis for the switch between canonic and alternative functions of Cytc. Moreover, they highlight the possible role of variable LEFs in determining the function of other moonlighting proteins through modulation of the protein dynamics.
Collapse
Affiliation(s)
- Santiago Oviedo-Rouco
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Spedalieri
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Magalí F Scocozza
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Florencia Tomasina
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Verónica Tórtora
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Daniel H Murgida
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Sedlák E, Žár T, Varhač R, Musatov A, Tomášková N. Anion-Specific Effects on the Alkaline State of Cytochrome c. BIOCHEMISTRY (MOSCOW) 2021; 86:59-73. [PMID: 33705282 DOI: 10.1134/s0006297921010065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Specific effects of anions on the structure, thermal stability, and peroxidase activity of native (state III) and alkaline (state IV) cytochrome c (cyt c) have been studied by the UV-VIS absorbance spectroscopy, intrinsic tryptophan fluorescence, and circular dichroism. Thermal and isothermal denaturation monitored by the tryptophan fluorescence and circular dichroism, respectively, implied lower stability of cyt c state IV in comparison with the state III. The pKa value of alkaline isomerization of cyt c depended on the present salts, i.e., kosmotropic anions increased and chaotropic anions decreased pKa (Hofmeister effect on protein stability). The peroxidase activity of cyt c in the state III, measured by oxidation of guaiacol, showed clear dependence on the salt position in the Hofmeister series, while cyt c in the alkaline state lacked the peroxidase activity regardless of the type of anions present in the solution. The alkaline isomerization of cyt c in the presence of 8 M urea, measured by Trp59 fluorescence, implied an existence of a high-affinity non-native ligand for the heme iron even in a partially denatured protein conformation. The conformation of the cyt c alkaline state in 8 M urea was considerably modulated by the specific effect of anions. Based on the Trp59 fluorescence quenching upon titration to alkaline pH in 8 M urea and molecular dynamics simulation, we hypothesize that the Lys79 conformer is most likely the predominant alkaline conformer of cyt c. The high affinity of the sixth ligand for the heme iron is likely a reason of the lack of peroxidase activity of cyt c in the alkaline state.
Collapse
Affiliation(s)
- Erik Sedlák
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Košice, 04154, Slovakia. .,Centre for Interdisciplinary Biosciences, P. J. Šafárik University in Košice, Košice, 04154, Slovakia
| | - Tibor Žár
- Centre for Interdisciplinary Biosciences, P. J. Šafárik University in Košice, Košice, 04154, Slovakia.
| | - Rastislav Varhač
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Košice, 04154, Slovakia.
| | - Andrej Musatov
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Košice, 040 01, Slovakia.
| | - Nataša Tomášková
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Košice, 04154, Slovakia.
| |
Collapse
|
7
|
Altered structure and dynamics of pathogenic cytochrome c variants correlate with increased apoptotic activity. Biochem J 2021; 478:669-684. [PMID: 33480393 DOI: 10.1042/bcj20200793] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 01/16/2023]
Abstract
Mutation of cytochrome c in humans causes mild autosomal dominant thrombocytopenia. The role of cytochrome c in platelet formation, and the molecular mechanism underlying the association of cytochrome c mutations with thrombocytopenia remains unknown, although a gain-of-function is most likely. Cytochrome c contributes to several cellular processes, with an exchange between conformational states proposed to regulate changes in function. Here, we use experimental and computational approaches to determine whether pathogenic variants share changes in structure and function, and to understand how these changes might occur. Three pathogenic variants (G41S, Y48H, A51V) cause an increase in apoptosome activation and peroxidase activity. Molecular dynamics simulations of these variants, and two non-naturally occurring variants (G41A, G41T), indicate that increased apoptosome activation correlates with the increased overall flexibility of cytochrome c, particularly movement of the Ω loops. Crystal structures of Y48H and G41T complement these studies which overall suggest that the binding of cytochrome c to apoptotic protease activating factor-1 (Apaf-1) may involve an 'induced fit' mechanism which is enhanced in the more conformationally mobile variants. In contrast, peroxidase activity did not significantly correlate with protein dynamics. Thus, the mechanism by which the variants increase peroxidase activity is not related to the conformational dynamics of the native hexacoordinate state of cytochrome c. Recent molecular dynamics data proposing conformational mobility of specific cytochrome c regions underpins changes in reduction potential and alkaline transition pK was not fully supported. These data highlight that conformational dynamics of cytochrome c drive some but not all of its properties and activities.
Collapse
|
8
|
Murgida DH. In Situ Spectroelectrochemical Investigations of Electrode-Confined Electron-Transferring Proteins and Redox Enzymes. ACS OMEGA 2021; 6:3435-3446. [PMID: 33585730 PMCID: PMC7876673 DOI: 10.1021/acsomega.0c05746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/19/2021] [Indexed: 06/09/2023]
Abstract
This perspective analyzes recent advances in the spectroelectrochemical investigation of redox proteins and enzymes immobilized on biocompatible or biomimetic electrode surfaces. Specifically, the article highlights new insights obtained by surface-enhanced resonance Raman (SERR), surface-enhanced infrared absorption (SEIRA), protein film infrared electrochemistry (PFIRE), polarization modulation infrared reflection-absorption spectroscopy (PMIRRAS), Förster resonance energy transfer (FRET), X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR), and differential electrochemical mass spectrometry (DMES)-based spectroelectrochemical methods on the structure, orientation, dynamics, and reaction mechanisms for a variety of immobilized species. This includes small heme and copper electron shuttling proteins, large respiratory complexes, hydrogenases, multicopper oxidases, alcohol dehydrogenases, endonucleases, NO-reductases, and dye decolorizing peroxidases, among other enzymes. Finally, I discuss the challenges and foreseeable future developments toward a better understanding of the functioning of these complex macromolecules and their exploitation in technological devices.
Collapse
Affiliation(s)
- Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química-Física,
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos
Aires 1428, Argentina
- Instituto
de Química Física de los Materiales, Medio Ambiente
y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
9
|
Márquez I, Olloqui-Sariego JL, Molero M, Andreu R, Roldán E, Calvente JJ. Active Role of the Buffer in the Proton-Coupled Electron Transfer of Immobilized Iron Porphyrins. Inorg Chem 2021; 60:42-54. [PMID: 32568550 DOI: 10.1021/acs.inorgchem.0c01091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Evaluation of the proton-coupled electron transfer thermodynamics of immobilized hemin is challenging due to the disparity of its electrochemical titration curves reported in the literature. Deviations from the one-electron, one-proton transfer at circumneutral pHs have been commonly ascribed to either the formation of dimeric species or the ionization of a second iron-bound water molecule. Herein, however, we report on non-idealities in the more acidic region, whose onset and extent vary with the nature and concentration of the commonly used phosphate and acetate buffers. It is shown that these deviations originate in the ligand-exchange binding between the oxidized aquo-hemin complex and the anionic components of the buffer, so that they are restricted to the pH interval where these forms coexist. A stepwise approach was developed to quantify unambiguously the apparent and intrinsic binding equilibrium constants. The apparent binding equilibrium constant exhibits a peak-shaped pH dependence, whose maximum is located at approximately the midpoint between the pKa of the iron-bound water and the first pKa of the buffer, and its magnitude is greater for the phosphate than for the acetate buffer. But strikingly, the opposite trend was found for the magnitude of the intrinsic binding equilibrium constants determined from the apparent ones, due to the different relative locations of the phosphoric and acetic pKa values with respect to that of the oxidized aquo-hemin. To probe the role of the heme propionic residues, a similar study was carried out with a propionic-free iron porphyrin containing eight ethyl residues. These substituents decrease the acidity of the iron-bound water, strengthen the iron(III)-acetate binding, weaken the iron(III)-dihydrogen phosphate binding, and enable the binding between iron(III) and monohydrogen phosphate, which was hampered in hemin by the presence of the negatively charged propionate residues. Overall, this work provides a more complete speciation of immobilized iron porphyrins under acidic conditions than previously considered, showing the substitutional lability of the aqua ligand in the oxidized state of the iron center and the reluctance of its hydroxyl counterpart to anion exchange. Knowledge of these redox- and pH-dependent bindings with the buffer components is crucial for a rigorous quantification of the proton-coupled electron transfer and the electrocatalytic activity of iron porphyrins.
Collapse
Affiliation(s)
- Inmaculada Márquez
- Departamento de Quı́mica Fı́sica, Universidad de Sevilla, C/Profesor Garcı́a Conzález, 1, 41012 Sevilla, Spain
| | - José Luis Olloqui-Sariego
- Departamento de Quı́mica Fı́sica, Universidad de Sevilla, C/Profesor Garcı́a Conzález, 1, 41012 Sevilla, Spain
| | - Miguel Molero
- Departamento de Quı́mica Fı́sica, Universidad de Sevilla, C/Profesor Garcı́a Conzález, 1, 41012 Sevilla, Spain
| | - Rafael Andreu
- Departamento de Quı́mica Fı́sica, Universidad de Sevilla, C/Profesor Garcı́a Conzález, 1, 41012 Sevilla, Spain
| | - Emilio Roldán
- Departamento de Quı́mica Fı́sica, Universidad de Sevilla, C/Profesor Garcı́a Conzález, 1, 41012 Sevilla, Spain
| | - Juan José Calvente
- Departamento de Quı́mica Fı́sica, Universidad de Sevilla, C/Profesor Garcı́a Conzález, 1, 41012 Sevilla, Spain
| |
Collapse
|
10
|
Oviedo-Rouco S, Perez-Bertoldi JM, Spedalieri C, Castro MA, Tomasina F, Tortora V, Radi R, Murgida DH. Electron transfer and conformational transitions of cytochrome c are modulated by the same dynamical features. Arch Biochem Biophys 2020; 680:108243. [DOI: 10.1016/j.abb.2019.108243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/11/2019] [Accepted: 12/29/2019] [Indexed: 01/17/2023]
|