1
|
Braconi D, Nadwa H, Bernardini G, Santucci A. Omics and rare diseases: challenges, applications, and future perspectives. Expert Rev Proteomics 2025:1-16. [PMID: 39956998 DOI: 10.1080/14789450.2025.2468300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/08/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
INTRODUCTION Rare diseases (RDs) are a heterogeneous group of diseases recognized as a relevant global health priority but posing aspects of complexity, such as geographical scattering of affected individuals, improper/late diagnosis, limited awareness, difficult surveillance and monitoring, limited understanding of natural history, and lack of treatment. Usually, RDs have a pediatric onset and are life-long, multisystemic, and associated with a poor prognosis. AREAS COVERED In this work, we review how high-throughput omics technologies such as genomics, transcriptomics, proteomics, metabolomics, epigenomics, and other well-established omics, which are increasingly more affordable and efficient, can be applied to the study of RDs promoting diagnosis, understanding of pathological mechanisms, biomarker discovery, and identification of treatments. EXPERT OPINION RDs, despite their challenges, offer a niche where collaborative efforts and personalized treatment strategies might be feasible using omics technologies. Specialized consortia fostering multidisciplinary collaboration, data sharing, and the development of biobanks and registries can be built; multi-omics approaches, including so far less exploited omics technologies, along with the implementation of AI tools can be undertaken to deepen our understanding of RDs, driving biomarker discovery and clinical interventions. Nevertheless, technical, ethical, legal, and societal issues must be clearly defined and addressed.
Collapse
Affiliation(s)
- Daniela Braconi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Haidara Nadwa
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Giulia Bernardini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
2
|
Weerd JCVD, Wegberg AMJV, Boer TS, Engelke UFH, Coene KLM, Wevers RA, Bakker SJL, Blaauw PD, Groen J, Spronsen FJV, Heiner-Fokkema MR. Impact of Phenylketonuria on the Serum Metabolome and Plasma Lipidome: A Study in Early-Treated Patients. Metabolites 2024; 14:479. [PMID: 39330486 PMCID: PMC11434371 DOI: 10.3390/metabo14090479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Data suggest that metabolites, other than blood phenylalanine (Phe), better and independently predict clinical outcomes in patients with phenylketonuria (PKU). METHODS To find new biomarkers, we compared the results of untargeted lipidomics and metabolomics in treated adult PKU patients to those of matched controls. Samples (lipidomics in EDTA-plasma (22 PKU and 22 controls) and metabolomics in serum (35 PKU and 20 controls)) were analyzed using ultra-high-performance liquid chromatography and high-resolution mass spectrometry. Data were subjected to multivariate (PCA, OPLS-DA) and univariate (Mann-Whitney U test, p < 0.05) analyses. RESULTS Levels of 33 (of 20,443) lipid features and 56 (of 5885) metabolite features differed statistically between PKU patients and controls. For lipidomics, findings include higher glycerolipids, glycerophospholipids, and sphingolipids species. Significantly lower values were found for sterols and glycerophospholipids species. Seven features had unknown identities. Total triglyceride content was higher. Higher Phe and Phe catabolites, tryptophan derivatives, pantothenic acid, and dipeptides were observed for metabolomics. Ornithine levels were lower. Twenty-six metabolite features were not annotated. CONCLUSIONS This study provides insight into the metabolic phenotype of PKU patients. Additional studies are required to establish whether the observed changes result from PKU itself, diet, and/or an unknown reason.
Collapse
Affiliation(s)
- Jorine C van der Weerd
- Department of Laboratory Medicine, Laboratory of Metabolic Disease, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Annemiek M J van Wegberg
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Theo S Boer
- Department of Laboratory Medicine, Laboratory of Metabolic Disease, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Udo F H Engelke
- Department of Human Genetics, Translational Metabolic Laboratory (TML), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Karlien L M Coene
- Department of Human Genetics, Translational Metabolic Laboratory (TML), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Laboratory of Clinical Chemistry and Hematology, Máxima Medical Centre, 5504 DB Veldhoven, The Netherlands
| | - Ron A Wevers
- Department of Human Genetics, Translational Metabolic Laboratory (TML), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Pim de Blaauw
- Department of Laboratory Medicine, Laboratory of Metabolic Disease, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Joost Groen
- Department of Laboratory Medicine, Laboratory of Metabolic Disease, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Francjan J van Spronsen
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, Laboratory of Metabolic Disease, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
3
|
Guerra IMS, Ferreira HB, Maurício T, Pinho M, Diogo L, Moreira S, Goracci L, Bonciarelli S, Melo T, Domingues P, Domingues MR, Moreira ASP. Plasma lipidomics analysis reveals altered profile of triglycerides and phospholipids in children with Medium-Chain Acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 2024; 47:731-745. [PMID: 38356271 DOI: 10.1002/jimd.12718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most prevalent mitochondrial fatty acid β-oxidation disorder. In this study, we assessed the variability of the lipid profile in MCADD by analysing plasma samples obtained from 25 children with metabolically controlled MCADD (following a normal diet with frequent feeding and under l-carnitine supplementation) and 21 paediatric control subjects (CT). Gas chromatography-mass spectrometry was employed for the analysis of esterified fatty acids, while high-resolution C18-liquid chromatography-mass spectrometry was used to analyse lipid species. We identified a total of 251 lipid species belonging to 15 distinct lipid classes. Principal component analysis revealed a clear distinction between the MCADD and CT groups. Univariate analysis demonstrated that 126 lipid species exhibited significant differences between the two groups. The lipid species that displayed the most pronounced variations included triacylglycerols and phosphatidylcholines containing saturated and monounsaturated fatty acids, specifically C14:0 and C16:0, which were found to be more abundant in MCADD. The observed changes in the plasma lipidome of children with non-decompensated MCADD suggest an underlying alteration in lipid metabolism. Therefore, longitudinal monitoring and further in-depth investigations are warranted to better understand whether such alterations are specific to MCADD children and their potential long-term impacts.
Collapse
Affiliation(s)
- Inês M S Guerra
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- CESAM- Centre for Environmental and Marine Studies-, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Helena B Ferreira
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- CESAM- Centre for Environmental and Marine Studies-, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Tatiana Maurício
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- CESAM- Centre for Environmental and Marine Studies-, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Marisa Pinho
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- CESAM- Centre for Environmental and Marine Studies-, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Luísa Diogo
- Reference Center for Hereditary Metabolic Diseases, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- European Reference Network for Hereditary Metabolic Diseases - MetabERN, Portugal
| | - Sónia Moreira
- Reference Center for Hereditary Metabolic Diseases, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- European Reference Network for Hereditary Metabolic Diseases - MetabERN, Portugal
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Stefano Bonciarelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Tânia Melo
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- CESAM- Centre for Environmental and Marine Studies-, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- CESAM- Centre for Environmental and Marine Studies-, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Ana S P Moreira
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- CESAM- Centre for Environmental and Marine Studies-, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
4
|
Therrell BL, Padilla CD, Borrajo GJC, Khneisser I, Schielen PCJI, Knight-Madden J, Malherbe HL, Kase M. Current Status of Newborn Bloodspot Screening Worldwide 2024: A Comprehensive Review of Recent Activities (2020-2023). Int J Neonatal Screen 2024; 10:38. [PMID: 38920845 PMCID: PMC11203842 DOI: 10.3390/ijns10020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 06/27/2024] Open
Abstract
Newborn bloodspot screening (NBS) began in the early 1960s based on the work of Dr. Robert "Bob" Guthrie in Buffalo, NY, USA. His development of a screening test for phenylketonuria on blood absorbed onto a special filter paper and transported to a remote testing laboratory began it all. Expansion of NBS to large numbers of asymptomatic congenital conditions flourishes in many settings while it has not yet been realized in others. The need for NBS as an efficient and effective public health prevention strategy that contributes to lowered morbidity and mortality wherever it is sustained is well known in the medical field but not necessarily by political policy makers. Acknowledging the value of national NBS reports published in 2007, the authors collaborated to create a worldwide NBS update in 2015. In a continuing attempt to review the progress of NBS globally, and to move towards a more harmonized and equitable screening system, we have updated our 2015 report with information available at the beginning of 2024. Reports on sub-Saharan Africa and the Caribbean, missing in 2015, have been included. Tables popular in the previous report have been updated with an eye towards harmonized comparisons. To emphasize areas needing attention globally, we have used regional tables containing similar listings of conditions screened, numbers of screening laboratories, and time at which specimen collection is recommended. Discussions are limited to bloodspot screening.
Collapse
Affiliation(s)
- Bradford L. Therrell
- Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
- National Newborn Screening and Global Resource Center, Austin, TX 78759, USA
| | - Carmencita D. Padilla
- Department of Pediatrics, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines;
| | - Gustavo J. C. Borrajo
- Detección de Errores Congénitos—Fundación Bioquímica Argentina, La Plata 1908, Argentina;
| | - Issam Khneisser
- Jacques LOISELET Genetic and Genomic Medical Center, Faculty of Medicine, Saint Joseph University, Beirut 1104 2020, Lebanon;
| | - Peter C. J. I. Schielen
- Office of the International Society for Neonatal Screening, Reigerskamp 273, 3607 HP Maarssen, The Netherlands;
| | - Jennifer Knight-Madden
- Caribbean Institute for Health Research—Sickle Cell Unit, The University of the West Indies, Mona, Kingston 7, Jamaica;
| | - Helen L. Malherbe
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa;
- Rare Diseases South Africa NPC, The Station Office, Bryanston, Sandton 2021, South Africa
| | - Marika Kase
- Strategic Initiatives Reproductive Health, Revvity, PL10, 10101 Turku, Finland;
| |
Collapse
|
5
|
Bregalda A, Carducci C, Viscomi MT, Pierigè F, Biagiotti S, Menotta M, Biancucci F, Pascucci T, Leuzzi V, Magnani M, Rossi L. Myelin basic protein recovery during PKU mice lifespan and the potential role of microRNAs on its regulation. Neurobiol Dis 2023; 180:106093. [PMID: 36948260 DOI: 10.1016/j.nbd.2023.106093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023] Open
Abstract
Untreated phenylketonuria (PKU) patients and PKU animal models show hypomyelination in the central nervous system and white matter damages, which are accompanied by myelin basic protein (MBP) impairment. Despite many assumptions, the primary explanation of the mentioned cerebral outcomes remains elusive. In this study, MBP protein and mRNA expression on brains of wild type (WT) and phenylketonuric (ENU2) mice were analyzed throughout mice lifespan (14-60-180-270-360-540 post-natal days, PND). The results confirmed the low MBP expression at first PND times, while revealed an unprecedented progressive MBP protein expression recovery in aged ENU2 mice. Unexpectedly, unaltered MBP mRNA expression between WT and ENU2 was always observed. Additionally, for the same time intervals, a significant decrease of the phenylalanine concentration in the peripheral blood and brain of ENU2 mice was detected, to date, for the first time. In this scenario, a translational hindrance of MBP during initial and late cerebral development in ENU2 mice was hypothesized, leading to the execution of a microRNA microarray analysis on 60 PND brains, which was followed by a proteomic assay on 60 and 360 PND brains in order to validate in silico miRNA-target predictions. Taken together, miR-218 - 1-3p, miR - 1231-3p and miR-217-5p were considered as the most impactful microRNAs, since a downregulation of their potential targets (MAG, CNTNAP2 and ANLN, respectively) can indirectly lead to a low MBP protein expression. These miRNAs, in addition, follow an opposite expression trend compared to MBP during adulthood, and their target proteins revealed a complete normalization in aged ENU2 mice. In conclusion, these results provide a new perspective on the PKU pathophysiology understanding and on a possible treatment, emphasizing the potential modulating role of differentially expressed microRNAs in MBP expression on PKU brains during PKU mouse lifespan.
Collapse
Affiliation(s)
- Alessandro Bregalda
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029 Urbino, PU, Italy.
| | - Claudia Carducci
- Department of Experimental Medicine, Sapienza University, viale del Policlinico 155, 00161 Rome, Italy
| | - Maria Teresa Viscomi
- Department of Life Sciences and Public Health, Sect. Histology and Embryology, Università Cattolica del S. Cuore, Largo F. Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli", IRCCS, 00168 Rome, Italy
| | - Francesca Pierigè
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029 Urbino, PU, Italy
| | - Sara Biagiotti
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029 Urbino, PU, Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029 Urbino, PU, Italy
| | - Federica Biancucci
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029 Urbino, PU, Italy
| | - Tiziana Pascucci
- Fondazione Santa Lucia IRCCS, via Ardeatina 306, 00142 Rome, Italy; Department of Psychology and Centro "Daniel Bovet", Sapienza University, via dei Marsi 78, 00185 Rome, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University, via dei Sabelli 108, 00185 Rome, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029 Urbino, PU, Italy; EryDel SpA, via Antonio Meucci 3, 20091 Bresso, Milan, Italy
| | - Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029 Urbino, PU, Italy; EryDel SpA, via Antonio Meucci 3, 20091 Bresso, Milan, Italy
| |
Collapse
|
6
|
Guerra IMS, Ferreira HB, Melo T, Rocha H, Moreira S, Diogo L, Domingues MR, Moreira ASP. Mitochondrial Fatty Acid β-Oxidation Disorders: From Disease to Lipidomic Studies-A Critical Review. Int J Mol Sci 2022; 23:13933. [PMID: 36430419 PMCID: PMC9696092 DOI: 10.3390/ijms232213933] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Fatty acid oxidation disorders (FAODs) are inborn errors of metabolism (IEMs) caused by defects in the fatty acid (FA) mitochondrial β-oxidation. The most common FAODs are characterized by the accumulation of medium-chain FAs and long-chain (3-hydroxy) FAs (and their carnitine derivatives), respectively. These deregulations are associated with lipotoxicity which affects several organs and potentially leads to life-threatening complications and comorbidities. Changes in the lipidome have been associated with several diseases, including some IEMs. In FAODs, the alteration of acylcarnitines (CARs) and FA profiles have been reported in patients and animal models, but changes in polar and neutral lipid profile are still scarcely studied. In this review, we present the main findings on FA and CAR profile changes associated with FAOD pathogenesis, their correlation with oxidative damage, and the consequent disturbance of mitochondrial homeostasis. Moreover, alterations in polar and neutral lipid classes and lipid species identified so far and their possible role in FAODs are discussed. We highlight the need of mass-spectrometry-based lipidomic studies to understand (epi)lipidome remodelling in FAODs, thus allowing to elucidate the pathophysiology and the identification of possible biomarkers for disease prognosis and an evaluation of therapeutic efficacy.
Collapse
Affiliation(s)
- Inês M. S. Guerra
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Centre for Environmental and Marine Studies—CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Helena B. Ferreira
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Centre for Environmental and Marine Studies—CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Centre for Environmental and Marine Studies—CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Hugo Rocha
- Newborn Screening, Metabolism and Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, 4000-053 Porto, Portugal
- Department of Pathological, Cytological and Thanatological Anatomy, School of Health, Polytechnic Institute of Porto, 4200-072 Porto, Portugal
| | - Sónia Moreira
- Internal Medicine, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Reference Center of Inherited Metabolic Diseases, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Luísa Diogo
- Reference Center of Inherited Metabolic Diseases, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Centre for Environmental and Marine Studies—CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana S. P. Moreira
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Tokuoka SM, Kita Y, Sato M, Shimizu T, Yatomi Y, Oda Y. Lipid Profiles of Human Serum Fractions Enhanced with CD9 Antibody-Immobilized Magnetic Beads. Metabolites 2022; 12:metabo12030230. [PMID: 35323673 PMCID: PMC8956076 DOI: 10.3390/metabo12030230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
Blood samples are minimally invasive and can be collected repeatedly, but they are far from the site of disease and the target molecules are diluted by the large amount of blood. Therefore, we performed lipidomics using immunoprecipitation as a method to enrich specific fractions of serum. In this study, a CD9 antibody was immobilized on magnetic beads to enrich CD9-containing components in the serum for lipidomics. The percentages of phospholipids recovered from serum by methanol and isopropanol extractions were not significantly different, but triglycerides were barely recovered from serum by methanol extraction, requiring the use of isopropanol. However, once the serum was enriched with CD9 magnetic beads, triglycerides, and phospholipids were recovered at similar levels in both methanol and isopropanol extractions. Therefore, it is possible that the triglyceride fraction of the whole serum and the triglyceride fraction were enriched in CD9 magnetic beads differ in localization and properties. In addition, the variation per disease was small in general serum lipidomics; however, the difference per disease appeared larger when CD9 magnetic bead enrichment was employed.
Collapse
Affiliation(s)
- Suzumi M. Tokuoka
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; (S.M.T.); (Y.K.); (T.S.)
| | - Yoshihiro Kita
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; (S.M.T.); (Y.K.); (T.S.)
| | - Masaya Sato
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; (M.S.); (Y.Y.)
| | - Takao Shimizu
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; (S.M.T.); (Y.K.); (T.S.)
- National Center for Global Health and Medicine, Department of Lipid Signaling, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; (M.S.); (Y.Y.)
| | - Yoshiya Oda
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; (S.M.T.); (Y.K.); (T.S.)
- Correspondence: ; Tel.: +81-35-841-3540
| |
Collapse
|
8
|
Tanacli R, Hassel JH, Gebker R, Berger A, Gräfe M, Schneeweis C, Doeblin P, Fleck E, Stehning C, Tacke F, Pieske B, Spranger J, Plöckinger U, Ziagaki A, Kelle S. Cardiac Magnetic Resonance Reveals Incipient Cardiomyopathy Traits in Adult Patients With Phenylketonuria. J Am Heart Assoc 2021; 10:e020351. [PMID: 34423658 PMCID: PMC8649272 DOI: 10.1161/jaha.120.020351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Phenylketonuria is the most common inborn error of amino acid metabolism, where oxidative stress and collateral metabolic abnormalities are likely to cause cardiac structural and functional modifications. We aim herein to characterize the cardiac phenotype of adult subjects with phenylketonuria using advanced cardiac imaging. Methods and Results Thirty-nine adult patients with phenylketonuria (age, 30.5±8.7 years; 10-year mean phenylalanine concentration, 924±330 µmol/L) and 39 age- and sex-matched healthy controls were investigated. Participants underwent a comprehensive cardiac magnetic resonance and echocardiography examination. Ten-year mean plasma levels of phenylalanine and tyrosine were used to quantify disease activity and adherence to treatment. Patients with phenylketonuria had thinner left ventricular walls (septal end-diastolic thickness, 7.0±17 versus 8.8±1.7 mm [P<0.001]; lateral thickness, 6.1±1.4 versus 6.8±1.2 mm [P=0.004]), more dilated left ventricular cavity (end-diastolic volume, 87±14 versus 80±14 mL/m2 [P=0.0178]; end-systolic volume, 36±9 versus 29±8 mL/m2 [P<0.001]), lower ejection fraction (59±6% versus 64±6% [P<0.001]), reduced systolic deformation (global circumferential strain, -29.9±4.2 % versus -32.2±5.0 % [P=0.027]), and lower left ventricular mass (38.2±7.9 versus 47.8±11.0 g/m2 [P<0.001]). T1 native values were decreased (936±53 versus 996±26 ms [P<0.001]), with particular low values in patients with phenylalanine >1200 µmol/L (909±48 ms). Both mean phenylalanine (P=0.013) and tyrosine (P=0.035) levels were independently correlated with T1; and in a multiple regression model, higher phenylalanine levels and higher left ventricular mass associate with lower T1. Conclusions Cardiac phenotype of adult patients with phenylketonuria reveals some traits of an early-stage cardiomyopathy. Regular cardiology follow-up, tighter therapeutic control, and prophylaxis of cardiovascular risk factors, in particular dyslipidemia, are recommended.
Collapse
Affiliation(s)
- Radu Tanacli
- Department of Cardiology German Heart Centre Berlin Berlin Germany.,Department of Cardiology Charité University Medicine Berlin Berlin Germany
| | | | - Rolf Gebker
- Department of Cardiology German Heart Centre Berlin Berlin Germany
| | - Alexander Berger
- Department of Cardiology German Heart Centre Berlin Berlin Germany
| | - Michael Gräfe
- Department of Cardiology German Heart Centre Berlin Berlin Germany
| | | | - Patrick Doeblin
- Department of Cardiology German Heart Centre Berlin Berlin Germany
| | - Eckart Fleck
- Department of Cardiology German Heart Centre Berlin Berlin Germany
| | | | - Frank Tacke
- Department of Hepatology and Gastroenterology Charité University Medicine Berlin Berlin Germany.,Interdisziplinäres Stoffwechsel-Centrum Charité-Universitätsmedizin BerlinCampus Virchow Klinikum Berlin Germany
| | - Burkert Pieske
- Department of Cardiology German Heart Centre Berlin Berlin Germany.,Department of Cardiology Charité University Medicine Berlin Berlin Germany.,German Centre for Cardiovascular Research DZHK, Partner Site Berlin Berlin Germany
| | - Joachim Spranger
- Department of Endocrinology, Diabetes, and Nutrition Charité University Medicine Berlin Berlin Germany.,Interdisziplinäres Stoffwechsel-Centrum Charité-Universitätsmedizin BerlinCampus Virchow Klinikum Berlin Germany
| | - Ursula Plöckinger
- Interdisziplinäres Stoffwechsel-Centrum Charité-Universitätsmedizin BerlinCampus Virchow Klinikum Berlin Germany
| | - Athanasia Ziagaki
- Interdisziplinäres Stoffwechsel-Centrum Charité-Universitätsmedizin BerlinCampus Virchow Klinikum Berlin Germany
| | - Sebastian Kelle
- Department of Cardiology German Heart Centre Berlin Berlin Germany.,Department of Cardiology Charité University Medicine Berlin Berlin Germany.,German Centre for Cardiovascular Research DZHK, Partner Site Berlin Berlin Germany
| |
Collapse
|
9
|
Guerra IMS, Diogo L, Pinho M, Melo T, Domingues P, Domingues MR, Moreira ASP. Plasma Phospholipidomic Profile Differs between Children with Phenylketonuria and Healthy Children. J Proteome Res 2021; 20:2651-2661. [PMID: 33819046 DOI: 10.1021/acs.jproteome.0c01052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phenylketonuria (PKU) is a disease of the catabolism of phenylalanine (Phe), caused by an impaired function of the enzyme phenylalanine hydroxylase. Therapeutics is based on the restriction of Phe intake, which mostly requires a modification of the diet. Dietary restrictions can lead to imbalances in specific nutrients, including lipids. In the present study, the plasma phospholipidome of PKU and healthy children (CT) was analyzed by hydrophilic interaction liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. Using this approach, 187 lipid species belonging to nine different phospholipid classes and three ceramides were identified. Principal component analysis of the lipid species data set showed a distinction between PKU and CT groups. Univariate analysis revealed that 146 species of phospholipids were significantly different between both groups. Lipid species showing significant variation included phosphatidylcholines, containing polyunsaturated fatty acids (PUFA), which were more abundant in PKU. The high level of PUFA-containing lipid species in children with PKU may be related to a diet supplemented with PUFA. This study was the first report comparing the plasma polar lipidome of PKU and healthy children, highlighting that the phospholipidome of PKU children is significantly altered compared to CT. However, further studies with larger cohorts are needed to clarify whether these changes are specific to phenylketonuric children.
Collapse
Affiliation(s)
- Inês M S Guerra
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Luísa Diogo
- Reference Center of Inherited Metabolic Diseases, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Marisa Pinho
- ECOMARE, CESAM-Center for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana S P Moreira
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.,CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Bortoluzzi VT, Dutra Filho CS, Wannmacher CMD. Oxidative stress in phenylketonuria-evidence from human studies and animal models, and possible implications for redox signaling. Metab Brain Dis 2021; 36:523-543. [PMID: 33580861 DOI: 10.1007/s11011-021-00676-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/24/2021] [Indexed: 01/11/2023]
Abstract
Phenylketonuria (PKU) is one of the commonest inborn error of amino acid metabolism. Before mass neonatal screening was possible, and the success of introducing diet therapy right after birth, the typical clinical finds in patients ranged from intellectual disability, epilepsy, motor deficits to behavioral disturbances and other neurological and psychiatric symptoms. Since early diagnosis and treatment became widespread, usually only those patients who do not strictly follow the diet present psychiatric, less severe symptoms such as anxiety, depression, sleep pattern disturbance, and concentration and memory problems. Despite the success of low protein intake in preventing otherwise severe outcomes, PKU's underlying neuropathophysiology remains to be better elucidated. Oxidative stress has gained acceptance as a disturbance implicated in the pathogenesis of PKU. The conception of oxidative stress has evolved to comprehend how it could interfere and ultimately modulate metabolic pathways regulating cell function. We summarize the evidence of oxidative damage, as well as compromised antioxidant defenses, from patients, animal models of PKU, and in vitro experiments, discussing the possible clinical significance of these findings. There are many studies on oxidative stress and PKU, but only a few went further than showing macromolecular damage and disturbance of antioxidant defenses. In this review, we argue that these few studies may point that oxidative stress may also disturb redox signaling in PKU, an aspect few authors have explored so far. The reported effect of phenylalanine on the expression or activity of enzymes participating in metabolic pathways known to be responsive to redox signaling might be mediated through oxidative stress.
Collapse
Affiliation(s)
- Vanessa Trindade Bortoluzzi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil.
| | - Carlos Severo Dutra Filho
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil
| | - Clovis Milton Duval Wannmacher
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil
| |
Collapse
|