1
|
Li H, Yin Y, Cao W, Chen S, Chen J, Xing Y, Yang H. Enhanced autophagy and cholesterol efflux in mouse mesenchymal stem cells infected with H37Rv compared to H37Ra. Microb Pathog 2025; 199:107199. [PMID: 39653283 DOI: 10.1016/j.micpath.2024.107199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Autophagy, metabolism, and associated signaling pathways play critical roles in bacterial survival within mammalian cells and influence the immunopathogenesis of infections. Mesenchymal stem cells (MSCs) are important host cells during Mycobacterium tuberculosis (Mtb) infection, yet how autophagy, metabolism, and related pathways are modulated in MSCs infected with the virulent H37Rv or the attenuated H37Ra strain of Mtb remains poorly understood. In this study, we utilized RNA-Seq screening, qRT-PCR, and Western Blotting to investigate the differences in these processes between H37Rv and H37Ra infections. Our results show that, at early time points (no more than 24h), infection with H37Rv significantly increased the expression of TlLR2, Prkaa2, and Prkaa2 phosphorylation in MSCs compared with H37Ra infection. Further analysis revealed that H37Rv infection induced a stronger autophagic response (evidenced by increased Atg9b and LC3II/LC3I) through the TLR2-AMP-AMPK pathway than H37Ra infection. Despite these differences in autophagy, there was no statistically significant difference in bacillary loads, suggesting that, in addition to autophagy, other factors such as apoptosis and immune-inflammatory responses may also regulate Mtb growth in MSCs. Additionally, the metabolic analysis showed that H37Rv infection led to increased expression of SLC2A3, PFKFB3, HK1, and ABCA1 in MSCs compared to H37Ra infection. These findings confirm that, during the early stages of infection, H37Rv induces enhanced autophagy, glucose metabolism, and cholesterol efflux through a more active TLR2-AMP-AMPK pathway than H37Ra. Therefore, MSCs may represent a novel target for the prevention and treatment of tuberculosis.
Collapse
Affiliation(s)
- Heng Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yan Yin
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Wei Cao
- Institute of Health, Shanghai Institute of Life Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shichao Chen
- College of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Jianxia Chen
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; TB Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yanchun Xing
- Department of Medicine, Anhui Huangshan Vocational and Technical College, Huangshan, Anhui, 245000, China.
| | - Hong Yang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; TB Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
2
|
Raqib R, Sarker P. Repurposed Drugs and Plant-Derived Natural Products as Potential Host-Directed Therapeutic Candidates for Tuberculosis. Biomolecules 2024; 14:1497. [PMID: 39766204 PMCID: PMC11673177 DOI: 10.3390/biom14121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Tuberculosis (TB) is one of the leading causes of death due to infectious disease. It is a treatable disease; however, conventional treatment requires a lengthy treatment regimen with severe side effects, resulting in poor compliance among TB patients. Intermittent drug use, the non-compliance of patients, and prescription errors, among other factors, have led to the emergence of multidrug-resistant TB, while the mismanagement of multidrug-resistant TB (MDR-TB) has eventually led to the development of extensively drug-resistant tuberculosis (XDR-TB). Thus, there is an urgent need for new drug development, but due to the enormous expenses and time required (up to 20 years) for new drug research and development, new therapeutic approaches to TB are required. Host-directed therapies (HDT) could be a most attractive strategy, as they target the host defense processes instead of the microbe and thereby may prevent the alarming rise of MDR- and XDR-TB. This paper reviews the progress in HDT for the treatment of TB using repurposed drugs which have been investigated in clinical trials (completed or ongoing) and plant-derived natural products that are in clinical or preclinical trial stages. Additionally, this review describes the existing challenges to the development and future research directions in the implementation of HDT.
Collapse
Affiliation(s)
- Rubhana Raqib
- Immunobiology, Nutrition and Toxicology Unit, Nutrition Research Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh;
| | | |
Collapse
|
3
|
Jubilee R, Komala M, Patel S. Therapeutic Potential of Resveratrol and Lignans in the Management of Tuberculosis. Cell Biochem Biophys 2024; 82:1809-1823. [PMID: 38914838 DOI: 10.1007/s12013-024-01378-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
This study aims to investigate the therapeutic potential of herbal remedies, specifically resveratrol and lignans, as alternative treatments for tuberculosis (TB), given the challenges posed by drug-resistant strains and adverse effects of conventional therapies. A comprehensive review of the literature was conducted to analyze the mechanisms of action, safety profiles, and efficacy of resveratrol and lignans in the context of TB management. This review focused on the bactericidal and bacteriostatic effects of these compounds, examining their interaction with Mycobacterium tuberculosis within macrophages. Resveratrol and lignans were found to exhibit significant antibacterial properties through mechanisms such as SIRT1 modulation, coenzyme A transferase inhibition, suppression of intracellular bacterial proliferation in macrophages, and induction of autophagy. These mechanisms contribute to their effectiveness in combating TB and highlight their potential as alternative therapeutic agents.
Collapse
Affiliation(s)
- R Jubilee
- Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, (Deemed to be University), Saveetha Nagar, Chennai, India
| | - M Komala
- Department of Pharmaceutical Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai, Tamil Nadu, India
| | - Saraswati Patel
- Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, (Deemed to be University), Saveetha Nagar, Chennai, India.
| |
Collapse
|
4
|
Liu T, Wang L, Shi T, Liu H, Liu B, Guo J, Li M. ED-71 Ameliorates Bone Loss in Type 2 Diabetes Mellitus by Enhancing Osteogenesis Through Upregulation of the Circadian Rhythm Coregulator BMAL1. Drug Des Devel Ther 2024; 18:3903-3919. [PMID: 39224902 PMCID: PMC11368115 DOI: 10.2147/dddt.s470684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Bone loss is a common complication of type 2 diabetes mellitus (T2DM). Circadian rhythms play a significant role in T2DM and bone remodeling. Eldecalcitol (ED-71), a novel active vitamin D analog, has shown promise in ameliorating T2DM. We aimed to investigate whether the circadian rhythm coregulator BMAL1 mediates the anti-osteoporotic effect of ED-71 in T2DM and its associated mechanisms. Methods A T2DM mouse model was established using high-fat diet (HDF) and streptozotocin (STZ) injection, and blood glucose levels were monitored weekly. HE staining, Masson staining, and Micro-CT were performed to assess the changes in bone mass. IHC staining and IF staining were used to detect osteoblast status and BMAL1 expression and RT-qPCR was applied to detect the change of oxidative stress factors. In vitro, high glucose (HG) stimulation was used to simulate the cell environment in T2DM. RT-qPCR, Western blot, IF, ALP staining and AR staining were used to detect osteogenic differentiation and SIRT1/GSK3β signaling pathway. DCFH-DA staining was used to detect reactive oxygen species (ROS) levels. Results ED-71 increased bone mass and promoted osteogenesis in T2DM mice. Moreover, ED-71 inhibited oxidative stress and promoted BMAL1 expression in osteoblasts The addition of STL1267, an agonist of the BMAL1 transcriptional repressor protein REV-ERB, reversed the inhibitory effect of ED-71 on oxidative stress and the promotional effect on osteogenic differentiation. In addition, ED-71 facilitated SIRT1 expression and reduced GSK3β activity. The inhibition of SIRT1 with EX527 partially attenuated ED-71's effects, whereas the GSK3β inhibitor LiCl further enhanced ED-71's positive effects on BMAL1 expression. Conclusion ED-71 ameliorates bone loss in T2DM by upregulating the circadian rhythm coregulator BMAL1 and promoting osteogenesis through inhibition of oxidative stress. The SIRT1/GSK3β signaling pathway is involved in the regulation of BMAL1.
Collapse
Affiliation(s)
- Ting Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People’s Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People’s Republic of China
| | - Luxu Wang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People’s Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People’s Republic of China
- School of Stomatology, Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Tuo Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Hongrui Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People’s Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People’s Republic of China
| | - Bo Liu
- School of Clinical Medicine, Jining Medical University, Jining, People’s Republic of China
| | - Jie Guo
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People’s Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People’s Republic of China
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People’s Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People’s Republic of China
- School of Clinical Medicine, Jining Medical University, Jining, People’s Republic of China
| |
Collapse
|
5
|
Peña-Díaz S, Chao JD, Rens C, Haghdadi H, Zheng X, Flanagan K, Ko M, Shapira T, Richter A, Maestre-Batlle D, Canseco JO, Gutierrez MG, Duc KD, Pelech S, Av-Gay Y. Glycogen synthase kinase 3 inhibition controls Mycobacterium tuberculosis infection. iScience 2024; 27:110555. [PMID: 39175770 PMCID: PMC11340618 DOI: 10.1016/j.isci.2024.110555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/20/2024] [Accepted: 07/17/2024] [Indexed: 08/24/2024] Open
Abstract
Compounds targeting host control of infectious diseases provide an attractive alternative to antimicrobials. A phenotypic screen of a kinase library identified compounds targeting glycogen synthase kinase 3 as potent inhibitors of Mycobacterium tuberculosis (Mtb) intracellular growth in the human THP-1 cell line and primary human monocytes-derived macrophages (hMDM). CRISPR knockouts and siRNA silencing showed that GSK3 isoforms are needed for the growth of Mtb and that a selected compound, P-4423632 targets GSK3β. GSK3 inhibition was associated with macrophage apoptosis governed by the Mtb secreted protein tyrosine phosphatase A (PtpA). Phospho-proteome analysis of macrophages response to infection revealed a wide array of host signaling and apoptosis pathways controlled by GSK3 and targeted by P-4423632. P-4423632 was additionally found to be active against other intracellular pathogens. Our findings strengthen the notion that targeting host signaling to promote the infected cell's innate antimicrobial capacity is a feasible and attractive host-directed therapy approach.
Collapse
Affiliation(s)
- Sandra Peña-Díaz
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Joseph D. Chao
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Celine Rens
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Hasti Haghdadi
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Xingji Zheng
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Keegan Flanagan
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Mary Ko
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tirosh Shapira
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Adrian Richter
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | | | - Julio Ortiz Canseco
- Host-pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | | | - Khanh Dao Duc
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Steven Pelech
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Kinexus Bioinformatics Corporation, 8755 Ash Street, Vancouver, BC, Canada
| | - Yossef Av-Gay
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Shapira T, Christofferson M, Av-Gay Y. The antimicrobial activity of innate host-directed therapies: A systematic review. Int J Antimicrob Agents 2024; 63:107138. [PMID: 38490573 DOI: 10.1016/j.ijantimicag.2024.107138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Intracellular human pathogens are the deadliest infectious diseases and are difficult to treat effectively due to their protection inside the host cell and the development of antimicrobial resistance (AMR). An emerging approach to combat these intracellular pathogens is host-directed therapies (HDT), which harness the innate immunity of host cells. HDT rely on small molecules to promote host protection mechanisms that ultimately lead to pathogen clearance. These therapies are hypothesized to: (1) possess indirect yet broad, cross-species antimicrobial activity, (2) effectively target drug-resistant pathogens, (3) carry a reduced susceptibility to the development of AMR and (4) have synergistic action with conventional antimicrobials. As the field of HDT expands, this systematic review was conducted to collect a compendium of HDT and their characteristics, such as the host mechanisms affected, the pathogen inhibited, the concentrations investigated and the magnitude of pathogen inhibition. The evidential support for the main four HDT hypotheses was assessed and concluded that HDT demonstrate robust cross-species activity, are active against AMR pathogens, clinical isolates and laboratory-adapted pathogens. However, limited information exists to support the notion that HDT are synergistic with canonical antimicrobials and are less predisposed to AMR development.
Collapse
Affiliation(s)
- Tirosh Shapira
- Department of Medicine, Division of Infectious Disease, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Matthew Christofferson
- Department of Microbiology and Immunology, Division of Infectious Disease, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yossef Av-Gay
- Department of Medicine, Division of Infectious Disease, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Microbiology and Immunology, Division of Infectious Disease, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Schwan WR. SK-03-92 Drug Kills Intracellular Mycobacterium tuberculosis. Antibiotics (Basel) 2023; 12:1385. [PMID: 37760682 PMCID: PMC10525840 DOI: 10.3390/antibiotics12091385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Tuberculosis affects millions of people worldwide. The emergence of drug-resistant Mycobacterium tuberculosis strains has made treatment more difficult. A drug discovery project initiated to screen natural products identified a lead stilbene compound, and structure function analysis of hundreds of analogs led to the discovery of the SK-03-92 stilbene lead compound with activity against several non-tuberculoid mycobacteria. METHODS For this study, an MIC analysis and intracellular killing assay were performed to test SK-03-92 against M. tuberculosis grown in vitro as well as within murine macrophage cells. RESULTS The MIC analysis showed that SK-03-92 had activity against M. tuberculosis in the range of 0.39 to 6.25 μg/mL, including activity against single-drug-resistant strains. Further, an intracellular kill assay demonstrated that the SK-03-92 lead compound killed M. tuberculosis cells within murine macrophage cells. CONCLUSION Together, the data show the SK-03-92 lead compound can kill M. tuberculosis bacteria within mammalian macrophages.
Collapse
Affiliation(s)
- William R Schwan
- Department of Microbiology, University of Wisconsin-La Crosse, 1725 State St., La Crosse, WI 54601, USA
| |
Collapse
|
8
|
Li H, Cao W, Chen S, Chen J, Xing Y, Yang H. Comparative interleukins and chemokines analysis of mice mesenchymal stromal cells infected with Mycobacterium tuberculosis H37Rv and H37Ra. Arch Biochem Biophys 2023:109673. [PMID: 37392994 DOI: 10.1016/j.abb.2023.109673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/03/2023]
Abstract
Inflammatory pathways involving Mesenchymal stromal cells (MSCs) play an important role in Mycobacterium tuberculosis (Mtb) infection. H37Rv (Rv) is a standard virulent strain, however, H37Ra (Ra) is a strain with reduced virulence. Interleukins and chemokines production are known to promote inflammation resistance in mammalian cells and is recently reported to regulate mycobacterial immunopathogenesis via inflammatory responses. MSCs are very important cells during Mtb infection. However, the different expressions of interleukins and chemokines in the process of Mtb-infected MSCs between Ra and Rv remain unclear. We used the techniques of RNA-Seq, Q-RT-PCR, ELISA, and Western Blotting. We have shown that Rv infection significantly increased mRNA expressions of Mndal, Gdap10, Bmp2, and Lif, thereby increasing more differentiation of MSCs compared with Ra infection in MSCs. Further investigation into the possible mechanisms, we found that Rv infection enhanced more inflammatory response (Mmp10, Mmp3, and Ptgs2) through more activation of the TLR2-MAP3K1-JNK pathway than did Ra infection in MSCs. Further action showed that Rv infection enhanced more Il1α, Il6, Il33, Cxcl2, Ccl3, and Ackr3 production than did Ra infection. Rv infection showed more expressions of Mmp10, Mmp3, Ptgs2, Il1α, Il6, Il33, Cxcl2, Ccl3, and Ackr3 possibly through more active TLR2-MAP3K1-JNK pathway than did Ra infection in MSCs. MSCs may therefore be a new candidate for the prevention and treatment of tuberculosis.
Collapse
Affiliation(s)
- Heng Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wei Cao
- Institute of health, Shanghai Institute of life Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shichao Chen
- College of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Jianxia Chen
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; TB Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yanchun Xing
- Department of Medicine, Anhui Huangshan Vocational and Technical College, Huangshan, Anhui, 245000, China.
| | - Hong Yang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; TB Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
9
|
Zhang K, Sowers ML, Cherryhomes EI, Singh VK, Mishra A, Restrepo BI, Khan A, Jagannath C. Sirtuin-dependent metabolic and epigenetic regulation of macrophages during tuberculosis. Front Immunol 2023; 14:1121495. [PMID: 36993975 PMCID: PMC10040548 DOI: 10.3389/fimmu.2023.1121495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/01/2023] [Indexed: 03/14/2023] Open
Abstract
Macrophages are the preeminent phagocytic cells which control multiple infections. Tuberculosis a leading cause of death in mankind and the causative organism Mycobacterium tuberculosis (MTB) infects and persists in macrophages. Macrophages use reactive oxygen and nitrogen species (ROS/RNS) and autophagy to kill and degrade microbes including MTB. Glucose metabolism regulates the macrophage-mediated antimicrobial mechanisms. Whereas glucose is essential for the growth of cells in immune cells, glucose metabolism and its downsteam metabolic pathways generate key mediators which are essential co-substrates for post-translational modifications of histone proteins, which in turn, epigenetically regulate gene expression. Herein, we describe the role of sirtuins which are NAD+-dependent histone histone/protein deacetylases during the epigenetic regulation of autophagy, the production of ROS/RNS, acetyl-CoA, NAD+, and S-adenosine methionine (SAM), and illustrate the cross-talk between immunometabolism and epigenetics on macrophage activation. We highlight sirtuins as emerging therapeutic targets for modifying immunometabolism to alter macrophage phenotype and antimicrobial function.
Collapse
Affiliation(s)
- Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Mark L. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ellie I. Cherryhomes
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Vipul K. Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Blanca I. Restrepo
- University of Texas Health Houston, School of Public Health, Brownsville, TX, United States
| | - Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| |
Collapse
|
10
|
Mouse Models for Mycobacterium tuberculosis Pathogenesis: Show and Do Not Tell. Pathogens 2022; 12:pathogens12010049. [PMID: 36678397 PMCID: PMC9865329 DOI: 10.3390/pathogens12010049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/29/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
Science has been taking profit from animal models since the first translational experiments back in ancient Greece. From there, and across all history, several remarkable findings have been obtained using animal models. One of the most popular models, especially for research in infectious diseases, is the mouse. Regarding research in tuberculosis, the mouse has provided useful information about host and bacterial traits related to susceptibility to the infection. The effect of aging, sexual dimorphisms, the route of infection, genetic differences between mice lineages and unbalanced immunity scenarios upon Mycobacterium tuberculosis infection and tuberculosis development has helped, helps and will help biomedical researchers in the design of new tools for diagnosis, treatment and prevention of tuberculosis, despite various discrepancies and the lack of deep study in some areas of these traits.
Collapse
|
11
|
Luo Y, Lu J, Wang Z, Wang L, Wu G, Guo Y, Dong Z. Small ubiquitin-related modifier (SUMO)ylation of SIRT1 mediates (-)-epicatechin inhibited- differentiation of cardiac fibroblasts into myofibroblasts. PHARMACEUTICAL BIOLOGY 2022; 60:1762-1770. [PMID: 36086802 PMCID: PMC9467557 DOI: 10.1080/13880209.2022.2101672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT (-)-Epicatechin (EPI) is a crucial substance involved in the protective effects of flavanol-rich foods. Previous studies have indicated EPI has a cardioprotective effect, but the molecular mechanisms in inhibition of cardiac fibrosis are unclear. OBJECTIVE We evaluated the effect of EPI in preventing cardiac fibrosis and the underlying molecular mechanism related to the SIRT1-SUMO1/AKT/GSK3β pathway. MATERIALS AND METHODS Cardiac fibrosis mice model was established with transaortic constriction (TAC). Male C57BL/6 mice were randomly separated into 4 groups. Mice received 1 mg/kg/day of EPI or vehicle orally for 4 weeks. The acutely isolated cardiac fibroblasts were induced to myofibroblasts with 1 µM angiotensin II (Ang II). The cardiac function was measured with the ultrasonic instrument. Histological analysis of mice's hearts was determined with H&E or Masson method. The protein level of fibrosis markers, SUMOylation of SIRT1, and AKT/GSK3β pathway were quantified by immunofluorescence and western blot. RESULTS EPI treatment (1 mg/kg/day) could reverse the TAC-induced decline in LVEF (TAC, 61.28% ± 1.33% vs. TAC + EPI, 74.00% ± 1.64%), LVFS (TAC, 28.16% ± 0.89% vs. TAC + EPI, 37.18% ± 1.29%). Meantime, we found that 10 µM EPI blocks Ang II-induced transformation of cardiac fibroblasts into myofibroblasts. The underlying mechanism of EPI-inhibited myofibroblasts transformation involves activation of SUMOylation of SIRT1 through SP1. Furthermore, SUMOylation of SIRT1 inhibited Ang II-induced fibrogenic effect via the AKT/GSK3β pathway. CONCLUSION EPI plays a protective effect on cardiac fibrosis by regulating the SUMO1-dependent modulation of SIRT1, which provides a theoretical basis for use in clinical therapies.
Collapse
Affiliation(s)
- Yingchun Luo
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jing Lu
- Department of Pharmacy, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zeng Wang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Lu Wang
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Guodong Wu
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yuanyuan Guo
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zengxiang Dong
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Park HE, Lee W, Choi S, Jung M, Shin MK, Shin SJ. Modulating macrophage function to reinforce host innate resistance against Mycobacterium avium complex infection. Front Immunol 2022; 13:931876. [PMID: 36505429 PMCID: PMC9730288 DOI: 10.3389/fimmu.2022.931876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
Mycobacterium avium complex (MAC) is the main causative agent of infectious diseases in humans among nontuberculous mycobacteria (NTM) that are ubiquitous organisms found in environmental media such as soil as well as in domestic and natural waters. MAC is a primary causative agent of NTM-lung disease that threaten immunocompromised or structural lung disease patients. The incidence and the prevalence of M. tuberculosis infection have been reduced, while MAC infections and mortality rates have increased, making it a cause of global health concern. The emergence of drug resistance and the side effects of long-term drug use have led to a poor outcome of treatment regimens against MAC infections. Therefore, the development of host-directed therapy (HDT) has recently gained interest, aiming to accelerate mycobacterial clearance and reversing lung damage by employing the immune system using a novel adjuvant strategy to improve the clinical outcome of MAC infection. Therefore, in this review, we discuss the innate immune responses that contribute to MAC infection focusing on macrophages, chief innate immune cells, and host susceptibility factors in patients. We also discuss potential HDTs that can act on the signaling pathway of macrophages, thereby contributing to antimycobacterial activity as a part of the innate immune response during MAC infection. Furthermore, this review provides new insights into MAC infection control that modulates and enhances macrophage function, promoting host antimicrobial activity in response to potential HDTs and thus presenting a deeper understanding of the interactions between macrophages and MACs during infection.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sangwon Choi
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Myunghwan Jung
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea,*Correspondence: Min-Kyoung Shin, ; Sung Jae Shin,
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea,*Correspondence: Min-Kyoung Shin, ; Sung Jae Shin,
| |
Collapse
|
13
|
Arrigoni R, Ballini A, Topi S, Bottalico L, Jirillo E, Santacroce L. Antibiotic Resistance to Mycobacterium tuberculosis and Potential Use of Natural and Biological Products as Alternative Anti-Mycobacterial Agents. Antibiotics (Basel) 2022; 11:antibiotics11101431. [PMID: 36290089 PMCID: PMC9598247 DOI: 10.3390/antibiotics11101431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Tuberculosis (TB) is an infectious disease caused by the bacillus Mycobacterium tuberculosis (Mtb). TB treatment is based on the administration of three major antibiotics: isoniazid, rifampicin, and pyrazinamide. However, multi-drug resistant (MDR) Mtb strains are increasing around the world, thus, allowing TB to spread around the world. The stringent response is demonstrated by Mtb strains in order to survive under hostile circumstances, even including exposure to antibiotics. The stringent response is mediated by alarmones, which regulate bacterial replication, transcription and translation. Moreover, the Mtb cell wall contributes to the mechanism of antibiotic resistance along with efflux pump activation and biofilm formation. Immunity over the course of TB is managed by M1-macrophages and M2-macrophages, which regulate the immune response against Mtb infection, with the former exerting inflammatory reactions and the latter promoting an anti-inflammatory profile. T helper 1 cells via secretion of interferon (IFN)-gamma, play a protective role in the course of TB, while T regulatory cells secreting interleukin 10, are anti-inflammatory. Alternative therapeutic options against TB require further discussion. In view of the increasing number of MDR Mtb strains, attempts to replace antibiotics with natural and biological products have been object of intensive investigation. Therefore, in this review the anti-Mtb effects exerted by probiotics, polyphenols, antimicrobial peptides and IFN-gamma will be discussed. All the above cited compounds are endowed either with direct antibacterial activity or with anti-inflammatory and immunomodulating characteristics.
Collapse
Affiliation(s)
- Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70124 Bari, Italy
- Correspondence:
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, “A. Xhuvani”, 3001 Elbasan, Albania
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, School of Technical Medical Sciences, “A. Xhuvani”, 3001 Elbasan, Albania
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
14
|
Relationship between DNA Methylation Profiles and Active Tuberculosis Development from Latent Infection: a Pilot Study in Nested Case-Control Design. Microbiol Spectr 2022; 10:e0058622. [PMID: 35446152 PMCID: PMC9241819 DOI: 10.1128/spectrum.00586-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Individuals with latent tuberculosis infection (LTBI) were regarded as an enormous reservoir of cases with active tuberculosis (TB). To strengthen LTBI management, biomarkers and tools are urgently required for identifying and ruling out active TB in a fast and effective way. Based on an open-label randomized controlled trial aiming to explore short-course LTBI treatment regimens, DNA methylation profiles were retrospectively detected to explore potential biomarkers, which could discriminate active TB from LTBI. The Infinium MethylationEPIC BeadChip array was used to analyze genomewide DNA methylation levels for 15 persons with LTBI who later developed active TB and for 15 LTBI controls who stayed healthy. The differentially methylated CpGs (dmCpGs) located in the promoter regions pre- and post-TB diagnosis were selected (P < 0.05 and |Δβ|>0.10) and evaluated by receiver operating characteristic (ROC) analysis. Eight dmCpGs were identified to be associated with TB occurrence; six were located in hypermethylated genes (cg02493602, cg02206980, cg02214623, cg12159502, cg14593639, and cg25764570), and two were located in hypomethylated genes (cg02781074 and cg12321798). ROC analysis indicated that the area under curve (AUC) of these eight dmCpGs ranged from 0.72 to 0.84. Given 90% sensitivity, the specificity was highest for cg14593639 at 66.67%. The combination analysis indicated that “cg02206980 + cg02214623 + cg12159502 + cg12321798” showed the best performance, with an AUC of 0.88 (95% confidence interval [CI]: 0.72, 0.97), a sensitivity of 93.33% (95% CI: 70.18%, 99.66%), and a specificity of 86.67% (95% CI: 62.12%, 97.63%). Our preliminary results indicate the potential value of the DNA methylation level as a diagnostic biomarker for discriminating active disease in LTBI testing. This finding requires further verification in independent populations with large sample sizes. IMPORTANCE Approximately a quarter of the world population had been infected with Mycobacterium tuberculosis, and about 5 to 10% of these individuals might develop active disease in their lifetimes. As a critical component of the “end TB strategies,” preventive treatment was shown to protect 60 to 90% of high-risk LTBIs from developing active disease. Developing new TB screening tools based on blood-based biomarkers, which could identify and rule out active TB from LTBI, are prerequisite before initialing intervention. We tried to explore potential DNA methylation diagnostic biomarkers through retrospectively detected DNA methylation profiles pre- and post-TB diagnosis. Eight dmCpGs were identified, and the combination of “cg02206980 + cg02214623 + cg12159502 + cg12321798” showed a sensitivity of 93.33% and a specificity of 86.67%. The preliminary results provided new insight into detecting the DNA methylation level as a potential tool to distinguish TB from LTBI.
Collapse
|
15
|
Zhou Y, Zhang F, Ding J. As a Modulator, Multitasking Roles of SIRT1 in Respiratory Diseases. Immune Netw 2022; 22:e21. [PMID: 35799705 PMCID: PMC9250864 DOI: 10.4110/in.2022.22.e21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 01/04/2023] Open
Affiliation(s)
- Yunxin Zhou
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Fan Zhang
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Junying Ding
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| |
Collapse
|
16
|
Rankine-Wilson LI, Shapira T, Sao Emani C, Av-Gay Y. From infection niche to therapeutic target: the intracellular lifestyle of Mycobacterium tuberculosis. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001041. [PMID: 33826491 PMCID: PMC8289223 DOI: 10.1099/mic.0.001041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is an obligate human pathogen killing millions of people annually. Treatment for tuberculosis is lengthy and complicated, involving multiple drugs and often resulting in serious side effects and non-compliance. Mtb has developed numerous complex mechanisms enabling it to not only survive but replicate inside professional phagocytes. These mechanisms include, among others, overcoming the phagosome maturation process, inhibiting the acidification of the phagosome and inhibiting apoptosis. Within the past decade, technologies have been developed that enable a more accurate understanding of Mtb physiology within its intracellular niche, paving the way for more clinically relevant drug-development programmes. Here we review the molecular biology of Mtb pathogenesis offering a unique perspective on the use and development of therapies that target Mtb during its intracellular life stage.
Collapse
Affiliation(s)
| | - Tirosh Shapira
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Carine Sao Emani
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Yossef Av-Gay
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, Canada
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
17
|
Yang H, Chen J, Chen Y, Jiang Y, Ge B, Hong L. Sirt1 activation negatively regulates overt apoptosis in Mtb-infected macrophage through Bax. Int Immunopharmacol 2021; 91:107283. [PMID: 33373810 DOI: 10.1016/j.intimp.2020.107283] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 01/18/2023]
Abstract
Apoptotic pathways play an important role in Mycobacterium tuberculosis-infected macrophages. Sirt1 is a member of the deacetylase family that is known to promote apoptosis resistance in many mammalian cells. However, the apoptotic role of Sirt1 in the process of M. tuberculosis infection remains unclear. With the help of mouse macrophage samples, 129/Sv background mice, and PBMCs-derived macrophages from healthy controls and patients with tuberculosis, we have shown that M. tuberculosis infection reduced Sirt1 mRNA and protein expression, however, increased Bax mRNA and protein expression. Further, we found that resveratrol, a Sirt1 activator, inhibited M. tuberculosis-induced Bax expression. Thus, it seems that Sirt1 acts as a novel regulator of apoptosis signaling in M. tuberculosis infection via its effects on Bax. Sirt1 activation may therefore be a new candidate for the prevention and treatment of tuberculosis.
Collapse
Affiliation(s)
- Hong Yang
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China; Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| | - Jianxia Chen
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yanghaoyu Chen
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yan Jiang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Baoxue Ge
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China; Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Ling Hong
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China.
| |
Collapse
|