1
|
Lei S, Cao W, Zeng Z, Wang L, Lan J, Chen T. Cynaroside Induces G1 Cell Cycle Arrest by Downregulating Cell Division Cycle 25A in Colorectal Cancer. Molecules 2024; 29:1508. [PMID: 38611789 PMCID: PMC11013184 DOI: 10.3390/molecules29071508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/09/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Natural chemicals derived from herbal plants have recently been recognized as potentially useful treatment alternatives owing to their ability to target a wide range of important biological molecules. Cynaroside is one of these natural compounds with promising anticancer activity for numerous tumor types. Nevertheless, the anticancer effects and molecular mechanisms of action of cynaroside on colorectal cancer (CRC) remain unclear. In this study, cynaroside was found to markedly inhibit CRC cell proliferation and colony formation in vitro. Cynaroside also inhibited cell proliferation in vivo and decreased the expression of KI67, a cell nuclear antigen. RNA sequencing revealed 144 differentially expressed genes (DEGs) in HCT116 cells and 493 DEGs in RKO cells that were enriched in the cell cycle signaling pathway. Cell division cycle 25A (CDC25A), a DEG widely enriched in the cell cycle signaling pathway, is considered a key target of cynaroside in CRC cells. Cynaroside also inhibited DNA replication and arrested cells in the G1/S phase in vitro. The expression levels of CDC25A and related G1-phase proteins were significantly elevated after CDC25A overexpression in CRC cells, which partially reversed the inhibitory effect of cynaroside on CRC cell proliferation and G1/S-phase arrest. In summary, cynaroside may be used to treat CRC as it inhibits CDC25A expression.
Collapse
Affiliation(s)
- Shan Lei
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550009, China; (S.L.); (Z.Z.); (L.W.); (J.L.)
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang 550009, China
| | - Wenpeng Cao
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550009, China;
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550009, China; (S.L.); (Z.Z.); (L.W.); (J.L.)
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang 550009, China
| | - Lu Wang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550009, China; (S.L.); (Z.Z.); (L.W.); (J.L.)
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang 550009, China
| | - Jinzhi Lan
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550009, China; (S.L.); (Z.Z.); (L.W.); (J.L.)
| | - Tengxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550009, China; (S.L.); (Z.Z.); (L.W.); (J.L.)
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang 550009, China
| |
Collapse
|
2
|
He XL, Lyu WY, Li XY, Zhao H, Qi L, Lu JJ. Identification of glycogen phosphorylase L as a potential target for lung cancer. Med Oncol 2023; 40:211. [PMID: 37347364 DOI: 10.1007/s12032-023-02069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023]
Abstract
Traditional Chinese medicine (TCM) has been widely used for cancer treatment. Identification of anti-cancer targets of TCM is the first and principal step in discovering molecular mechanisms of TCM as well as obtaining novel targets for cancer therapy. In this study, glycogen phosphorylase L (PYGL) was identified as one of the targeted proteins for several TCMs and was upregulated in various cancer types. The expression level of PYGL was positively correlated with the stage of lung cancer and the poor prognosis of patients. Meanwhile, knockdown of PYGL significantly inhibited proliferation and migration in lung cancer cells. In addition, PYGL was associated with spindle, kinetochore, and microtubule, the cellular components that are closely related to mitosis, in lung cancer. Moreover, PYGL was more susceptible to be upregulated by 144 mutated genes. Taken together, PYGL is a potential target for lung cancer treatment and its molecular mechanism probably influences the mitotic function of cells by regulating energy metabolism.
Collapse
Affiliation(s)
- Xin-Ling He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wen-Yu Lyu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xin-Yuan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hong Zhao
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, 310006, China
| | - Lu Qi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No.1023 Shatai Road Baiyun District, Guangzhou, 510515, Guangdong, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Macao, China.
| |
Collapse
|
3
|
Miao S, Song J, Liu Q, Lai J, Wang H, Ran L. Integrated bioinformatics analysis to identify the key gene associated with metastatic clear cell renal cell carcinoma. Med Oncol 2022; 39:128. [PMID: 35716215 DOI: 10.1007/s12032-022-01706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022]
Abstract
Metastasis of clear cell renal cell carcinoma (ccRCC) is a leading cause of death. The purpose of this research was to investigate the key gene in ccRCC tumor metastasis. Three microarray datasets (GSE22541, GSE85258, and GSE105261), which included primary and metastatic ccRCC tissues, were obtained from the Gene Expression Omnibus (GEO) database. Expression profiling and clinical data of ccRCC were downloaded from The Cancer Genome Atlas (TCGA) dataset. A total of 20 overlapping differentially expressed genes (DEGs) were identified using the R limma package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the DEGs were mainly enriched in tumor metastasis-related pathways. Gene expression analysis and survival analysis in the GEPIA2 database further identified the key gene HSD11B2. qRT-PCR result manifested that HSD11B2 level was significantly down-regulated in ccRCC tissues compared with adjacent normal tissues. ROC analysis showed that HSD11B2 exhibited good diagnostic efficiency for metastatic and non-metastatic ccRCC. Univariate and multivariate Cox regression analysis showed that HSD11B2 expression was an independent prognostic factor. To establish a nomogram combining HSD11B2 expression and clinical factors, and a new method for predicting the survival probability of ccRCC patients. Gene Set Enrichment Analysis (GSEA) enrichment results showed that low expression of HSD11B2 was mainly enriched in tumor signaling pathways and immune-related pathways. Immune analysis revealed a significant correlation between HSD11B2 and tumor immune infiltrates in ccRCC. This study suggests that HSD11B2 can serve as a potential biomarker and therapeutic target for ccRCC metastasis.
Collapse
Affiliation(s)
- Shiqi Miao
- Department of Bioinformatics, The Basic Medical School of Chongqing Medical University, Chongqing, 400016, China
- Laboratory of Forensic Medicine and Biomedical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Song
- Molecular and Tumor Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Qingyuan Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiayi Lai
- Department of Bioinformatics, The Basic Medical School of Chongqing Medical University, Chongqing, 400016, China
- Laboratory of Forensic Medicine and Biomedical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Huirui Wang
- The Affiliated Luoyang Central Hospital of Zhengzhou University, No. 288, Zhongzhou Road, Luoyang, 471099, Henan, China.
| | - Longke Ran
- Department of Bioinformatics, The Basic Medical School of Chongqing Medical University, Chongqing, 400016, China.
- Laboratory of Forensic Medicine and Biomedical Informatics, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Liu C, Yu H, Li X, Gong Y, Wu P, Feng QS. Anti-hepatocellular carcinoma efficacy of Fuzheng Xiaozheng prescription and its interventional mechanism studies. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114913. [PMID: 34910953 DOI: 10.1016/j.jep.2021.114913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuzheng Xiaozheng prescription (FZXZP), a traditional Chinese medicine, which was derived from the famous decoction, Sanjiasan, in the book of "Wenyilun" in Ming dynasty. Due to its function of invigorating the circulation of blood in Chinese medicine, it was usually used for treating the liver cirrhosis, hepatocellular carcinoma (HCC), etc. Clinical application found that FZXZP exhibited satisfactory therapeutic effects in HCC treatments. However, we still know little about the underlying mechanisms. AIM OF STUDY In this study, we aim to gain a deeper insight into the inhibiting effects of FZXZP on HCC rats and preliminarily elucidate the underlying intervention effects. MATERIALS AND METHODS Two doses of FZXZP were adopted to evaluate the therapeutic effects on rat HCC, and then the intervention effects were evaluated from different aspects. High performance liquid chromatography (HPLC) was used for the active compounds prediction in FZXZP. Finally, the mRNA-Seq was conducted to reveal the intervention mechanisms and the mechanisms were further validated by quantitative Real-time PCR (qRT-PCR) and lipid contents analyses. RESULTS The results showed that FZXZP significantly alleviated the serum biochemical indicators and improved the pathological characteristics of HCC rats. Mechanistically, FZXZP could regulate some lipid related metabolisms, including arachidonic acid, linoleic acid and retinol, as well as improving the steroid hormone biosynthesis, to improve the inflammatory statuses and restoring ability of HCC livers, and these were further confirmed by our following analyses on serum lipid contents and cytokine expressions. In addition, FZXZP could also negatively regulate four extracellular growth factors which could result in the blocking of two cancer-related signaling pathways, Ras/MAPK and Ras/PI3K-Akt. CONCLUSION Our results suggested that FZXZP demonstrated significant inhibiting effects on rat HCC progresses, and these may be realized by improving the inflammatory statuses and blocking the Ras/MAPK and Ras/PI3K-Akt signaling pathways.
Collapse
MESH Headings
- Animals
- Rats
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/drug therapy
- Diethylnitrosamine/toxicity
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Liver/drug effects
- Liver/pathology
- Liver Neoplasms/chemically induced
- Liver Neoplasms/drug therapy
- Random Allocation
- Rats, Sprague-Dawley
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Chao Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Han Yu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xia Li
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yanju Gong
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peijie Wu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Quan-Sheng Feng
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
5
|
Nedungadi D, Ryan N, Anderson K, Lamenza FF, Jordanides PP, Swingler MJ, Rakotondraibe L, Riedl KM, Iwenofu H, Oghumu S. Modulation of the oral glucocorticoid system during black raspberry mediated oral cancer chemoprevention. Carcinogenesis 2021; 43:28-39. [PMID: 34888650 DOI: 10.1093/carcin/bgab118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/17/2021] [Accepted: 06/06/2021] [Indexed: 12/24/2022] Open
Abstract
Recent reports suggest that glucocorticoids (GCs), which can be synthesized in the oral mucosa, play an important role in cancer development. Therefore, the objectives of this study were to characterize the role of the oral GC system in oral cancer, and determine the effect of black raspberry (BRB) administration on GC modulation during oral cancer chemoprevention. We determined the expression of GC enzymes in various oral cancer cell lines, and investigated the role of the GC inactivating enzyme HSD11B2 on CAL27 oral cancer cells using siRNA mediated knockdown approaches. Using two in vivo models of oral carcinogenesis with 4-nitroquinoline-1-oxide (4NQO) carcinogen on C57Bl/6 mice and F344 rats, we determined the effect of BRB on GC modulation during HNSCC chemoprevention. Our results demonstrate that HSD11B2, which inactivates cortisol to cortisone, is downregulated during oral carcinogenesis in clinical and experimental models. Knockdown of HSD11B2 in oral cancer cells promotes cellular proliferation, invasion and expression of angiogenic biomarkers EGFR and VEGFA. An ethanol extract of BRB increased HSD11B2 expression on oral cancer cells. Dietary administration of 5% BRB increased Hsd11b2 gene and protein expression and reduced the active GC, corticosterone, in cancer-induced mouse tongues. Our results demonstrate that the oral GC system is modulated during oral carcinogenesis, and black raspberry administration upregulates Hsd11b2 during oral cancer chemoprevention. In conclusion, our findings challenge the use of synthetic glucocorticoids in head and neck cancer, and support the use of natural product alternatives that potentially modulate GC metabolism in a manner that supports oral cancer chemoprevention.
Collapse
Affiliation(s)
- Divya Nedungadi
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Nathan Ryan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Division of Anatomy, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kelvin Anderson
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Felipe F Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Pete P Jordanides
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Michael J Swingler
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Liva Rakotondraibe
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Kenneth M Riedl
- Department of Food Science, Parker Food Science Building, The Ohio State University, Columbus, Ohio, USA
| | - Hans Iwenofu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
6
|
Zhou M, Li J, Luo D, Zhang H, Yu Z, Chen Y, Li Q, Liang F, Chen R. Network Pharmacology and Molecular Docking-Based Investigation: Prunus mume Against Colorectal Cancer via Silencing RelA Expression. Front Pharmacol 2021; 12:761980. [PMID: 34867383 PMCID: PMC8640358 DOI: 10.3389/fphar.2021.761980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most pervasive cancers in the human disease spectrum worldwide, ranked the second most common cause of cancer death by the end of 2020. Prunus mume (PM) is an essential traditional Chinese medicine for the adjuvant treatment of solid tumors, including CRC. In the current study, we utilize means of network pharmacology, molecular docking, and multilayer experimental verification to research mechanism. The five bioactive compounds and a total of eight critical differentially expressed genes are screened out using the bioinformatics approaches of Cytoscape software, String database, Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes pathways, and molecular docking. RelA has been proven to be highly expressed in CRC. Experiments in vitro have shown that kaempferol, the main active component of PM, dramatically inhibited the growth, migration, and invasion of CRC cells, and experiments in vivo have shown that PM effectively delays CRC formation and improves the survival cycle of mice. Further analysis shows that PM inhibits the CRC progression by down-regulating the expression level of RelA, Bax, caspase 3, caspase 9, and EGFR in CRC. PM and its extract are potentially effective therapeutics for the treatment of CRC via the RelA/nuclear factor κB signaling pathway.
Collapse
Affiliation(s)
- Minfeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxiao Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Luo
- Department of Respiratory Medicine, Wuhan First Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiming Zhang
- Department of Oncology, Integrated Traditional Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaomin Yu
- Department of Oncology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Youlin Chen
- School of Resources and Environment Science, Wuhan University, Wuhan, China
| | - Qiumeng Li
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Fengxia Liang
- College of Acupuncture & Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Rui Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Lee J, Gong YX, Xie DP, Jeong H, Seo H, Kim J, Park YH, Sun HN, Kwon T. Anticancer Effect of ERM210 on Liver Cancer Cells Through ROS/Mitochondria-dependent Apoptosis Signaling Pathways. In Vivo 2021; 35:2599-2608. [PMID: 34410947 DOI: 10.21873/invivo.12542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND/AIM Asian Traditional medicines are renowned for their antitumor properties and are efficacious in the clinical treatment of various cancer types. ERM210 is a Korean traditional medicine comprising nine types of medicinal plants. In the present study, we examined the pro-apoptotic effect and molecular mechanisms of the effects of ERM210 on HepG2 liver cancer cells. MATERIALS AND METHODS The cytotoxicity of ERM210 on HepG2 cells was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and wound-healing assays, and apoptosis and signaling pathways by fluorescence microscopy flow cytometry and western blotting. RESULTS ERM210 significantly impaired HepG2 cell viability and enhanced mitochondria-dependent cellular apoptosis in a time- and dose-dependent manner by up-regulating the expression of caspases 3, 7 and 9, and of BCL2 apoptosis regulator (BCL2)-associated X, apoptosis regulator (BAX) proteins, whilst down-regulating that of BCL2 protein. Furthermore, ERM210 treatment increased accumulation of cellular and mitochondrial reactive oxygen species (ROS) and significantly inhibited cell migration. Additionally, all these phenomena were reversed by treating with the ROS scavenger N-acetylcysteine. The analysis of signaling proteins revealed that ERM210 significantly up-regulated the phosphorylation of ROS-dependent mitogen-activated protein kinases (p38, extracellular-regulated kinase, and c-Jun N-terminal kinase in HepG2 liver cancer cells. CONCLUSION ERM210 exerts anticancer effects in HepG2 liver cancer cells by up-regulating ROS/mitochondria-dependent apoptosis signaling, providing new insight into the possibility of employing this traditional medicine for the clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Jaihyung Lee
- Epigenetics Drug Discovery Center, Haeam Convalescence Hospital, Gyeonggi, Republic of Korea
| | - Yi-Xi Gong
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Dan-Ping Xie
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Hyunjeong Jeong
- Epigenetics Drug Discovery Center, Haeam Convalescence Hospital, Gyeonggi, Republic of Korea
| | - Hoyoung Seo
- Epigenetics Drug Discovery Center, Haeam Convalescence Hospital, Gyeonggi, Republic of Korea
| | - Jihwan Kim
- Korean Convergence Medicine Center, 100 years Oriental Medical Clinic, Seoul, Republic of Korea
| | - Yang Ho Park
- Evidence-based Medicine Center, Park Yang Ho BRM Institute, Seoul, Republic of Korea
| | - Hu-Nan Sun
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China;
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| |
Collapse
|
8
|
A Bioactive Compound from Sanguisorba officinalis L. Inhibits Cell Proliferation and Induces Cell Death in 5-Fluorouracil-Sensitive/Resistant Colorectal Cancer Cells. Molecules 2021; 26:molecules26133843. [PMID: 34202548 PMCID: PMC8270258 DOI: 10.3390/molecules26133843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer in the world. The first line chemotherapeutic agent, 5-fluorouracil (5-FU), plays a predominant role in the clinical treatment of CRC. However, with the wide use of 5-FU, more and more CRC patients have been obtaining drug resistance to 5-FU, which leads to a large amount of treatment failures. One of the effective strategies to overcome this obstacle is to find bioactive natural products from traditional medicine. In our previous work, Sanguisorba officinalis L. was found to exert a strong anti-proliferative activity against 5-FU-senstive/resistant CRC cells. Therefore, several compounds were isolated from this herb and screened for their anti-CRC effects to find promising compounds. Among them, a triterpenoid compound named 3β-[(α-l-arabinopyranosyl) oxy]-urs-12,18(19)-dien-28-oic acid β-d-glucopyranosyl ester (AGE), showed strong activity against both 5-FU-senstive and resistant CRC cells. In order to further study the mechanism of AGE on CRC cells, flow cytometer analysis, mitochondrial membrane potential (MMP) measurement, Western blotting, and RT-PCR assays were performed. Results demonstrated that AGE induced cell death by apoptosis pathway and autophagy, and inhibited cell proliferation via cell cycle arrest in G0-G1 phase mediated by Wnt signaling pathway. Therefore, AGE may be a potential bioactive compound for CRC treatment in clinic.
Collapse
|