1
|
Kousar MU, Yaseen M, Yousouf M, Malik MA, Mushtaq A, Mukhtar T, Javaid R, Aijaz A, Jabeen A, Amin T. Aflatoxins in cereal based products-an overview of occurrence, detection and health implication. Toxicon 2024; 251:108148. [PMID: 39454764 DOI: 10.1016/j.toxicon.2024.108148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Aflatoxins are naturally produced toxins by specific molds, namely Aspergillus flavus and Aspergillus parasiticus. These toxins can be found in various agricultural products, including crops like maize, peanuts, cottonseed, and tree nuts. They have the potential to contaminate the food supply during different stages of production, processing, and storage. Aflatoxin is a very poisonous substance that has been linked to adverse health effects in both humans and animals. It is essential to detect and monitor aflatoxins to ensure the safety of food. Efficient and precise analytical techniques, such as chromatography and immunoassays, have been used to accurately measure the levels of aflatoxins in different substances. Regulatory bodies and worldwide associations have determined maximum permissible limits for aflatoxins in food and nourishment products to protect the well-being of the general public. Effectively addressing aflatoxin contamination necessitates a comprehensive approach that encompasses various strategies in agriculture, post-harvest practices, and regulatory measures. Continuous research and collaborative endeavors are crucial in order to minimize aflatoxin exposure and mitigate the associated risks. This review offers a comprehensive examination of the presence, health consequences, and elimination techniques associated with aflatoxins.
Collapse
Affiliation(s)
- Mumtahin-Ul Kousar
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Mifftha Yaseen
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Monisa Yousouf
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Mudasir Ahmad Malik
- Department of Food Engineering and Technology, Ghani Khan Choudhury Institute of Engineering and Technology Malda, WB, 732141, India.
| | - Aarizoo Mushtaq
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Taha Mukhtar
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Rifat Javaid
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Anam Aijaz
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Abida Jabeen
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India.
| | - Tawheed Amin
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| |
Collapse
|
2
|
Jaćević V, Dumanović J, Alomar SY, Resanović R, Milovanović Z, Nepovimova E, Wu Q, Franca TCC, Wu W, Kuča K. Research update on aflatoxins toxicity, metabolism, distribution, and detection: A concise overview. Toxicology 2023; 492:153549. [PMID: 37209941 DOI: 10.1016/j.tox.2023.153549] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Serious health risks associated with the consumption of food products contaminated with aflatoxins (AFs) are worldwide recognized and depend predominantly on consumed AF concentration by diet. A low concentration of aflatoxins in cereals and related food commodities is unavoidable, especially in subtropic and tropic regions. Accordingly, risk assessment guidelines established by regulatory bodies in different countries help in the prevention of aflatoxin intoxication and the protection of public health. By assessing the maximal levels of aflatoxins in food products which are a potential risk to human health, it's possible to establish appropriate risk management strategies. Regarding, a few factors are crucial for making a rational risk management decision, such as toxicological profile, adequate information concerning the exposure duration, availability of routine and some novel analytical techniques, socioeconomic factors, food intake patterns, and maximal allowed levels of each aflatoxin in different food products which may be varied between countries.
Collapse
Affiliation(s)
- Vesna Jaćević
- Department for Experimental Pharmacology and Toxicology, National Poison Control Centre, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic.
| | - Jelena Dumanović
- Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia
| | - Suliman Y Alomar
- King Saud University, College of Science, Zoology Department, Riyadh, 11451, Saudi Arabia
| | - Radmila Resanović
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| | - Zoran Milovanović
- Special Police Unit, Ministry of Interior, Trebevićka 12/A, 11 030 Belgrade, Serbia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, 1 Nanhuan Road, 434023 Jingzhou, Hubei, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Tanos Celmar Costa Franca
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense, Military Institute of Engineering, Praça General Tibúrcio 80, Rio de Janeiro, RJ 22290-270, Brazil; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Wenda Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Kamil Kuča
- Biomedical Research Center, University Hospital Hradec Kralove, 50005, Hradec Kralove, Czech Republic; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| |
Collapse
|
3
|
Lv L, Wang X. Recent Advances in Ochratoxin A Electrochemical Biosensors: Recognition Elements, Sensitization Technologies, and Their Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4769-4787. [PMID: 32243155 DOI: 10.1021/acs.jafc.0c00258] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ochratoxin A (OTA) is a class of mycotoxin that are mainly produced by Aspergillus and Penicillium and widely found in plant origin food. OTA-contaminated foods can cause serious harm to animals and humans, while high stability of OTA makes it difficult to remove in conventional food processing. Thus, sensitive and rapid detection of OTA undoubtedly plays an important role in OTA prevention and control. In this paper, the conventional and novel methods of OTA at home and abroad are summarized and compared. The latest research progress and related applications of novel OTA electrochemical biosensors are mainly described with a new perspective. We innovatively divided the recognition element into single and combined recognition elements. Specifically, signal amplification technologies applied to the OTA electrochemical aptasensor are proposed. Furthermore, summary of the current limitations and future challenges in OTA analysis is included, which provide reference for the further research and applications.
Collapse
Affiliation(s)
- Liangrui Lv
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiaoying Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
4
|
Zha YH, Zhou Y. Functional nanomaterials based immunological detection of aflatoxin B1: a review. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aflatoxin B1 (AFB1) is highly carcinogenic, mutagenic and teratogenic. Accordingly, sensitive, rapid and cost-effective techniques for detection of AFB1 is in urgent demand for food safety and the health of consumers. In this review, we report the current state of immunoassay formats and development, mainly based on nanomaterials for determination of AFB1. Following an introduction of the field, the microplate-, membrane- and microelectrode-based immunoassays are described. The relevant mechanisms, sensitivities, superiorities and deficiencies of each format are discussed. Finally, perspectives on the future development of nanomaterials-based immunoassays for AFB1 are provided.
Collapse
Affiliation(s)
- Y.-H. Zha
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China P.R
| | - Y. Zhou
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China P.R
- College of Animal Sciences, Yangtze University, Jingzhou 434023, China P.R
| |
Collapse
|
5
|
Naqvi MAUH, Aimulajiang K, Memon MA, Hasan MW, Naqvi SZ, Lakho SA, Chu W, Xu L, Song X, Li X, Yan R. Recombinant cold shock domain containing protein is a potential antigen to detect specific antibody during early and late infections of Haemonchus contortus in goat. BMC Vet Res 2020; 16:36. [PMID: 32013987 PMCID: PMC6998305 DOI: 10.1186/s12917-020-2261-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 01/24/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Haemonchus contortus (H. contortus) is one of the most important parasites that cause huge economic losses to small ruminant industry worldwide. Effective prognosis and treatment depend upon the early diagnosis of H. contortus infection. To date, no widely-approved methods for the identification of prepatent H. contortus infection are available to identify prepatent H. contortus infection properly. The aim of this study was to evaluate the diagnostic potential of recombinant cold shock H. contortus protein (rHc-CS) during early and late infections of H. contortus in goat. RESULTS Purified rHc-CS exhibited a clear band, with a molecular weight about 38 kDa. H. contortus eggs were not detected by fecal egg count technique from feces collected at 0 to 14 days post infection (D.P.I). However, eggs were detected at 21, 28 and 35 D.P.I. Hence, results of immunoblotting assay showed specific anti rHc-CS antibody detection in all goat sera collected at early stage (14 D.P.I) and late stage (21-103 D.P.I) of H. contortus infection. Furthermore, no cross reactivity was observed against Trichinella spiralis, Fasciola hepatica and Toxoplasma gondii or uninfected goats. Among several evaluated rHc-CS indirect-ELISA format variables, favorable antigen coating concentration was found 0.28 μg/well at 37 °C 1 h and overnight at 4 °C. Moreover, optimum dilution ratio of serum and rabbit anti-goat IgG was recorded as 1:100 and 1:4000, respectively. The best blocking buffer was 5% Bovine Serum Albumin (BSA) while the best time for blocking, serum incubation and TMB reaction were recorded as 60, 120 and 10 min, respectively. The cut-off value for positive and negative interpretation was determined as 0.352 (OD450). The diagnostic specificity and sensitivity of the rHc-CS, both were recorded as 100%. CONCLUSION These results validated that rHc-CS is a potential immunodiagnostic antigen to detect the specific antibodies during early and late H. contortus infections in goat.
Collapse
Affiliation(s)
- Muhammad Ali-ul-Husnain Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1, Weigang, Nanjing, Jiangsu Province, People’s Republic of China 210095
| | - Kalibixiati Aimulajiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1, Weigang, Nanjing, Jiangsu Province, People’s Republic of China 210095
| | - Muhammad Ali Memon
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1, Weigang, Nanjing, Jiangsu Province, People’s Republic of China 210095
| | - Muhammad Waqqas Hasan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1, Weigang, Nanjing, Jiangsu Province, People’s Republic of China 210095
| | - Sana Zahra Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1, Weigang, Nanjing, Jiangsu Province, People’s Republic of China 210095
| | - Shakeel Ahmed Lakho
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1, Weigang, Nanjing, Jiangsu Province, People’s Republic of China 210095
| | - Wen Chu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1, Weigang, Nanjing, Jiangsu Province, People’s Republic of China 210095
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1, Weigang, Nanjing, Jiangsu Province, People’s Republic of China 210095
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1, Weigang, Nanjing, Jiangsu Province, People’s Republic of China 210095
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1, Weigang, Nanjing, Jiangsu Province, People’s Republic of China 210095
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1, Weigang, Nanjing, Jiangsu Province, People’s Republic of China 210095
| |
Collapse
|
6
|
Naqvi MAUH, Jamil T, Naqvi SZ, Memon MA, Aimulajiang K, Aleem MT, Ehsan M, Xu L, Song X, Li X, Yan R. Immunodiagnostic potential of recombinant tropomyosin during prepatent Haemonchus contortus infection in goat. Res Vet Sci 2019; 128:197-204. [PMID: 31816502 DOI: 10.1016/j.rvsc.2019.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Excretory and secretory products (ESPs) are released by the parasites during Haemonchus contortus (H. contortus) infection. In this study, Tropomyosin (TpMy), one of these ESPs was used to develop western blotting and optimized Enzyme Linked immunosorbent assay (ELISA) for detection of H. contortus during early infection in goat. Microscopic examination was performed parallel for comparison. Recombinant tropomyosin protein was purified successfully. Western blotting results revealed that anti-recombinant H. contortus Tropomyosin (rHc-TpMy) antibodies could recognize the natural proteinand rHc-TpMy antigen did not show any cross-reaction with goat anti-sera of Fasciola hepatica, Trichinella spiralis, and Toxoplasma gondii. Moreover, initial antibodies were detected by both western blotting and indirect ELISA at 14 days post infection (DPI) and persisted till 30 DPI but fecal eggs count couldn't detect the eggs in feces at early stage (7 and 14 DPI). The optimized antigen coating concentration was calculated as 10 μg/ml (P/N Optimum Density450 = 4.165) with optimized dilution of serum (1:50) and secondary antibody (1:2500). Positive and negative cutoff value of the indirect-ELISA assay was calculated as 0.392 and 0.344, respectively. Receiver operating characteristic curve analysis validated the cutoff value (0.392) based on a high specificity and sensitivity. Indirect ELISA showed 90% diagnostic sensitivity and 100% diagnostic specificity. In comparison of serological and conventional method, rHc-TpMy based indirect ELISA showed more positive results (30%; 9/30) than microscopic examination (20%; 6/30). These results demonstrated that rHc-TpMy is a potential immunodiagnostic antigen to detect specific antibodies at early stage of infection in goat and serological methods are more reliable as compared to microscopic examination.
Collapse
Affiliation(s)
- Muhammad Ali-Ul-Husnain Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China.
| | - Tahseen Jamil
- Sindh Agriculture University, Tandojam, Sindh, Pakistan.
| | - Sana Zahra Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China.
| | - Muhammad Ali Memon
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China.
| | - Kalibixiati Aimulajiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China.
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China.
| | - Muhammad Ehsan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China.
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China.
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China.
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China.
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China.
| |
Collapse
|
7
|
Zhang F, Liu B, Zhang Y, Wang J, Lu Y, Deng J, Wang S. Application of CdTe/CdS/ZnS quantum dot in immunoassay for aflatoxin B1 and molecular modeling of antibody recognition. Anal Chim Acta 2019; 1047:139-149. [DOI: 10.1016/j.aca.2018.09.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
|
8
|
Mo R, He L, Yan X, Su T, Zhou C, Wang Z, Hong P, Sun S, Li C. A novel aflatoxin B1 biosensor based on a porous anodized alumina membrane modified with graphene oxide and an aflatoxin B1 aptamer. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2018.08.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
9
|
Mahfuz M, Gazi MA, Hossain M, Islam MR, Fahim SM, Ahmed T. General and advanced methods for the detection and measurement of aflatoxins and aflatoxin metabolites: a review. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1514638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mustafa Mahfuz
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md. Amran Gazi
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Muttaquina Hossain
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | - Shah Mohammad Fahim
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
10
|
Azri FA, Sukor R, Selamat J, Abu Bakar F, Yusof NA, Hajian R. Electrochemical Immunosensor for Detection of Aflatoxin B₁ Based on Indirect Competitive ELISA. Toxins (Basel) 2018; 10:E196. [PMID: 29751668 PMCID: PMC5983252 DOI: 10.3390/toxins10050196] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Mycotoxins are the secondary toxic metabolites produced naturally by fungi. Analysis of mycotoxins is essential to minimize the consumption of contaminated food and feed. In this present work, an ultrasensitive electrochemical immunosensor for the detection of aflatoxin B₁ (AFB₁) was successfully developed based on an indirect competitive enzyme-linked immunosorbent assay (ELISA). Various parameters of ELISA, including antigen⁻antibody concentration, blocking agents, incubation time, temperature and pH of reagents, were first optimized in a 96-well microtiter plate to study the antigen⁻antibody interaction and optimize the optimum parameters of the assay. The optimized assay was transferred onto the multi-walled carbon nanotubes/chitosan/screen-printed carbon electrode (MWCNTs/CS/SPCE) by covalent attachment with the aid of 1-Ethyl-3-(3-dimetylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS). Competition occurred between aflatoxin B₁-bovine serum albumin (AFB₁⁻BSA) and free AFB₁ (in peanut sample and standard) for the binding site of a fixed amount of anti-AFB₁ antibody. Differential pulse voltammetry (DPV) analysis was used for the detection based on the reduction peak of TMB(ox). The developed immunosensor showed a linear range of 0.0001 to 10 ng/mL with detection limit of 0.3 pg/mL. AFB₁ analysis in spiked peanut samples resulted in recoveries between 80% and 127%. The precision of the developed immunosensor was evaluated by RSD values (n = 5) as 4.78% and 2.71% for reproducibility and repeatability, respectively.
Collapse
Affiliation(s)
- Farah Asilah Azri
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Rashidah Sukor
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Jinap Selamat
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Fatimah Abu Bakar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nor Azah Yusof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang Selangor, Malaysia.
| | - Reza Hajian
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang Selangor, Malaysia.
| |
Collapse
|
11
|
Pandey AK, Rajput YS, Sharma R, Singh D. Immobilized aptamer on gold electrode senses trace amount of aflatoxin M1. APPLIED NANOSCIENCE 2017; 7:893-903. [PMID: 29214120 PMCID: PMC5705768 DOI: 10.1007/s13204-017-0629-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 11/06/2017] [Indexed: 01/23/2023]
Abstract
An electrochemical aptasensor for detection of trace amounts of aflatoxin M1 was developed. This required immobilization of aptamer on screen printed gold electrode comprising of working electrode, counter electrode and reference electrode and was achieved by sequentially layering dithiodipropionic acid, streptavidin and biotinylated-tetraethylene glycol-aptamer. Immobilization of aptamer was monitored by cyclic voltammetry. Peak current in square wave voltammogram was inversely related to logarithmic concentration of aflatoxin M1. Dynamic range of sensor was 1-105 ppt aflatoxin M1. Sensor can be regenerated by treating electrode with 10% sodium dodecyl sulfate or 40 mM tris-HCl (pH 8.0) containing 10 mM ethylenediaminetetraacetic acid and 0.02% tween-20.
Collapse
Affiliation(s)
- Amit Kumar Pandey
- Animal Biochemistry Division, National Dairy Research Institute (NDRI), Karnal, Haryana 132001 India
| | - Yudhishthir Singh Rajput
- Animal Biochemistry Division, National Dairy Research Institute (NDRI), Karnal, Haryana 132001 India
| | - Rajan Sharma
- Dairy Chemistry Division, National Dairy Research Institute (NDRI), Karnal, Haryana 132001 India
| | - Dheer Singh
- Animal Biochemistry Division, National Dairy Research Institute (NDRI), Karnal, Haryana 132001 India
| |
Collapse
|
12
|
Li X, Cao L, Zhang Y, Yan P, Kirk DW. Fabrication and Modeling of an Ultrasensitive Label Free Impedimetric Immunosensor for Aflatoxin B1 based on Protein A Self-assembly Modified Gold 3D Nanotube Electrode ensembles. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.07.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Recent Advances in Electrochemical-Based Sensing Platforms for Aflatoxins Detection. CHEMOSENSORS 2016. [DOI: 10.3390/chemosensors5010001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Catanante G, Rhouati A, Hayat A, Marty JL. An Overview of Recent Electrochemical Immunosensing Strategies for Mycotoxins Detection. ELECTROANAL 2016. [DOI: 10.1002/elan.201600181] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Gaelle Catanante
- BAE: Biocapteurs-Analyses-Environnement; Universite de Perpignan Via Domitia; 52 Avenue Paul Alduy Perpignan Cedex 66860 France
| | - Amina Rhouati
- BAE: Biocapteurs-Analyses-Environnement; Universite de Perpignan Via Domitia; 52 Avenue Paul Alduy Perpignan Cedex 66860 France
- Ecole Nationale Supérieure de Biotechnologie; Constantine-Algérie
| | - Akhtar Hayat
- Interdisciplinary Research centre in Biomedical Materials (IRCBM); COMSATS Institute of Information technology; Lahore Pakistan
| | - Jean Louis Marty
- BAE: Biocapteurs-Analyses-Environnement; Universite de Perpignan Via Domitia; 52 Avenue Paul Alduy Perpignan Cedex 66860 France
| |
Collapse
|
15
|
Du B, Su X, Yang K, Pan L, Liu Q, Gong L, Wang P, Yang J, He Y. Antibody-Free Colorimetric Detection of Total Aflatoxins in Rice Based on a Simple Two-Step Chromogenic Reaction. Anal Chem 2016; 88:3775-80. [DOI: 10.1021/acs.analchem.5b04720] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Bibai Du
- School
of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoou Su
- Key Laboratory of Agro-Product Safety and Quality, Ministry of Agriculture, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kunhao Yang
- School
of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Pan
- School
of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingju Liu
- School
of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Gong
- School
of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peilong Wang
- Key Laboratory of Agro-Product Safety and Quality, Ministry of Agriculture, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingkui Yang
- School
of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujian He
- School
of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State
Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
16
|
|
17
|
Hu H, Cao L, Li Q, Ma K, Yan P, Kirk DW. Fabrication and modeling of an ultrasensitive label free impedimetric immunosensor for Aflatoxin B1based on poly(o-phenylenediamine) modified gold 3D nano electrode ensembles. RSC Adv 2015. [DOI: 10.1039/c5ra06300k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An ultrasensitive label free impedimetric immunosensor for AFB1detection was fabricated based on poly(o-phenylenediamine) (PoPD) electropolymerized film modified gold three dimensional nanoelectrode ensembles (3DNEEs).
Collapse
Affiliation(s)
- Haifeng Hu
- Department of Applied Chemistry
- Harbin Institute of Technology
- Weihai campus
- Weihai
- 264209 China
| | - Lixin Cao
- Department of Applied Chemistry
- Harbin Institute of Technology
- Weihai campus
- Weihai
- 264209 China
| | - Qingchuan Li
- Department of Applied Chemistry
- Harbin Institute of Technology
- Weihai campus
- Weihai
- 264209 China
| | - Kan Ma
- Department of Applied Chemistry
- Harbin Institute of Technology
- Weihai campus
- Weihai
- 264209 China
| | - Peisheng Yan
- Department of Bioengineering
- Harbin Institute of Technology
- Weihai campus
- Weihai
- 264209 China
| | - Donald W. Kirk
- Department of Chemical Engineering and Applied Chemistry
- University of Toronto
- Toronto
- M5S 3E5 Canada
| |
Collapse
|
18
|
Li P, Zhang Y, Lei HT, Wang H, Xu ZL, Shen YD, Sun YM, Pang J, Yang JY. Development of chemiluminescent enzyme immunoassay for the determination of aflatoxin M1in milk products. FOOD AGR IMMUNOL 2014. [DOI: 10.1080/09540105.2013.878898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
19
|
|
20
|
Electrochemical affinity biosensors for detection of mycotoxins: A review. Biosens Bioelectron 2013; 49:146-58. [PMID: 23743326 DOI: 10.1016/j.bios.2013.05.008] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 11/22/2022]
Abstract
This review discusses the current state of electrochemical biosensors in the determination of mycotoxins in foods. Mycotoxins are highly toxic secondary metabolites produced by molds. The acute toxicity of these results in serious human and animal health problems, although it has been only since early 1960s when the first studied aflatoxins were found to be carcinogenic. Mycotoxins affect a broad range of agricultural products, most important cereals and cereal-based foods. A majority of countries, mentioning especially the European Union, have established preventive programs to control contamination and strict laws of the permitted levels in foods. Official methods of analysis of mycotoxins normally requires sophisticated instrumentation, e.g. liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. For about sixteen years, the use of simpler and faster analytical procedures based on affinity biosensors has emerged in scientific literature as a very promising alternative, particularly electrochemical (i.e., amperometric, impedance, potentiometric or conductimetric) affinity biosensors due to their simplicity and sensitivity. Typically, electrochemical biosensors for mycotoxins use specific antibodies or aptamers as affinity ligands, although recombinant antibodies, artificial receptors and molecular imprinted polymers show potential utility. This article deals with recent advances in electrochemical affinity biosensors for mycotoxins and covers complete literature from the first reports about sixteen years ago.
Collapse
|
21
|
Lee S, Kim G, Moon J. Performance improvement of the one-dot lateral flow immunoassay for aflatoxin B1 by using a smartphone-based reading system. SENSORS (BASEL, SWITZERLAND) 2013; 13:5109-16. [PMID: 23598499 PMCID: PMC3673128 DOI: 10.3390/s130405109] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/25/2013] [Accepted: 04/10/2013] [Indexed: 11/29/2022]
Abstract
This study was conducted to develop a simple, rapid, and accurate lateral flow immunoassay (LFIA) detection method for point-of-care diagnosis. The one-dot LFIA for aflatoxin B1 (AFB1) was based on the modified competitive binding format using competition between AFB1 and colloidal gold-AFB1-BSA conjugate for antibody binding sites in the test zone. A Smartphone-based reading system consisting of a Samsung Galaxy S2 Smartphone, a LFIA reader, and a Smartphone application for the image acquisition and data analysis. The detection limit of one-dot LFIA for AFB1 is 5 μg/kg. This method provided semi-quantitative analysis of AFB1 samples in the range of 5 to 1,000 μg/kg. Using combination of the one-dot LFIA and the Smartphone-based reading system, it is possible to conduct a more fast and accurate point-of-care diagnosis.
Collapse
Affiliation(s)
- Sangdae Lee
- Post-Harvest & Food Engineering Division, Department of Agricultural Engineering, National Academy of Agricultural Sciences, Suwon 441707, Korea; E-Mails: (S.L.); (J.M.)
| | - Giyoung Kim
- Post-Harvest & Food Engineering Division, Department of Agricultural Engineering, National Academy of Agricultural Sciences, Suwon 441707, Korea; E-Mails: (S.L.); (J.M.)
| | - Jihea Moon
- Post-Harvest & Food Engineering Division, Department of Agricultural Engineering, National Academy of Agricultural Sciences, Suwon 441707, Korea; E-Mails: (S.L.); (J.M.)
| |
Collapse
|
22
|
Moon J, Kim G, Lee S. A Gold Nanoparticle and Aflatoxin B1-BSA Conjugates Based Lateral Flow Assay Method for the Analysis of Aflatoxin B1. MATERIALS 2012; 5:634-643. [PMID: 28817000 PMCID: PMC5448957 DOI: 10.3390/ma5040634] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/28/2012] [Accepted: 04/05/2012] [Indexed: 11/16/2022]
Abstract
A rapid and simple immuno-chromatographic assay was developed to detect aflatoxin B1 (AFB1). The assay was based on a modified competitive binding format using colloidal gold and polyclonal antibody (Pab) conjugates. The anti-AFB1 Pab was immobilized to a defined detection zone on a porous nitrocellulose membrane and colloidal gold particles were conjugated to AFB1-BSA which served as a detection reagent. The AFB1-containing sample was added to the membrane and allowed to move with AFB1-BSA-coated particles dried on the conjugation pad. The mixture was then passed along the porous membrane by capillary action past the Pab in the detection zone, which captured AFB1 or AFB1-BSA. AFB1 in the sample inhibits binding of AFB1-BSA conjugated gold particles to the Pab and prevents formation of a red color dot. In the absence of AFB1, AFB1-BSA conjugated gold particles bound to the Pab, give a red color within this detection zone. With this method, 10 μg/mL of AFB1 was detected in less than 10 min. The developed AFB1 assay also showed no cross reaction to Ochratoxin A (OTA).
Collapse
Affiliation(s)
- Jihea Moon
- Post-Harvest & Food Engineering Division, Department of Agricultural Engineering, National Academy of Agricultural Sciences, Suwon 441-707, Korea.
| | - Giyoung Kim
- Post-Harvest & Food Engineering Division, Department of Agricultural Engineering, National Academy of Agricultural Sciences, Suwon 441-707, Korea.
| | - Sangdae Lee
- Post-Harvest & Food Engineering Division, Department of Agricultural Engineering, National Academy of Agricultural Sciences, Suwon 441-707, Korea.
| |
Collapse
|
23
|
Puiu M, Istrate O, Rotariu L, Bala C. Kinetic approach of aflatoxin B1–acetylcholinesterase interaction: A tool for developing surface plasmon resonance biosensors. Anal Biochem 2012; 421:587-94. [DOI: 10.1016/j.ab.2011.10.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/16/2011] [Accepted: 10/17/2011] [Indexed: 11/28/2022]
|
24
|
Molina-García L, Fernández-de Córdova ML, Ruiz-Medina A. Indirect determination of aflatoxin B₁ in beer via a multi-commuted optical sensor. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2012; 29:392-402. [PMID: 22264222 DOI: 10.1080/19440049.2011.643244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
This paper reports the determination of aflatoxin B₁ (AFB₁), one of the most carcinogenic substances known. A multi-commuted flow injection-solid phase spectroscopy (FI-SPS) system combined with photochemically induced fluorescence (PIF) was developed, for the first time, for its quantitative determination. A strongly fluorescent degradation product was obtained on-line by irradiation with ultraviolet light. The determination was carried out by measuring the fluorescence intensity of the photo-product at 353/424 (λ (ex)/λ (em)), once retained on C₁₈ silica-gel filling the flow-cell. A linear dynamic range of 0.09-12 µg l⁻¹, detection limit as sensitive as 29 ng l⁻¹ and a relative standard deviation (RSD) of 1.4% were obtained. The method proposed was satisfactorily applied to the determination of AFB₁ in different types of beer (normal and non-alcoholic). Hydrophobic compounds were eliminated from beer samples and AFB₁ was extracted with acetonitrile by solid-phase extraction on C₁₈ sorbent. Recoveries of the target compound from spiked beers were between 94 and 106%. The results obtained in the analysis of real samples are in good agreement with those provided by a reference chromatographic method.
Collapse
Affiliation(s)
- Lucía Molina-García
- Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | | | | |
Collapse
|
25
|
|
26
|
Abstract
In this review, the current status of research in electrochemical immunosensors is considered. We primarily focus on label-free and enzyme-labeled immunosensors, and the analytical capabilities of these devices are discussed. Moreover, the use of magnetic beads as new materials for immunosensors coupled with electrochemical sensing is also described, together with the application of new molecules such as aptamers as specific biorecognition elements. Examples of the applicability of these devices in solving various analytical problems in clinical, environmental and food fields are reported. Finally, the prospects for the further development of immunosensor technologies are shown.
Collapse
|
27
|
Development of an impedimetric aflatoxin M1 biosensor based on a DNA probe and gold nanoparticles. Biosens Bioelectron 2011; 26:3806-11. [PMID: 21420290 DOI: 10.1016/j.bios.2011.02.038] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 11/22/2022]
Abstract
The present work describes the construction and application of a new DNA biosensor for detection of aflatoxin M1. In order to immobilize a thiol-modified single stranded DNA (ss-HSDNA) probe that specifically bound aflatoxin M1, a self-assembled monolayer of cysteamine and gold nanoparticles on the SAM were prepared on gold electrodes, layer-by-layer. The assembly processes of cysteamine, gold nanoparticles, and ss-HSDNA were monitored with the help of electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. K3[Fe(CN)6]/K4[Fe(CN)6] solution was used as a redox probe for electrochemical measurements. The biosensor provided a linear response to aflatoxin M1 over the concentration range of 1-14 ng/mL with a standard deviation of ±0.36 ng/mL. Finally, the biosensor was applied to a series of real milk samples.
Collapse
|
28
|
Meneely J, Ricci F, Vesco S, Abouzied M, Sulyok M, Krska R, Elliott C. A comparative study of qualitative immunochemical screening assays for the combined measurement of T-2/HT-2 in cereals and cereal-based products. WORLD MYCOTOXIN J 2011. [DOI: 10.3920/wmj2011.1313] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many different immunochemical platforms exist for the screening of naturally occurring contaminants in food from the low cost enzyme linked immunosorbent assays (ELISA) to the expensive instruments such as optical biosensors based on the phenomenon of surface plasmon resonance (SPR). The primary aim of this study was to evaluate and compare a number of these platforms to assess their accuracy and precision when applied to naturally contaminated samples containing HT-2/T-2 mycotoxins. Other important factors considered were the speed of analysis, ease of use (sample preparation techniques and use of the equipment) and ultimately the cost implications. The three screening procedures compared included an SPR biosensor assay, a commercially available ELISA and an enzymelinked immunomagnetic electrochemical array (ELIME array). The qualitative data for all methods demonstrated very good overall agreements with each other, however on comparison with mass spectrometry confirmatory results, the ELISA and SPR assay performed slightly better than the ELIME array, exhibiting an overall agreement of 95.8% compared to 91.7%. Currently, SPR is more costly than the other two platforms and can only be used in the laboratory whereas in theory both the ELISA and ELIME array are portable and can be used in the field, but ultimately this is dependent on the sample preparation techniques employed. Sample preparative techniques varied for all methods evaluated, the ELISA was the most simple to perform followed by that of the SPR method. The ELIME array involved an additional clean-up step thereby increasing both the time and cost of analysis. Therefore in the current format, field use would not be an option for the ELIME array. In relation to speed of analysis, the ELISA outperformed the other methods.
Collapse
Affiliation(s)
- J. Meneely
- Institute of Agri-Food and Land Use, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, United Kingdom
| | - F. Ricci
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - S. Vesco
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - M. Abouzied
- Neogen Corporation, 620 Lesher Place, Lansing MI 48912, USA
| | - M. Sulyok
- Department IFA-Tulln, University of Natural Resources and Life Sciences, Konrad Lorenzstr. 20, 3430 Tulln, Austria
| | - R. Krska
- Department IFA-Tulln, University of Natural Resources and Life Sciences, Konrad Lorenzstr. 20, 3430 Tulln, Austria
| | - C. Elliott
- Institute of Agri-Food and Land Use, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, United Kingdom
| |
Collapse
|
29
|
Tothill I. Biosensors and nanomaterials and their application for mycotoxin determination. WORLD MYCOTOXIN J 2011. [DOI: 10.3920/wmj2011.1318] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycotoxin analysis and detection in food and drinks is vital for ensuring food quality and safety, eliminating and controlling the risk of consuming contaminated foods, and complying with the legislative limits set by food authorities worldwide. Most analysis of these toxins is still conducted using conventional methods; however, biosensor methods are currently being developed as screening tools for use in field analysis. Biosensors have demonstrated their ability to provide rapid, sensitive, robust and cost-effective quantitative methods for on-site testing. The development of biosensor devices for different mycotoxins has attracted much research interest in recent years with a range of devices being designed and reported in the scientific literature. However, with the advent of nanotechnology and its impact on the evolution of ultrasensitive devices, mycotoxin analysis is also benefiting from the advances taking place in applying nanomaterials in sensors development. This paper reviews the developments in the area of biosensors and their applications for mycotoxin analysis, as well as the development of micro/nanoarray transducers and nanoparticles and their use in the development of new rapid devices.
Collapse
Affiliation(s)
- I. Tothill
- Cranfield University, Cranfield Health, Vincent Building, Cranfield, Bedfordshire MK 43 0AL, United Kingdom
| |
Collapse
|
30
|
Abstract
A novel method for aflatoxin B (AFB) determination is proposed. The AFB determination is based on acetylcholinesterase (AChE, from electric eel) inhibition, and the AChE residual activity is determined using the colorimetric method (Ellman's method). To select and optimize the analytical procedures, the investigation on type of AChE inhibition by AFB(1) was carried out. The AChE degree of inhibition by AFB(1) was independent of the incubation time and the enzyme concentrations, showing the reversibility of the inhibition. This reversibility of the inhibition permits a rapid analysis of AFB(1). In fact, only a 3-min analysis is required. For the development of AFB(1) assay, the pH, the reaction time, the temperature, and the substrate concentration were evaluated and optimized. The linear range of 10-60 ng/mL was assessed. To evaluate the selectivity of this method, the cross-reactivity with other aflatoxins, such as AFB(2) (aflatoxin B(2)), AFG(1) (aflatoxin G(1)), AFG(2) (aflatoxin G(2)), and AFM(1) (aflatoxin M(1)), was investigated. The suitability of the assay for AFB(1) quantification in barley was also evaluated. This study shows a new approach to detect aflatoxins based on enzyme inhibition with several advantages, such as the easiness of use, the rapidity, and the cost-effectiveness, demonstrating a possible use as screening method for this type of mycotoxins.
Collapse
Affiliation(s)
- Danila Moscone
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Roma, Italy.
| | | | | |
Collapse
|
31
|
Kadir MKA, Tothill IE. Development of an electrochemical immunosensor for fumonisins detection in foods. Toxins (Basel) 2010; 2:382-98. [PMID: 22069591 PMCID: PMC3153203 DOI: 10.3390/toxins2040382] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 02/23/2010] [Accepted: 03/19/2010] [Indexed: 12/04/2022] Open
Abstract
An electrochemical affinity sensor for the determination of fumonisins mycotoxins (Fms) using monoclonal antibody modified screen-printed gold electrode with carbon counter and silver-silver chloride pseudo-reference electrode is reported in this work. A direct competitive enzyme-linked immunosorbent assay (ELISA) was initially developed, exhibiting a detection limit of 100 µg·L-1 for fumonisins. This was then transferred to the surface of a bare gold screen-printed electrode (SPGE) and detection was performed by chronoamperometry, monitoring the reaction of 3,3’,5,5’-Tetramethylbenzidine dihydrochloride (TMB) and hydrogen peroxide (H2O2) catalysed by HRP at −100 mV potential vs. onboard Ag-AgCl pseudo-reference electrode. The immunosensor exhibited detection limit of 5 µg·L−1 fumonisins with a dynamic range from 1 µg·L−1–1000 µg·L−1. The sensor also performed well in extracted corn samples.
Collapse
|
32
|
Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection (review). Mikrochim Acta 2010. [DOI: 10.1007/s00604-010-0317-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
|
34
|
|
35
|
Parker CO, Lanyon YH, Manning M, Arrigan DWM, Tothill IE. Electrochemical immunochip sensor for aflatoxin M1 detection. Anal Chem 2009; 81:5291-8. [PMID: 19489595 DOI: 10.1021/ac900511e] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An investigation into the fabrication, electrochemical characterization, and development of a microelectrode array (MEA) immunosensor for aflatoxin M(1) is presented in this paper. Gold MEAs (consisting of 35 microsquare electrodes with 20 microm x 20 microm dimensions and edge-to-edge spacing of 200 microm) together with on-chip reference and counter electrodes were fabricated using standard photolithographic methods. The MEAs were then characterized by cyclic voltammetry, and the behavior of the on-chip electrodes were evaluated. The microarray sensors were assessed for their applicability to the development of an immunosensor for the analysis of aflatoxin M(1) directly in milk samples. Following the sensor surface silanization, antibodies were immobilized by cross-linking with 1,4-phenylene diisothiocyanate (PDITC). Surface characterization was conducted by electrochemistry, fluorescence microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). A competitive enzyme linked immunosorbent assay (ELISA) assay format was developed on the microarray electrode surface using the 3,3,5',5'-tetramethylbenzidine dihyrochloride (TMB)/H(2)O(2) electrochemical detection scheme with horseradish peroxidase (HRP) as the enzyme label. The performance of the assay and the microarray sensor were characterized in pure buffer conditions before applying to the milk samples. With the use of this approach, the detection limit for aflatoxin M(1) in milk was estimated to be 8 ng L(-1), with a dynamic detection range of 10-100 ng L(-1), which meets present legislative limits of 50 ng L(-1). The milk interference with the sensor surface was also found to be minimal. These devices show high potential for development of a range of new applications which have previously only been detected using elaborate instrumentation.
Collapse
Affiliation(s)
- Charlie O Parker
- Cranfield Health, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
| | | | | | | | | |
Collapse
|
36
|
Goryacheva IY, Rusanova TY, Burmistrova NA, De Saeger S. Immunochemical methods for the determination of mycotoxins. JOURNAL OF ANALYTICAL CHEMISTRY 2009. [DOI: 10.1134/s1061934809080024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Neagu D, Capodilupo A, Vilkanauskyte A, Micheli L, Palleschi G, Moscone D. AFB1–AP Conjugate for Enzyme Immunoassay of Aflatoxin B1in Corn Samples. ANAL LETT 2009. [DOI: 10.1080/00032710902890405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Shephard GS. Aflatoxin analysis at the beginning of the twenty-first century. Anal Bioanal Chem 2009; 395:1215-24. [DOI: 10.1007/s00216-009-2857-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/15/2009] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
|
39
|
Maragos C. Biosensors for mycotoxin analysis: recent developments and future prospects. WORLD MYCOTOXIN J 2009. [DOI: 10.3920/wmj2008.1117] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The toxicity and prevalence of mycotoxins in commodities and foods has necessitated the development of rapid methods in order to ensure the protection of human food and animal feed supplies. Testing for mycotoxins can be accomplished by many techniques that range from determinative tests in which the presence of the toxin is confirmed, to presumptive tests in which the presence of the toxin is inferred from the presence of markers. This review focuses on tests that fall into a third category, namely indirect assays, where the presence of the toxin is established by it's interaction with an intermediary. Such intermediaries include biological materials that bind mycotoxins, such as antibodies, as well as synthetic materials such as polymers and man-made peptides. The diversity of assays within this category is extraordinary and includes assays based upon traditional microwell formats, microbeads, membranes, electrodes, wave-guides, and solution-phase assays. The microbead format includes platforms as diverse as flow injection immunoassays, tandem column immunoassays, and immunoaffinity columns. The membrane-based formats include flow-through as well as lateral-flow assays. The electrode-based formats incorporate miniaturised immunoassays with electrochemical endpoints. The wave-guide-based devices include formats such as surface plasmon resonance, and fluorescence array biosensors, and the solution phase formats include homogeneous assays such as fluorescence polarisation immunoassay. The breadth of technologies brought to bear upon solving the need for rapid, accurate, detection of mycotoxins is impressive and includes technologies currently available commercially and those which appear poised to enter the marketplace.
Collapse
Affiliation(s)
- C. Maragos
- Mycotoxin Research Unit, National Center for Agricultural Utilization Research, ARS, USDA, 1815 N. University St., Peoria, IL 61604, USA
| |
Collapse
|
40
|
|
41
|
Wang Y, Dostálek J, Knoll W. Long range surface plasmon-enhanced fluorescence spectroscopy for the detection of aflatoxin M1 in milk. Biosens Bioelectron 2009; 24:2264-7. [DOI: 10.1016/j.bios.2008.10.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 10/17/2008] [Accepted: 10/29/2008] [Indexed: 10/21/2022]
|
42
|
Development of a bio-electrochemical assay for AFB1 detection in olive oil. Biosens Bioelectron 2009; 24:1962-8. [DOI: 10.1016/j.bios.2008.10.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 09/30/2008] [Accepted: 10/03/2008] [Indexed: 11/18/2022]
|
43
|
Parker CO, Tothill IE. Development of an electrochemical immunosensor for aflatoxin M1 in milk with focus on matrix interference. Biosens Bioelectron 2008; 24:2452-7. [PMID: 19167207 DOI: 10.1016/j.bios.2008.12.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 12/15/2008] [Accepted: 12/16/2008] [Indexed: 11/17/2022]
Abstract
A simple sensor method was developed for aflatoxin M(1) analysis to be applied directly with milk by using antibody modified screen-printed carbon working electrode with carbon counter and silver-silver chloride pseudo-reference electrode. A competitive ELISA assay format was constructed on the surface of the working electrode using 3,3,5',5'-tetramethylbenzidine dihyrochloride (TMB)/H(2)O(2) electrochemical detection scheme with horseradish peroxidase (HRP) as the enzyme label. The performance of the assay and the sensor was optimised and characterised in pure buffer conditions before applying to milk samples. Extensive interference to the electroanalytical signal was observed upon the analysis of milk. Through a series of chemical fractionations of the milk, and testing the electrochemical properties of the fractions, the interference was attributed to whey proteins with focus towards alpha-lactalbumin. A simple pre-treatment technique of incorporating 18 mM calcium chloride, in the form of Dulbucco's PBS, in a 1:1 ratio to the milk sample or standards and also to the washing buffer stabilised the whey proteins in solution and eliminate the interfering signal. The resulting immunosensor was interference free and achieved a limit of detection of 39 ng l(-1) with a linear dynamic detection range up to 1000 ng l(-1). The developed immunosensor method was compared to a commercial ELISA kit and an in-house HPLC method. The immunsensor was comparable, in term of sensitivity, but vastly superior in term of portability and cost therefore a key instrument for the detection of aflatoxin M(1) at the source of the contamination.
Collapse
Affiliation(s)
- Charlie O Parker
- Cranfield Health, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | | |
Collapse
|
44
|
Biomolecule-functionalized magnetic nanoparticles for flow-through quartz crystal microbalance immunoassay of aflatoxin B1. Bioprocess Biosyst Eng 2008; 32:109-16. [DOI: 10.1007/s00449-008-0228-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 04/24/2008] [Indexed: 11/26/2022]
|
45
|
An electrochemical enzyme immunoassay for aflatoxin B1 based on bio-electrocatalytic reaction with room-temperature ionic liquid and nanoparticle-modified electrodes. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s11694-008-9040-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Goryacheva IY, De Saeger S, Eremin SA, Van Peteghem C. Immunochemical methods for rapid mycotoxin detection: Evolution from single to multiple analyte screening: A review. ACTA ACUST UNITED AC 2007; 24:1169-83. [PMID: 17886190 DOI: 10.1080/02652030701557179] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This review focuses on recent developments in immunochemical methods for detection of mycotoxins, with a particular emphasis on simultaneous multiple analyte determination. This includes high-throughput instrumental analysis for the laboratory environment (microtitre plate enzyme-linked immunoabsorbant assay (ELISA), different kinds of immunosensors, fluorescence polarization immunoassay, and capillary electrophoretic immunoassay), as well as rapid visual tests for on-site testing (lateral-flow, dipstick, flow-through and column tests). For each type of immunoassay, perspectives for multiple analyte application are discussed and examples cited.
Collapse
Affiliation(s)
- I Y Goryacheva
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | | | | | | |
Collapse
|
47
|
Renedo OD, Alonso-Lomillo M, Martínez MA. Recent developments in the field of screen-printed electrodes and their related applications. Talanta 2007; 73:202-19. [DOI: 10.1016/j.talanta.2007.03.050] [Citation(s) in RCA: 442] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/14/2007] [Accepted: 03/23/2007] [Indexed: 11/29/2022]
|
48
|
Abstract
Molecular recognition of different enantiomers of a drug has become of increasing importance in the last decade due to the racemic switch strategy adapted by the pharmaceutical industry. Different analytical techniques to carry out enantioselective analysis of chiral compounds have been suggested in the literature. In the following, a brief overview of different techniques used for enantioselective analysis is given. Challenging aspects of these techniques, such as the quality of analytical information received from each technique, advantages, and disadvantages are discussed. Alternatives (enantioselective membranes, amperometric biosensors, molecularly imprinted polymers (MIPs)), capable of meeting the requirements of industrial processes, in terms of productivity, cost-effectiveness, and environmental issues are critically reviewed.
Collapse
Affiliation(s)
- Emad L Izake
- Forensic Chemistry Section, Pathology and Scientific Services, Queensland Health, Queensland Government, Australia.
| |
Collapse
|
49
|
|
50
|
Piermarini S, Volpe G, Ricci F, Micheli L, Moscone D, Palleschi G, Führer M, Krska R, Baumgartner S. Rapid Screening Electrochemical Methods for Aflatoxin B1and Type‐A Trichothecenes: A Preliminary Study. ANAL LETT 2007. [DOI: 10.1080/00032710701326692] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|