1
|
Yusoff N, Rameshkumar P, Shahid MM, Huang ST, Huang NM. Amperometric detection of nitric oxide using a glassy carbon electrode modified with gold nanoparticles incorporated into a nanohybrid composed of reduced graphene oxide and Nafion. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2344-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
2
|
|
3
|
Royo B, Sosna M, Asensio AC, Moran JF, Ferapontova EE. Direct electrochemistry and environmental sensing of rice hemoglobin immobilized at graphite electrodes. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Santos RM, Rodrigues MS, Laranjinha J, Barbosa RM. Biomimetic sensor based on hemin/carbon nanotubes/chitosan modified microelectrode for nitric oxide measurement in the brain. Biosens Bioelectron 2013; 44:152-9. [PMID: 23419387 DOI: 10.1016/j.bios.2013.01.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/06/2013] [Accepted: 01/07/2013] [Indexed: 01/19/2023]
Abstract
A novel biomimetic microsensor for measuring nitric oxide (NO) in the brain in vivo was developed. The sensor consists of hemin and functionalized multi-wall carbon nanotubes covalently attached to chitosan via the carbodiimide crosslinker EDC followed by chitosan electrodeposition on the surface of carbon fiber microelectrodes. Cyclic voltammetry supported direct electron transfer from the Fe(III)/Fe(II) couple of hemin to the carbon surface at -0.370 V and -0.305 V vs. Ag/AgCl for cathodic and anodic peaks, respectively. Square wave voltammetry revealed a NO reduction peak at -0.762 V vs. Ag/AgCl that increased linearly with NO concentration between 0.25 and 1 μM. The average sensitivity of the microsensors was 1.72 nA/μM and the limit of detection was 25 nM. Oxygen and hydrogen peroxide reduction peaks were observed at -0.269 V and -0.332 V vs. Ag/AgCl, respectively and no response was observed for other relevant interferents, namely ascorbate, nitrite and dopamine. The microsensor was successfully applied to the measurement of exogenously applied NO in the rat brain in vivo.
Collapse
Affiliation(s)
- Ricardo M Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | |
Collapse
|
5
|
Cortina-Puig M, Prieto-Simón B, Campàs M, Calas-Blanchard C, Marty JL. Determination of the antioxidants' ability to scavenge free radicals using biosensors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 698:222-33. [PMID: 21520714 DOI: 10.1007/978-1-4419-7347-4_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Free radicals are highly reactive molecules generated during cellular metabolism. However, their overproduction results in oxidative stress, a deleterious process that can damage cell structures, including lipids and membranes, proteins and DNA. Antioxidants respond to this problem, scavenging free radicals. This chapter critically reviews the electrochemical biosensors developed for the evaluation of the antioxidant capacity of specific compounds. Due to the ability of these devices to perform simple, fast and reliable analysis, they are promising biotools for the assessment ofantioxidant properties.
Collapse
|
6
|
Shumiantseva VV, Suprun EV, Bulko TV, Dobrynina OV, Archakov AI. [Sensor systems for medical application based on hemoproteins and nanocomposite materials]. BIOMEDITSINSKAIA KHIMIIA 2011; 56:55-71. [PMID: 21328911 DOI: 10.18097/pbmc20105601055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent advances in nanotechnologies stimulate the development of sensor systems based on nanocomposite materials. This review discusses the prospects and challenges of sensors coupled with functionally important for medicine hemoproteins and nanoscale materials. Authors summarized their own experimental results and literature data on hemoprotein-based sensor systems. Mechanisms and the main function principles of electrochemical nanosensors are also discussed.
Collapse
|
7
|
|
8
|
Shumyantseva VV, Suprun EV, Bulko TV, Dobrynina OV, Archakov AI. Sensor systems for medical application based on hemoproteins and nanocomposite materials. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2010. [DOI: 10.1134/s199075081001004x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Mousty C. Biosensing applications of clay-modified electrodes: a review. Anal Bioanal Chem 2009; 396:315-25. [PMID: 19936720 DOI: 10.1007/s00216-009-3274-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/29/2009] [Accepted: 10/29/2009] [Indexed: 11/27/2022]
Abstract
Two-dimensional layered inorganic solids, such as cationic clays and layered double hydroxides (LDHs), also defined as anionic clays, have open structures which are favourable for interactions with enzymes and which intercalate redox mediators. This review aims to show the interest in clays and LDHs as suitable host matrices likely to immobilize enzymes onto electrode surfaces for biosensing applications. It is meant to provide an overview of the various types of electrochemical biosensors that have been developed with these 2D layered materials, along with significant advances over the last several years. The different biosensor configurations and their specific transduction procedures are discussed.
Collapse
Affiliation(s)
- Christine Mousty
- Laboratoire des Matériaux Inorganiques (LMI, UMR UBP-CNRS 6002), Université Blaise Pascal (Clermont-Ferrand), 24, Avenue des Landais, 63177, Aubière cedex, France.
| |
Collapse
|
10
|
Perry M, Li Q, Kennedy RT. Review of recent advances in analytical techniques for the determination of neurotransmitters. Anal Chim Acta 2009; 653:1-22. [PMID: 19800472 PMCID: PMC2759352 DOI: 10.1016/j.aca.2009.08.038] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/25/2009] [Accepted: 08/27/2009] [Indexed: 12/18/2022]
Abstract
Methods and advances for monitoring neurotransmitters in vivo or for tissue analysis of neurotransmitters over the last five years are reviewed. The review is organized primarily by neurotransmitter type. Transmitter and related compounds may be monitored by either in vivo sampling coupled to analytical methods or implanted sensors. Sampling is primarily performed using microdialysis, but low-flow push-pull perfusion may offer advantages of spatial resolution while minimizing the tissue disruption associated with higher flow rates. Analytical techniques coupled to these sampling methods include liquid chromatography, capillary electrophoresis, enzyme assays, sensors, and mass spectrometry. Methods for the detection of amino acid, monoamine, neuropeptide, acetylcholine, nucleoside, and soluble gas neurotransmitters have been developed and improved upon. Advances in the speed and sensitivity of these methods have enabled improvements in temporal resolution and increased the number of compounds detectable. Similar advances have enabled improved detection at tissue samples, with a substantial emphasis on single cell and other small samples. Sensors provide excellent temporal and spatial resolution for in vivo monitoring. Advances in application to catecholamines, indoleamines, and amino acids have been prominent. Improvements in stability, sensitivity, and selectivity of the sensors have been of paramount interest.
Collapse
Affiliation(s)
- Maura Perry
- University of Michigan, Department of Chemistry, 930 N. University, Ann Arbor, MI 48109-1055, USA
| | | | | |
Collapse
|
11
|
Charradi K, Forano C, Prevot V, Ben Haj Amara A, Mousty C. Direct electron transfer and enhanced electrocatalytic activity of hemoglobin at iron-rich clay modified electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:10376-10383. [PMID: 19518082 DOI: 10.1021/la901080r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The possible role of structural iron in clays to promote direct electron transfer of hemoglobin (Hb) was investigated. Clays containing different amounts of iron situated in octahedral or tetrahedral sites have been used to modify glassy carbon electrodes: nontronite, synthetic montmorillonite, and saponite. A synthetic montmorillonite containing non-iron impurities was used as a reference. Interactions between Hb and these clays were studied with the establishment of adsorption isotherms and by the analysis of X-ray diffraction patterns, FTIR, and UV-vis spectra of the Hb-clay samples. The electrochemical behavior of clay modified electrodes (CME) was characterized by cyclic voltammetry in the presence of Hb in solution or adsorbed within the clays. Nontronite, which contains the highest amount of structural iron, enhanced significantly direct electron transfer of Hb. Finally, the electrocatalytic behavior of Hb-Nontronite CME in the presence of hydrogen peroxide was also studied, and the H(2)O(2) calibration curve was recorded under amperometric conditions for different bioelectrode configurations.
Collapse
Affiliation(s)
- Khaled Charradi
- Departement de Chimie Moleculaire (DCM, UMR CNRS-UJF 5250) Universite Joseph Fourier, 38041 Grenoble, France
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Hetrick EM, Schoenfisch MH. Analytical chemistry of nitric oxide. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2009; 2:409-33. [PMID: 20636069 PMCID: PMC3563389 DOI: 10.1146/annurev-anchem-060908-155146] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nitric oxide (NO) is the focus of intense research primarily because of its wide-ranging biological and physiological actions. To understand its origin, activity, and regulation, accurate and precise measurement techniques are needed. Unfortunately, analytical assays for monitoring NO are challenged by NO's unique chemical and physical properties, including its reactivity, rapid diffusion, and short half-life. Moreover, NO concentrations may span the picomolar-to-micromolar range in physiological milieus, requiring techniques with wide dynamic response ranges. Despite such challenges, many analytical techniques have emerged for the detection of NO. Herein, we review the most common spectroscopic and electrochemical methods, with a focus on the underlying mechanism of each technique and on approaches that have been coupled with modern analytical measurement tools to create novel NO sensors.
Collapse
Affiliation(s)
- Evan M. Hetrick
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
14
|
A Voltammetric Biosensor Based on Glassy Carbon Electrodes Modified with Single-Walled Carbon Nanotubes/Hemoglobin for Detection of Acrylamide in Water Extracts from Potato Crisps. SENSORS 2008; 8:5832-5844. [PMID: 27873843 PMCID: PMC3705533 DOI: 10.3390/s8095832] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/12/2008] [Accepted: 09/18/2008] [Indexed: 11/24/2022]
Abstract
The presence of toxic acrylamide in a wide range of food products such as potato crisps, French fries or bread has been confirmed by Swedish scientists from Stockholm University. The neurotoxicity, possible carcinogenicity of this compound and its metabolites compels us to control them by quantitative and qualitative assays. Acrylamide forms adduct with hemoglobin (Hb) as a result of the reaction the -NH2 group of the N-terminal valine with acrylamide. In this work we present the use of glassy carbon electrodes coated with single-walled carbon nanotubes (SWCNTs) and Hb for voltammetric detection of acrylamide in water solutions. The electrodes presented a very low detection limit (1.0×10-9 M). The validation made in the matrix obtained by water extraction of potato crisps showed that the electrodes presented are suitable for the direct determination of acrylamide in food samples.
Collapse
|
15
|
Guo Z, Chen J, Liu H, Cha C. Direct electrochemistry of hemoglobin and myoglobin at didodecyldimethylammonium bromide-modified powder microelectrode and application for electrochemical detection of nitric oxide. Anal Chim Acta 2008; 607:30-6. [DOI: 10.1016/j.aca.2007.11.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 11/11/2007] [Accepted: 11/15/2007] [Indexed: 11/25/2022]
|
16
|
Sun W, Wang D, Zhong J, Jiao K. Electrocatalytic activity of hemoglobin in sodium alginate/SiO2 nanoparticle/ionic liquid BMIMPF6 composite film. J Solid State Electrochem 2007. [DOI: 10.1007/s10008-007-0395-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Stobiecka A, Radecka H, Radecki J. Novel voltammetric biosensor for determining acrylamide in food samples. Biosens Bioelectron 2007; 22:2165-70. [PMID: 17097868 DOI: 10.1016/j.bios.2006.10.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 08/24/2006] [Accepted: 10/09/2006] [Indexed: 10/23/2022]
Abstract
Recent findings showing that acrylamide is formed in heat-treated foods rich in asparagine and reducing sugars such as glucose, have accelerated the needs for the development of new analytical methods to determine this potential human carcinogen. Acrylamide forms adduct with hemoglobin (Hb) as a result of the reaction with the alpha-NH2 group of N-terminal valine of Hb. This interaction is the basis of a new voltammetric biosensor to detect acrylamide. The biosensor was constructed using a carbon-paste electrode modified with hemoglobin (Hb), which contains four prosthetic groups of heme--Fe(III). Such an electrode displays a reversible reduction/oxidation process of Hb-Fe(III)/Hb-Fe(II). Interaction between Hb and acrylamide was observed through decreasing of the peak current of Hb-Fe(III) reduction. The electrodes presented a very low detection limit (1.2 x 10(-10)M). The validation made in the matrix obtained by water extraction of potato chips showed that the electrodes presented are suitable for the direct determination of acrylamide in food samples.
Collapse
Affiliation(s)
- Agata Stobiecka
- Institute of Animal Reproduction and Food Research, The Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn, Poland
| | | | | |
Collapse
|
18
|
Chen X, Xie P, Tian Q, Hu S. Amperometric Nitric Oxide Sensor Based on Poly(Thionine)/Nafion‐Modified Electrode and Its Application in Monitoring Nitric Oxide Release from Rat Kidney. ANAL LETT 2006. [DOI: 10.1080/00032710600666438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|