• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4635019)   Today's Articles (6932)   Subscriber (50002)
For: Forti A, Campana G, Simonella A, Multari M, Scortichini G. Determination of chloramphenicol in honey by liquid chromatography–tandem mass spectrometry. Anal Chim Acta 2005;529:257-63. [DOI: 10.1016/j.aca.2004.10.059] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Number Cited by Other Article(s)
1
Feng H, Luo M, Zhu G, Mokeira KD, Yang Y, Lv Y, Tan Q, Lei X, Zeng H, Cheng H, Xu S. A facile electrochemical aptasensor for chloramphenicol detection based on synergistically photosensitization enhanced by SYBR Green I and MoS2. J Colloid Interface Sci 2024;672:236-243. [PMID: 38838631 DOI: 10.1016/j.jcis.2024.05.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
2
Shaaban H. Sustainable dispersive liquid-liquid microextraction method utilizing a natural deep eutectic solvent for determination of chloramphenicol in honey: assessment of the environmental impact of the developed method. RSC Adv 2023;13:5058-5069. [PMID: 36777937 PMCID: PMC9909375 DOI: 10.1039/d2ra08221g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023]  Open
3
Fabrication of polydopamine nanoparticles-based electrochemical sensor for geometry-sensitive detection of chloramphenicol. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
4
Electrochemical Aptasensor Based on Au Nanoparticles Decorated Porous Carbon Derived from Metal-Organic Frameworks for Ultrasensitive Detection of Chloramphenicol. Molecules 2022;27:molecules27206842. [DOI: 10.3390/molecules27206842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022]  Open
5
Tolmacheva VV, Savinova VY, Goncharov NO, Dmitrienko SG, Apyari VV, Chernavsky PA, Pankina GV. Sorption of Amphenicols on Magnetic Hypercrosslinked Polystyrene. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422060267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
6
MXene-AuNP-Based Electrochemical Aptasensor for Ultra-Sensitive Detection of Chloramphenicol in Honey. Molecules 2022;27:molecules27061871. [PMID: 35335235 PMCID: PMC8953677 DOI: 10.3390/molecules27061871] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023]  Open
7
Baikeli Y, Mamat X, He F, Xin X, Li Y, Aisa HA, Hu G. Electrochemical determination of chloramphenicol and metronidazole by using a glassy carbon electrode modified with iron, nitrogen co-doped nanoporous carbon derived from a metal-organic framework (type Fe/ZIF-8). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020;204:111066. [PMID: 32781344 DOI: 10.1016/j.ecoenv.2020.111066] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 05/02/2023]
8
Zuo P, Chen Z, Yu F, Zhang J, Zuo W, Gao Y, Liu Q. An easy synthesis of nitrogen and phosphorus co-doped carbon dots as a probe for chloramphenicol. RSC Adv 2020;10:32919-32926. [PMID: 35516483 PMCID: PMC9056625 DOI: 10.1039/d0ra04228e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/28/2020] [Indexed: 11/21/2022]  Open
9
Martini E, Tomassetti M, Angeloni R, Castrucci M, Campanella L. A Suitable Immunosensor for Chloramphenicol Determination: Study of Two Different Competitive Formats. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190225163036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
10
Patyra E, Kwiatek K. Quantification and Analysis of Trace Levels of Phenicols in Feed by Liquid Chromatography–Mass Spectrometry. Chromatographia 2020. [DOI: 10.1007/s10337-020-03890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
11
Rimkus GG, Huth T, Harms D. Screening of stereoisomeric chloramphenicol residues in honey by ELISA and CHARM ® II test - the potential risk of systematically false-compliant (false negative) results. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019;37:94-103. [PMID: 31697202 DOI: 10.1080/19440049.2019.1682685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
12
Application of Ultrasound-Assisted Extraction Followed by Solid-Phase Extraction Followed by Dispersive Liquid-Liquid Microextraction for the Determination of Chloramphenicol in Chicken Meat. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1048-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
13
Rimkus GG, Hoffmann D. Enantioselective analysis of chloramphenicol residues in honey samples by chiral LC-MS/MS and results of a honey survey. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017;34:950-961. [DOI: 10.1080/19440049.2017.1319073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
14
Multi-class method for the determination of nitroimidazoles, nitrofurans, and chloramphenicol in chicken muscle and egg by dispersive-solid phase extraction and ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem 2017;217:182-190. [DOI: 10.1016/j.foodchem.2016.08.097] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/31/2016] [Accepted: 08/25/2016] [Indexed: 11/17/2022]
15
Guidi LR, Tette PA, Fernandes C, Silva LH, Gloria MBA. Advances on the chromatographic determination of amphenicols in food. Talanta 2017;162:324-338. [DOI: 10.1016/j.talanta.2016.09.068] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 11/28/2022]
16
Karthik R, Govindasamy M, Chen SM, Mani V, Lou BS, Devasenathipathy R, Hou YS, Elangovan A. Green synthesized gold nanoparticles decorated graphene oxide for sensitive determination of chloramphenicol in milk, powdered milk, honey and eye drops. J Colloid Interface Sci 2016;475:46-56. [DOI: 10.1016/j.jcis.2016.04.044] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 11/16/2022]
17
Du XJ, Zhou XN, Li P, Sheng W, Ducancel F, Wang S. Development of an Immunoassay for Chloramphenicol Based on the Preparation of a Specific Single-Chain Variable Fragment Antibody. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016;64:2971-2979. [PMID: 27003441 DOI: 10.1021/acs.jafc.6b00639] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
18
Lu Y, Yao H, Li C, Han J, Tan Z, Yan Y. Separation, concentration and determination of trace chloramphenicol in shrimp from different waters by using polyoxyethylene lauryl ether-salt aqueous two-phase system coupled with high-performance liquid chromatography. Food Chem 2016;192:163-70. [DOI: 10.1016/j.foodchem.2015.06.086] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 01/04/2015] [Accepted: 06/24/2015] [Indexed: 11/28/2022]
19
Biomimetic piezoelectric quartz crystal sensor with chloramphenicol-imprinted polymer sensing layer. Talanta 2015;144:1260-5. [DOI: 10.1016/j.talanta.2015.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/29/2015] [Accepted: 08/01/2015] [Indexed: 11/19/2022]
20
Sniegocki T, Gbylik-Sikorska M, Posyniak A. Transfer of chloramphenicol from milk to commercial dairy products – Experimental proof. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.04.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
21
Amjadi M, Jalili R, Manzoori JL. A sensitive fluorescent nanosensor for chloramphenicol based on molecularly imprinted polymer-capped CdTe quantum dots. LUMINESCENCE 2015;31:633-9. [DOI: 10.1002/bio.3003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/22/2015] [Accepted: 07/11/2015] [Indexed: 11/06/2022]
22
Zhai H, Liang Z, Chen Z, Wang H, Liu Z, Su Z, Zhou Q. Simultaneous detection of metronidazole and chloramphenicol by differential pulse stripping voltammetry using a silver nanoparticles/sulfonate functionalized graphene modified glassy carbon electrode. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.03.140] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
23
Zhou B, Zhang J, Fan J, Zhu L, Zhang Y, Jin J, Huang B. A new sensitive method for the detection of chloramphenicol in food using time-resolved fluoroimmunoassay. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2363-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
24
Scientific Opinion on Chloramphenicol in food and feed. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3907] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]  Open
25
Karageorgou E, Samanidou V. Youden test application in robustness assays during method validation. J Chromatogr A 2014;1353:131-9. [DOI: 10.1016/j.chroma.2014.01.050] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/15/2014] [Accepted: 01/17/2014] [Indexed: 11/25/2022]
26
Yadav SK, Agrawal B, Chandra P, Goyal RN. In vitro chloramphenicol detection in a Haemophilus influenza model using an aptamer-polymer based electrochemical biosensor. Biosens Bioelectron 2013;55:337-42. [PMID: 24412768 DOI: 10.1016/j.bios.2013.12.031] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/22/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
27
Sadeghi S, Jahani M. Selective solid-phase extraction using molecular imprinted polymer sorbent for the analysis of Florfenicol in food samples. Food Chem 2013;141:1242-51. [DOI: 10.1016/j.foodchem.2013.04.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/05/2013] [Accepted: 04/07/2013] [Indexed: 10/26/2022]
28
Kolanović BS, Bilandžić N, Varenina I, Božić D. Tylosin content in meat and honey samples over a two-year period in Croatia. J Immunoassay Immunochem 2013;35:37-47. [PMID: 24063615 DOI: 10.1080/15321819.2013.784198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
29
Determination of Chloramphenicol in Honey, Shrimp, and Poultry Meat with Liquid Chromatography–Mass Spectrometry: Validation of the Method According to Commission Decision 2002/657/EC. FOOD ANAL METHOD 2013. [DOI: 10.1007/s12161-013-9596-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
30
A simple and sensitive electrochemical aptasensor for determination of Chloramphenicol in honey based on target-induced strand release. J Electroanal Chem (Lausanne) 2012. [DOI: 10.1016/j.jelechem.2012.10.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
31
Lu Y, Zheng T, He X, Lin X, Chen L, Dai Z. Rapid determination of chloramphenicol in soft-shelled turtle tissues using on-line MSPD-HPLC–MS/MS. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.02.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
32
Cheng N, Gao H, Deng J, Wang B, Xu R, Cao W. Removal of Chloramphenicol by Macroporous Adsorption Resins in Honey: A Novel Approach on Reutilization of Antibiotics Contaminated Honey. J Food Sci 2012;77:T169-72. [DOI: 10.1111/j.1750-3841.2012.02868.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
33
Ma C, Chen H, Sun N, Ye Y, Chen H. Preparation of Molecularly Imprinted Polymer Monolith with an Analogue of Thiamphenicol and Application to Selective Solid-Phase Microextraction. FOOD ANAL METHOD 2012. [DOI: 10.1007/s12161-012-9368-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
34
Alechaga É, Moyano E, Galceran MT. Ultra-high performance liquid chromatography-tandem mass spectrometry for the analysis of phenicol drugs and florfenicol-amine in foods. Analyst 2012;137:2486-94. [DOI: 10.1039/c2an16052h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
35
Li J, Chen H, Chen H, Ye Y. Selective determination of trace thiamphenicol in milk and honey by molecularly imprinted polymer monolith microextraction and high-performance liquid chromatography. J Sep Sci 2011;35:137-44. [DOI: 10.1002/jssc.201100767] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 09/25/2011] [Accepted: 09/26/2011] [Indexed: 11/11/2022]
36
Yibar A, Cetinkaya F, Soyutemiz G. ELISA screening and liquid chromatography-tandem mass spectrometry confirmation of chloramphenicol residues in chicken muscle, and the validation of a confirmatory method by liquid chromatography-tandem mass spectrometry. Poult Sci 2011;90:2619-26. [DOI: 10.3382/ps.2011-01564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]  Open
37
Simultaneous determination of thiamphenicol, florfenicol and florfenicol amine in eggs by reversed-phase high-performance liquid chromatography with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 2011;879:2351-4. [DOI: 10.1016/j.jchromb.2011.06.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 06/15/2011] [Accepted: 06/15/2011] [Indexed: 11/17/2022]
38
Kolanović BS, Bilandžić N, Varenina I. Validation of a multi-residue enzyme-linked immunosorbent assay for qualitative screening of corticosteroids in liver, urine and milk. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011;28:1175-86. [DOI: 10.1080/19440049.2011.580457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
39
Moragues F, Igualada C, León N. Validation of the Determination of Chloramphenicol Residues in Animal Feed by Liquid Chromatography with an Ion Trap Detector Based on European Decision 2002/657/EC. FOOD ANAL METHOD 2011. [DOI: 10.1007/s12161-011-9261-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
40
Wang T, Tong J, Sun M, Chen L. Fast and selective extraction of chloramphenicol from soil by matrix solid-phase dispersion using molecularly imprinted polymer as dispersant. J Sep Sci 2011;34:1886-92. [DOI: 10.1002/jssc.201100046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 11/08/2022]
41
Solomun B, Bilandzic N, Varenina I, Scortichini G. Validation of an enzyme-linked immunosorbent assay for qualitative screening of neomycin in muscle, liver, kidney, eggs and milk. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011;28:11-8. [PMID: 21082465 DOI: 10.1080/19440049.2010.527376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
42
A competitive dual-label time-resolved fluoroimmunoassay for the simultaneous determination of chloramphenicol and ractopamine in swine tissue. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11434-011-4412-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
43
Han J, Wang Y, Yu C, Li C, Yan Y, Liu Y, Wang L. Separation, concentration and determination of chloramphenicol in environment and food using an ionic liquid/salt aqueous two-phase flotation system coupled with high-performance liquid chromatography. Anal Chim Acta 2011;685:138-45. [DOI: 10.1016/j.aca.2010.11.033] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/13/2010] [Accepted: 11/16/2010] [Indexed: 11/17/2022]
44
Sichilongo KF, Famuyiwa SO, Kibechu R. Pre-electrospray ionisation manifold methylation and post-electrospray ionisation manifold cleavage/ion cluster formation observed during electrospray ionisation of chloramphenicol in solutions of methanol and acetonitrile for liquid chromatography-mass spectrometry employing a commercial quadrupole ion trap mass analyser. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2011;17:255-264. [PMID: 21828416 DOI: 10.1255/ejms.1113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
45
Song HM, Kim BJ, Jeong H, Ahn SH. Accurate determination of chloramphenicol in meat by isotope dilution liquid chromatography mass spectrometry (ID-LC/MS). ANALYTICAL SCIENCE AND TECHNOLOGY 2010. [DOI: 10.5806/ast.2010.23.6.524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
46
Han J, Wang Y, Yu CL, Yan YS, Xie XQ. Extraction and determination of chloramphenicol in feed water, milk, and honey samples using an ionic liquid/sodium citrate aqueous two-phase system coupled with high-performance liquid chromatography. Anal Bioanal Chem 2010;399:1295-304. [PMID: 21063686 DOI: 10.1007/s00216-010-4376-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/24/2010] [Accepted: 10/24/2010] [Indexed: 10/18/2022]
47
Aresta A, Bianchi D, Calvano C, Zambonin C. Solid phase microextraction—Liquid chromatography (SPME-LC) determination of chloramphenicol in urine and environmental water samples. J Pharm Biomed Anal 2010;53:440-4. [DOI: 10.1016/j.jpba.2010.05.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
48
Hu L, Zuo P, Ye BC. Multicomponent mesofluidic system for the detection of veterinary drug residues based on competitive immunoassay. Anal Biochem 2010;405:89-95. [DOI: 10.1016/j.ab.2010.05.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/15/2010] [Accepted: 05/28/2010] [Indexed: 11/30/2022]
49
Development of a multi-class method for the quantification of veterinary drug residues in feedingstuffs by liquid chromatography-tandem mass spectrometry. J Chromatogr A 2010;1217:6394-404. [PMID: 20810120 DOI: 10.1016/j.chroma.2010.08.024] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 08/02/2010] [Accepted: 08/09/2010] [Indexed: 11/21/2022]
50
Simultaneous determination of thiamphenicol, florfenicol and florfenicol amine in swine muscle by liquid chromatography–tandem mass spectrometry with immunoaffinity chromatography clean-up. J Chromatogr B Analyt Technol Biomed Life Sci 2010;878:207-12. [DOI: 10.1016/j.jchromb.2009.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 09/29/2009] [Accepted: 10/01/2009] [Indexed: 11/18/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA