1
|
Vrobel O, Tarkowski P. Can plant hormonomics be built on simple analysis? A review. PLANT METHODS 2023; 19:107. [PMID: 37833752 PMCID: PMC10576392 DOI: 10.1186/s13007-023-01090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
The field of plant hormonomics focuses on the qualitative and quantitative analysis of the hormone complement in plant samples, akin to other omics sciences. Plant hormones, alongside primary and secondary metabolites, govern vital processes throughout a plant's lifecycle. While active hormones have received significant attention, studying all related compounds provides valuable insights into internal processes. Conventional single-class plant hormone analysis employs thorough sample purification, short analysis and triple quadrupole tandem mass spectrometry. Conversely, comprehensive hormonomics analysis necessitates minimal purification, robust and efficient separation and better-performing mass spectrometry instruments. This review summarizes the current status of plant hormone analysis methods, focusing on sample preparation, advances in chromatographic separation and mass spectrometric detection, including a discussion on internal standard selection and the potential of derivatization. Moreover, current approaches for assessing the spatiotemporal distribution are evaluated. The review touches on the legitimacy of the term plant hormonomics by exploring the current status of methods and outlining possible future trends.
Collapse
Affiliation(s)
- Ondřej Vrobel
- Department of Biochemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic.
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic.
| |
Collapse
|
2
|
Zhang Q, Fan L, Lu Q, Yu X, Liang M, Nie J, Li N, Zhang L. Preparation and application of molecularly imprinted polymer solid-phase microextraction fiber for the selective analysis of auxins in tobacco. J Sep Sci 2019; 42:2687-2695. [PMID: 31161698 DOI: 10.1002/jssc.201900265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/26/2019] [Accepted: 05/31/2019] [Indexed: 11/08/2022]
Abstract
As signal molecules, auxins play an important role in mediating plant growth. Due to serious interfering substances in plants, it is difficult to accurately detect auxins with traditional solid-phase extraction methods. To improve the selectivity of sample pretreatment, a novel molecularly imprinted polymer -coated solid-phase microextraction fiber, which could be coupled directly to high-performance liquid chromatography, was prepared with indole acetic acid as template molecule for the selective extraction of auxins. The factors influencing the polymer formation, such as polymerization solvent, cross-linker, and polymerization time, were investigated in detail to enhance the performance of indole acetic acid-molecularly imprinted polymer coating. The morphological and chemical stability of this molecularly imprinted polymer-coated fiber was characterized by scanning electron microscopy, infrared spectrometry, and thermal analysis. The extraction capacity of the molecularly imprinted polymer-coated solid-phase microextraction fiber was evaluated for the selective extraction of indole acetic acid and indole-3-pyruvic acid followed by high-performance liquid chromatography analysis. The linear range for indole acetic acid and indole-3-pyruvic acid was 1-100 µg/L and their detection limit was 0.5 µg/L. The method was applied to the simultaneous determination of two auxins in two kinds of tobacco (Nicotiana tabacum L and Nicotiana rustica L) samples, with recoveries range from 82.1 to 120.6%.
Collapse
Affiliation(s)
- Qing Zhang
- The Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, College of Environmental Science & Engineering, Guilin University of Technology, Guilin, P. R. China
| | - Liangbiao Fan
- College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, P. R. China
| | - Qiaomei Lu
- College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, P. R. China
| | - Xiaozhang Yu
- The Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, College of Environmental Science & Engineering, Guilin University of Technology, Guilin, P. R. China
| | - Meina Liang
- The Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, College of Environmental Science & Engineering, Guilin University of Technology, Guilin, P. R. China
| | - Jinfang Nie
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Ningjie Li
- The Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, College of Environmental Science & Engineering, Guilin University of Technology, Guilin, P. R. China
| | - Lan Zhang
- College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, P. R. China
| |
Collapse
|
3
|
Preparation of a new cellulose magnetic molecularly imprinted polymer micro-spheres to extract and analyze the indole-3-acetic acid in plant tissues. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:343-349. [DOI: 10.1016/j.jchromb.2018.06.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 05/16/2018] [Accepted: 06/13/2018] [Indexed: 11/20/2022]
|
4
|
Su Y, Luo W, Chen X, Liu H, Hu Y, Lin W, Xiao L. Auxin Extraction and Purification Based on Recombinant Aux/IAA Proteins. Biol Proced Online 2017; 19:1. [PMID: 28100961 PMCID: PMC5237334 DOI: 10.1186/s12575-016-0050-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Indole-3-acetic acid (IAA) extraction and purification are of great importance in auxin research, which is a hot topic in the plant growth and development field. Solid-phase extraction (SPE) is frequently used for IAA extraction and purification. However, no IAA-specific SPE columns are commercially available at the moment. Therefore, the development of IAA-specific recognition materials and IAA extraction and purification methods will help researchers meet the need for more precise analytical methods for research on phytohormones. RESULTS Since the AUXIN RESISTANT/INDOLE-3-ACETIC ACID INDUCIBLE (Aux/IAA) proteins show higher specific binding capability with auxin, recombinant IAA1, IAA7 and IAA28 proteins were used as sorbents to develop an IAA extraction and purification method. A GST tag was used to solidify the recombinant protein in a column. Aux/IAA proteins solidified in a column have successfully trapped trace IAA in aqueous solutions. The IAA7 protein showed higher IAA binding capability than the other proteins tested. In addition, expression of the IAA7 protein in Drosophila Schneider 2 (S2) cells produced better levels of binding than IAA7 expressed in E. coli. CONCLUSION This work validated the potential of Aux/IAA proteins to extract and purify IAA from crude plant extracts once we refined the techniques for these processes.
Collapse
Affiliation(s)
- Yi Su
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Weigui Luo
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Xiaofei Chen
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Huizhen Liu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Yueqing Hu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Wanhuang Lin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China ; Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China ; Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, China
| |
Collapse
|
5
|
Adenine and benzimidazole-based mimics of REP-3123 as antibacterial agents against Clostridium difficile and Bacillus anthracis: Design, synthesis and biological evaluation. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.bfopcu.2016.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Novák O, Pěnčík A, Blahoušek O, Ljung K. Quantitative Auxin Metabolite Profiling Using Stable Isotope Dilution UHPLC-MS/MS. ACTA ACUST UNITED AC 2016; 1:419-430. [DOI: 10.1002/cppb.20028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS, Faculty of Science, Palacký University; Olomouc Czech Republic
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences; Umeå Sweden
| | - Aleš Pěnčík
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences; Umeå Sweden
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University; Olomouc Czech Republic
| | - Ota Blahoušek
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS, Faculty of Science, Palacký University; Olomouc Czech Republic
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences; Umeå Sweden
| |
Collapse
|
7
|
Porfírio S, Gomes da Silva MD, Peixe A, Cabrita MJ, Azadi P. Current analytical methods for plant auxin quantification – A review. Anal Chim Acta 2016; 902:8-21. [DOI: 10.1016/j.aca.2015.10.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023]
|
8
|
Zhu C, Zhang L, Chen C, Zhou J. Determination of Bisphenol A using a Molecularly Imprinted Polymer Surface Plasmon Resonance Sensor. ANAL LETT 2015. [DOI: 10.1080/00032719.2014.996809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27:297-401. [PMID: 24700625 DOI: 10.1002/jmr.2347] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
Abstract
Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930-2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed.
Collapse
|
10
|
Synthesis of novel substituted purine derivatives and identification of the cell death mechanism. Eur J Med Chem 2014; 89:701-20. [PMID: 25462277 DOI: 10.1016/j.ejmech.2014.10.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 09/19/2014] [Accepted: 10/29/2014] [Indexed: 11/20/2022]
Abstract
Novel 9-(substituted amino/piperazinoethyl)adenines (4-12), 6-(substituted piperazino/amino)purines (15-27), 9-(p-toluenesulfonyl/cyclopentyl/ethoxycarbonylmethyl)-6-(substituted amino/piperazino)purines (28-34, 36, 37, 38-41) were synthesized and evaluated initially for their cytotoxic activities on liver Huh7, breast T47D and colon HCT116 carcinoma cells. N(6)-(4-Trifluoromethylphenyl)piperazine derivative (17) and its 9-(p-toluene-sulfonyl)/9-cyclopentyl analogues (28, 36) had promising cytotoxic activities. Compounds 17, 28 and 36 were further analysed for their cytotoxicity in a panel of a liver cancer cell lines. The compound 36 had better cytotoxic activities (IC50 ≤ 1 μM) than the nucleobase 5-FU and nucleosides fludarabine, cladribine, and pentostatine on Huh7 cells. Cytotoxicity induced by 36 was later identified as senescence associated cell death by SA-β-Gal assay.
Collapse
|
11
|
Bio-mimetic sensors based on molecularly imprinted membranes. SENSORS 2014; 14:13863-912. [PMID: 25196110 PMCID: PMC4179059 DOI: 10.3390/s140813863] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 12/16/2022]
Abstract
An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template) was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported.
Collapse
|
12
|
Molecular recognition of indole derivatives by polymers imprinted with indole-3-acetic acid: A QSPR study. Bioorg Med Chem 2013; 21:653-9. [DOI: 10.1016/j.bmc.2012.11.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 11/19/2012] [Accepted: 11/29/2012] [Indexed: 11/19/2022]
|
13
|
Lian H, Sun Z, Sun X, Liu B. Graphene Doped Molecularly Imprinted Electrochemical Sensor for Uric Acid. ANAL LETT 2012. [DOI: 10.1080/00032719.2012.702173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Yan H, Wang F, Wang H, Yang G. Miniaturized molecularly imprinted matrix solid-phase dispersion coupled with high performance liquid chromatography for rapid determination of auxins in orange samples. J Chromatogr A 2012; 1256:1-8. [DOI: 10.1016/j.chroma.2012.07.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/10/2012] [Accepted: 07/12/2012] [Indexed: 11/24/2022]
|
15
|
Monolithic molecularly imprinted solid-phase extraction for the selective determination of trace cytokinins in plant samples with liquid chromatography–electrospray tandem mass spectrometry. Anal Bioanal Chem 2012; 404:489-501. [DOI: 10.1007/s00216-012-6131-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/20/2012] [Accepted: 05/20/2012] [Indexed: 02/02/2023]
|
16
|
Analytical methods for tracing plant hormones. Anal Bioanal Chem 2012; 403:55-74. [PMID: 22215246 DOI: 10.1007/s00216-011-5623-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 11/27/2011] [Accepted: 11/28/2011] [Indexed: 12/22/2022]
Abstract
Plant hormones play important roles in regulating numerous aspects of plant growth, development, and response to stress. In the past decade, more analytical methods for the accurate identification and quantitative determination of trace plant hormones have been developed to better our understanding of the molecular mechanisms of plant hormones. As sample preparation is often the bottleneck in analysis of plant hormones in biological samples, this review firstly discusses sample preparation techniques after a brief introduction to the classes, roles, and methods used in the analysis of plant hormones. The analytical methods, especially chromatographic techniques and immuno-based methods, are reviewed in detail, and their corresponding advantages, limitations, applications, and prospects are also discussed. This review mainly covers reports published from 2000 to the present on methods for the analysis of plant hormones.
Collapse
|
17
|
Abstract
A flow injection chemiluminescence (CL) method has been developed for the determination of indoleacetic acid (IAA). It is based on the fact that the weak CL of Ce(IV)-Ru(phen)32+ system is strongly enhanced in the presence of silver nanoparticles. Optimum conditions and possible mechanisms have been investigated. Under optimum experimental conditions, the linear range is from 1.0×10-8 – 6.0×10-7 g mL-1 with a detection limit 9.0×10-9 g mL-1
Collapse
|
18
|
Yuan Y, Wang Y, Huang M, Xu R, Zeng H, Nie C, Kong J. Development and characterization of molecularly imprinted polymers for the selective enrichment of podophyllotoxin from traditional Chinese medicines. Anal Chim Acta 2011; 695:63-72. [DOI: 10.1016/j.aca.2011.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/16/2011] [Accepted: 04/10/2011] [Indexed: 10/18/2022]
|
19
|
Hu Y, Li J, Li G. Synthesis and application of a novel molecularly imprinted polymer-coated stir bar for microextraction of triazole fungicides in soil. J Sep Sci 2011; 34:1190-7. [DOI: 10.1002/jssc.201100068] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 02/22/2011] [Accepted: 02/24/2011] [Indexed: 11/09/2022]
|
20
|
Hu Y, Li Y, Zhang Y, Li G, Chen Y. Development of sample preparation method for auxin analysis in plants by vacuum microwave-assisted extraction combined with molecularly imprinted clean-up procedure. Anal Bioanal Chem 2011; 399:3367-74. [PMID: 20953778 DOI: 10.1007/s00216-010-4257-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/24/2010] [Accepted: 09/25/2010] [Indexed: 10/19/2022]
Abstract
A novel sample preparation method for auxin analysis in plant samples was developed by vacuum microwave-assisted extraction (VMAE) followed by molecularly imprinted clean-up procedure. The method was based on two steps. In the first one, conventional solvent extraction was replaced by VMAE for extraction of auxins from plant tissues. This step provided efficient extraction of 3-indole acetic acid (IAA) from plant with dramatically decreased extraction time, furthermore prevented auxins from degradation by creating a reduced oxygen environment under vacuum condition. In the second step, the raw extract of VMAE was further subjected to a clean-up procedure by magnetic molecularly imprinted polymer (MIP) beads. Owing to the high molecular recognition ability of the magnetic MIP beads for IAA and 3-indole-butyric acid (IBA), the two target auxins in plants can be selectively enriched and the interfering substance can be eliminated by dealing with a magnetic separation procedure. Both the VMAE and the molecularly imprinted clean-up conditions were investigated. The proposed sample preparation method was coupled with high-performance liquid chromatogram and fluorescence detection for determination of IAA and IBA in peas and rice. The detection limits obtained for IAA and IBA were 0.47 and 1.6 ng/mL and the relative standard deviation were 2.3% and 2.1%, respectively. The IAA contents in pea seeds, pea embryo, pea roots and rice seeds were determined. The recoveries were ranged from 70.0% to 85.6%. The proposed method was also applied to investigate the developmental profiles of IAA concentration in pea seeds and rice seeds during seed germination.
Collapse
Affiliation(s)
- Yuling Hu
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Preparation of magnetic indole-3-acetic acid imprinted polymer beads with 4-vinylpyridine and β-cyclodextrin as binary monomer via microwave heating initiated polymerization and their application to trace analysis of auxins in plant tissues. J Chromatogr A 2010; 1217:7337-44. [DOI: 10.1016/j.chroma.2010.09.059] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/17/2010] [Accepted: 09/23/2010] [Indexed: 11/23/2022]
|
23
|
Bakkialakshmi S, Shanthi B, Shanthi M. Spectroscopic characterization studies of 1-methyl indole with benzene derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2010; 77:179-183. [PMID: 20635467 DOI: 10.1016/j.saa.2010.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The NMR and fluorescence quenching of benzene, chlorobenzene and methoxybenzene in acetonitril and 2-propanol solvents have been carried out with a view to understand the quenching mechanisms. The quenching is found to be appreciable and shows positive derivation in the stern-volmer plots. UV absorbance is used to measure the excitation wavelength. Lifetime measurements are carried out and the quenching rate constant kq is also calculated. Molar extinction co-efficient, stoke's shift are also calculated. The NMR study is used to conform if there is any complex formation between 1-methylindole with the benzene derivatives.
Collapse
Affiliation(s)
- S Bakkialakshmi
- Department of Physics, Annamalai University, Annamalai Nagar-608 002, India.
| | | | | |
Collapse
|
24
|
Liu X, Zhou J, Chen C. Transport selectivity of tribenuron-methyl imprinted polymer nanowire membrane prepared using N,O-bismethacryloyl ethanolamine as a functional crosslinking monomer. J Appl Polym Sci 2010. [DOI: 10.1002/app.32456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
|
26
|
Exploiting β-cyclodextrin as functional monomer in molecular imprinting for achieving recognition in aqueous media. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2008. [DOI: 10.1016/j.msec.2008.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Zhang C, Zhong S, Yang Z. Cellulose acetate-based molecularly imprinted polymeric membrane for separation of vanillin and o-vanillin. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2008. [DOI: 10.1590/s0104-66322008000200014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, China
| | | |
Collapse
|
28
|
Zhai Y, Liu Y, Chang X, Ruan X, Liu J. Metal ion-small molecule complex imprinted polymer membranes: Preparation and separation characteristics. REACT FUNCT POLYM 2008. [DOI: 10.1016/j.reactfunctpolym.2007.08.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|