1
|
Sharma K, Tewatia P, Kaur M, Pathania D, Banat F, Rattan G, Singhal S, Kaushik A. Bioremediation of multifarious pollutants using laccase immobilized on magnetized and carbonyldiimidazole-functionalized cellulose nanofibers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161137. [PMID: 36566870 DOI: 10.1016/j.scitotenv.2022.161137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
An easily recyclable biocatalyst (Lac@CDI-MCNFs) was synthesized by immobilizing laccase on rice straw-derived carbonyldiimidazole mediated magnetized cellulose nanofibers (MCNFs). Lac@CDI-MCNFs were utilized for bioremediation of cefixime antibiotic (CT), carbofuran pesticide (CF) and safranin O dye (SO) via oxidation-reduction reactions in wastewater. MCNFs provided enhanced pH, temperature and storage stability to laccase and allowed reusability for up to 25 cycles with mere 20 % decline in efficacy. The Lac@CDI-MCNFs effectively degraded 98.2 % CT and 96.8 % CF into benign metabolites within 20 h and completely degraded SO in just 7 h. Response surface modelling (RSM) was employed based on the Box Behnken Design to evaluate the effect of various parameters i.e. pH, catalyst dosage and the pollutants concentration which was further validated with experimental studies. The degradation products were identified using LCMS, which allowed the degradation pathway of the pollutants to be determined. The degradation of all pollutants followed first- order kinetics with rate constants of 0.1775, 0.0832 and 0.958 h-1 and half-life of 3.9, 5.0 and 0.723 h for CT, CF and SO, respectively. Lac@CDI-MCNFs was demonstrated to be an effective catalyst for the degradation of multifarious pollutants.
Collapse
Affiliation(s)
- Kavita Sharma
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Preeti Tewatia
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Manpreet Kaur
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, J&K, India; Department of Chemistry, Sardar Patel University Mandi, Himachal Pradesh 175001, India
| | - Fawzi Banat
- Dept of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Gaurav Rattan
- Dr. SSB University Institutes of Chemical Engineering and Technology, Panjab University, Chandigarh, India
| | - Sonal Singhal
- Department of Chemistry, Panjab University, Chandigarh, India
| | - Anupama Kaushik
- Dr. SSB University Institutes of Chemical Engineering and Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
2
|
Nikoleli GP. Advanced lipid based biosensors for food analysis. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 91:301-321. [PMID: 32035600 DOI: 10.1016/bs.afnr.2019.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The investigation of lipid films for the construction of nanosensors has recently given the opportunity to manufacture devices to selectively determine a wide range of food toxicants. Biosensor miniaturization using recent advances in nanotechnology has given the opportunity to investigate novel techniques to immobilize a wide range of enzymes, antibodies and receptors within the lipid film. This chapter reviews novel revent platforms in nanobiosensors based on lipid membranes that are used in food chemistry to determine various food toxicants. Examples of applications are described with an emphasis on novel systems, sensing techniques and nanotechnology-based transduction schemes. The compounds that can be monitored are insecticides, pesticides, herbicides, metals, toxins, hormones, etc. Finally, limitations and future prospects are presented herein on the evaluation/validation and eventually commercialization of the proposed sensors.
Collapse
Affiliation(s)
- Georgia-Paraskevi Nikoleli
- Laboratory of Environmental & Sanitary Engineering, Department of Public Health, Faculty of Health and Caring Professions, University of West Attica, Athens, Greece.
| |
Collapse
|
3
|
Abstract
The investigation of lipid films for the construction of biosensors has recently given the opportunity to manufacture devices to selectively detect a wide range of food toxicants, environmental pollutants, and compounds of clinical interest. Biosensor miniaturization using nanotechnological tools has provided novel routes to immobilize various “receptors” within the lipid film. This chapter reviews and exploits platforms in biosensors based on lipid membrane technology that are used in food, environmental, and clinical chemistry to detect various toxicants. Examples of applications are described with an emphasis on novel systems, new sensing techniques, and nanotechnology-based transduction schemes. The compounds that can be monitored are insecticides, pesticides, herbicides, metals, toxins, antibiotics, microorganisms, hormones, dioxins, etc.
Collapse
|
4
|
Nikoleli GP, Nikolelis DP, Siontorou CG, Nikolelis MT, Karapetis S. The Application of Lipid Membranes in Biosensing. MEMBRANES 2018; 8:E108. [PMID: 30441848 PMCID: PMC6316677 DOI: 10.3390/membranes8040108] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/01/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022]
Abstract
The exploitation of lipid membranes in biosensors has provided the ability to reconstitute a considerable part of their functionality to detect trace of food toxicants and environmental pollutants. This paper reviews recent progress in biosensor technologies based on lipid membranes suitable for food quality monitoring and environmental applications. Numerous biosensing applications based on lipid membrane biosensors are presented, putting emphasis on novel systems, new sensing techniques, and nanotechnology-based transduction schemes. The range of analytes that can be currently using these lipid film devices that can be detected include, insecticides, pesticides, herbicides, metals, toxins, antibiotics, microorganisms, hormones, dioxins, etc. Technology limitations and future prospects are discussed, focused on the evaluation/validation and eventually commercialization of the proposed lipid membrane-based biosensors.
Collapse
Affiliation(s)
- Georgia-Paraskevi Nikoleli
- Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Dept 1, Chemical Sciences, National Technical University of Athens, 9 Iroon Polytechniou St., 15780 Athens, Greece.
| | - Dimitrios P Nikolelis
- Laboratory of Environmental Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis-Kouponia, 15771 Athens, Greece.
| | - Christina G Siontorou
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, School of Maritime and Industry, University of Piraeus, 18534 Pireus, Greece.
| | - Marianna-Thalia Nikolelis
- Laboratory of Environmental Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis-Kouponia, 15771 Athens, Greece.
| | - Stephanos Karapetis
- Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Dept 1, Chemical Sciences, National Technical University of Athens, 9 Iroon Polytechniou St., 15780 Athens, Greece.
| |
Collapse
|
5
|
Nikoleli GP, Nikolelis DP, Siontorou CG, Karapetis S, Varzakas T. Novel Biosensors for the Rapid Detection of Toxicants in Foods. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 84:57-102. [PMID: 29555073 DOI: 10.1016/bs.afnr.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The modern environmental and food analysis requires sensitive, accurate, and rapid methods. The growing field of biosensors represents an answer to this demand. Unfortunately, most biosensor systems have been tested only on distilled water or buffered solutions, although applications to real samples are increasingly appearing in recent years. In this context, biosensors for potential food applications continue to show advances in areas such as genetic modification of enzymes and microorganisms, improvement of recognition element immobilization, and sensor interfaces. This chapter investigates the progress in the development of biosensors for the rapid detection of food toxicants for online applications. Recent progress in nanotechnology has produced affordable, mass-produced devices, and to integrate these into components and systems (including portable ones) for mass market applications for food toxicants monitoring. Sensing includes chemical and microbiological food toxicants, such as toxins, insecticides, pesticides, herbicides, microorganisms, bacteria, viruses and other microorganisms, phenolic compounds, allergens, genetically modified foods, hormones, dioxins, etc. Therefore, the state of the art of recent advances and future targets in the development of biosensors for food monitoring is summarized as follows: biosensors for food analysis will be highly sensitive, selective, rapidly responding, real time, massively parallel, with no or minimum sample preparation, and platform suited to portable and handheld nanosensors for the rapid detection of food toxicants for online uses even by nonskilled personnel.
Collapse
Affiliation(s)
- Georgia-Paraskevi Nikoleli
- Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Chemical Sciences, National Technical University of Athens, Athens, Greece
| | | | - Christina G Siontorou
- Laboratory of Simulation of Industrial Processes, School of Maritime and Industry, University of Piraeus, Piraeus, Greece
| | - Stephanos Karapetis
- Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Chemical Sciences, National Technical University of Athens, Athens, Greece
| | - Theo Varzakas
- Laboratory of Inorganic Chemistry, University of Athens, Athens, Greece; Technological Educational Institute of Peloponnese, Kalamata, Greece
| |
Collapse
|
6
|
Siontorou CG, Nikoleli GP, Nikolelis DP, Karapetis SK. Artificial Lipid Membranes: Past, Present, and Future. MEMBRANES 2017; 7:E38. [PMID: 28933723 PMCID: PMC5618123 DOI: 10.3390/membranes7030038] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/05/2017] [Accepted: 07/20/2017] [Indexed: 11/17/2022]
Abstract
The multifaceted role of biological membranes prompted early the development of artificial lipid-based models with a primary view of reconstituting the natural functions in vitro so as to study and exploit chemoreception for sensor engineering. Over the years, a fair amount of knowledge on the artificial lipid membranes, as both, suspended or supported lipid films and liposomes, has been disseminated and has helped to diversify and expand initial scopes. Artificial lipid membranes can be constructed by several methods, stabilized by various means, functionalized in a variety of ways, experimented upon intensively, and broadly utilized in sensor development, drug testing, drug discovery or as molecular tools and research probes for elucidating the mechanics and the mechanisms of biological membranes. This paper reviews the state-of-the-art, discusses the diversity of applications, and presents future perspectives. The newly-introduced field of artificial cells further broadens the applicability of artificial membranes in studying the evolution of life.
Collapse
Affiliation(s)
- Christina G Siontorou
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, School of Maritime and Industry, University of Piraeus, 18534 Piraeus, Greece.
| | - Georgia-Paraskevi Nikoleli
- Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Department of Chemical Sciences, National Technical University of Athens, 15780 Athens, Greece.
| | - Dimitrios P Nikolelis
- Laboratory of Environmental Chemistry, Department of Chemistry, University of Athens, 15771 Athens, Greece.
| | - Stefanos K Karapetis
- Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Department of Chemical Sciences, National Technical University of Athens, 15780 Athens, Greece.
| |
Collapse
|
7
|
Nikoleli GP, Nikolelis DP, Evtugyn G, Hianik T. Advances in lipid film based biosensors. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Bratakou S, Nikoleli GP, Nikolelis DP, Psaroudakis N. Development of a Potentiometric Chemical Sensor for the Rapid Detection of Carbofuran Based on Air Stable Lipid Films with Incorporated Calix[4]arene Phosphoryl Receptor Using Graphene Electrodes. ELECTROANAL 2015. [DOI: 10.1002/elan.201500299] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Sun X, Li Q, Wang X, Du S. Amperometric Immunosensor Based on Gold Nanoparticles/Fe3O4-FCNTs-CS Composite Film Functionalized Interface for Carbofuran Detection. ANAL LETT 2012. [DOI: 10.1080/00032719.2012.677782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Sun X, Du S, Wang X. Amperometric immunosensor for carbofuran detection based on gold nanoparticles and PB-MWCNTs-CTS composite film. Eur Food Res Technol 2012. [DOI: 10.1007/s00217-012-1774-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Sun X, Du S, Wang X, Zhao W, Li Q. A label-free electrochemical immunosensor for carbofuran detection based on a sol-gel entrapped antibody. SENSORS (BASEL, SWITZERLAND) 2011; 11:9520-31. [PMID: 22163709 PMCID: PMC3231269 DOI: 10.3390/s111009520] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/01/2011] [Accepted: 09/15/2011] [Indexed: 11/17/2022]
Abstract
In this study, an anti-carbofuran monoclonal antibody (Ab) was immobilized on the surface of a glassy carbon electrode (GCE) using silica sol-gel (SiSG) technology. Thus, a sensitive, label-free electrochemical immunosensor for the direct determination of carbofuran was developed. The electrochemical performance of immunoreaction of antigen with the anti-carbofuran monoclonal antibody was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), in which phosphate buffer solution containing [Fe(CN)(6)](3-/4-) was used as the base solution for test. Because the complex formed by the immunoreaction hindered the diffusion of [Fe(CN)(6)](3-/4-) on the electrode surface, the redox peak current of the immunosensor in the CV obviously decreased with the increase of the carbofuran concentration. The pH of working solution, the concentration of Ab and the incubation time of carbofuran were studied to ensure the sensitivity and conductivity of the immunosensor. Under the optimal conditions, the linear range of the proposed immunosensor for the determination of carbofuran was from 1 ng/mL to 100 μg/mL and from 50 μg/mL to 200 μg/mL with a detection limit of 0.33 ng/mL (S/N = 3). The proposed immunosensor exhibited good high sensitivity and stability, and it was thus suitable for trace detection of carbofuran pesticide residues.
Collapse
Affiliation(s)
- Xia Sun
- School of Agriculture and Food Engineering, Shandong University of Technology, NO.12, Zhangzhou Road, Zibo 255049, Shandong Province, China; E-Mails: (X.S.); (S.D.); (W.Z.); (Q.L.)
| | - Shuyuan Du
- School of Agriculture and Food Engineering, Shandong University of Technology, NO.12, Zhangzhou Road, Zibo 255049, Shandong Province, China; E-Mails: (X.S.); (S.D.); (W.Z.); (Q.L.)
| | - Xiangyou Wang
- School of Agriculture and Food Engineering, Shandong University of Technology, NO.12, Zhangzhou Road, Zibo 255049, Shandong Province, China; E-Mails: (X.S.); (S.D.); (W.Z.); (Q.L.)
| | - Wenping Zhao
- School of Agriculture and Food Engineering, Shandong University of Technology, NO.12, Zhangzhou Road, Zibo 255049, Shandong Province, China; E-Mails: (X.S.); (S.D.); (W.Z.); (Q.L.)
| | - Qingqing Li
- School of Agriculture and Food Engineering, Shandong University of Technology, NO.12, Zhangzhou Road, Zibo 255049, Shandong Province, China; E-Mails: (X.S.); (S.D.); (W.Z.); (Q.L.)
| |
Collapse
|
12
|
Nikoleli GP, Nikolelis DP, Psaroudakis N, Hianik T. Construction of a Simple Portable Optical Sensor Based on Air Stable Lipid Film with Incorporated Acetylcholinesterase for the Rapid Detection of Carbofuran in Foods. ANAL LETT 2011. [DOI: 10.1080/00032719.2010.540684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Nikolelis DP, Hianik T, Nikoleli GP. Stabilized Lipid Films in Electrochemical Biosensors. ELECTROANAL 2010. [DOI: 10.1002/elan.201000420] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Construction of a simple optical sensor based on air stable lipid film with incorporated urease for the rapid detection of urea in milk. Anal Chim Acta 2010; 675:58-63. [DOI: 10.1016/j.aca.2010.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 07/06/2010] [Accepted: 07/09/2010] [Indexed: 11/20/2022]
|