1
|
Gu L, Liu H, Wang L, Fan H, Zheng X, Xu T, Jiang Q, Zhou T, Shi L. Rapid high-throughput isolation and purification of chicken myoblasts based on deterministic lateral displacement microfluidic chips. PLoS One 2024; 19:e0301309. [PMID: 39636865 PMCID: PMC11620410 DOI: 10.1371/journal.pone.0301309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/07/2024] [Indexed: 12/07/2024] Open
Abstract
Myoblasts are defined as stem cells containing skeletal muscle cell precursors. However, there are some challenges associated with the purification of myoblast samples, including long culture times and ease of bacterial contamination. In this study, we propose a microfluidic myoblast cell enrichment and purification platform based on the principle of deterministic lateral displacement (DLD). To achieve this, we designed a DLD chip with three outlets and tested it on 11-day-old (E11) Wenchang chicken pectoral muscle tissue. A cell suspension was prepared using the collagenase method, pretreated, and then passed into the designed DLD chip for myoblast enrichment and purification. In this study, the number of myoblasts and the diameter of myoblasts increased slowly before E9, and the diameter of myofibers decreased and the number of myofibers increased rapidly after E9. The period when the muscle fibers are most numerous is on the E12, and the period when the diameter of the muscle fibers begins to increase again after reaching its lowest point is also on the E12. After E12, the diameter of the muscle fibers increased and the number of muscle fibers decreased. At E12, myoblasts clustered and fused, and the proliferation of myoblasts was greatly reduced. E12 is both intact myoblasts and the most vigorous proliferation period, so the best time to determine isolation is E12. We attained a myoblast cell recovery rate of 80%, a target outlet collection purity of 99%, and a chip throughput of 50 μ m/min. In this paper, we innovate chips design according to specific geometries and functions for Wenchang chicken pectoral muscle tissue, so as to optimize the isolation and purification process of myoblasts. This study provides a novel and effective method for the isolation and purification of skeletal muscle myoblasts.
Collapse
Affiliation(s)
- Lihong Gu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Hongju Liu
- School of Mechanical and Electrical Engineering, Hainan University, Haikou, China
| | - Long Wang
- School of Mechanical and Electrical Engineering, Hainan University, Haikou, China
| | - Haokai Fan
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Xinli Zheng
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Tieshan Xu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Qicheng Jiang
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Teng Zhou
- School of Mechanical and Electrical Engineering, Hainan University, Haikou, China
| | - Liuyong Shi
- School of Mechanical and Electrical Engineering, Hainan University, Haikou, China
| |
Collapse
|
2
|
Song Y, Zhou Y, Zhang K, Fan Z, Zhang F, Wei M. Microfluidic programmable strategies for channels and flow. LAB ON A CHIP 2024; 24:4483-4513. [PMID: 39120605 DOI: 10.1039/d4lc00423j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This review summarizes programmable microfluidics, an advanced method for precise fluid control in microfluidic technology through microchannel design or liquid properties, referring to microvalves, micropumps, digital microfluidics, multiplexers, micromixers, slip-, and block-based configurations. Different microvalve types, including electrokinetic, hydraulic/pneumatic, pinch, phase-change and check valves, cater to diverse experimental needs. Programmable micropumps, such as passive and active micropumps, play a crucial role in achieving precise fluid control and automation. Due to their small size and high integration, microvalves and micropumps are widely used in medical devices and biological analysis. In addition, this review provides an in-depth exploration of the applications of digital microfluidics, multiplexed microfluidics, and mixer-based microfluidics in the manipulation of liquid movement, mixing, and splitting. These methodologies leverage the physical properties of liquids, such as capillary forces and dielectric forces, to achieve precise control over fluid dynamics. SlipChip technology, which branches into rotational SlipChip and translational SlipChip, controls fluid through sliding motion of the microchannel. On the other hand, innovative designs in microfluidic systems pursue better modularity, reconfigurability and ease of assembly. Different assembly strategies, from one-dimensional assembly blocks and two-dimensional Lego®-style blocks to three-dimensional reconfigurable modules, aim to enhance flexibility and accessibility. These technologies enhance user-friendliness and accessibility by offering integrated control systems, making them potentially usable outside of specialized technical labs. Microfluidic programmable strategies for channels and flow hold promising applications in biomedical research, chemical analysis and drug screening, providing theoretical and practical guidance for broader utilization in scientific research and practical applications.
Collapse
Affiliation(s)
- Yongxian Song
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, China.
| | - Yijiang Zhou
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Kai Zhang
- School of Automation, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Zhaoxuan Fan
- Research Institute of Chemical Defence, Beijing 102205, China.
| | - Fei Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Mingji Wei
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
3
|
Chen X, Chen X. A novel electrophoretic assisted hydrophobic microdevice for enhancing blood cell sorting: design and numerical simulation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2368-2377. [PMID: 38572530 DOI: 10.1039/d4ay00196f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Microfluidic technology has great advantages in the precise manipulation of micro-nano particles, and the hybrid microfluidic separation technology has attracted much attention due to the advantages of both active and passive separation technology at the same time. In this paper, the hydrophoresis sorting technique is combined with the dielectrophoresis technique, and a dielectrophoresis-assisted hydrophoresis microdevice is studied to separate blood cells. By using the dielectrophoresis force to change the suspension position of the cells in the channel, the scope of the hydrophoresis device for sorting particles is expanded. At the same time, the effects of microchannel width, fluid velocity, and electrode voltage on cell sorting were discussed, and the cell separation process was simulated. This work has laid a certain theoretical foundation for the rapid diagnosis of diseases in practical applications.
Collapse
Affiliation(s)
- Xinkun Chen
- College of Transportation, Ludong University, Yantai, Shandong 264025, China.
| | - Xueye Chen
- College of Transportation, Ludong University, Yantai, Shandong 264025, China.
| |
Collapse
|
4
|
Li B, Mao S, Zhang C, Xu T, Ma X, Lin H, Yin H, Qiu Y. Rapid anaerobic culture and reaction kinetic study of anammox bacteria on microfluidic chip. BIORESOURCE TECHNOLOGY 2024; 396:130422. [PMID: 38320714 DOI: 10.1016/j.biortech.2024.130422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/15/2024]
Abstract
Anammox bacteria are being increasingly investigated as part of an emerging nitrogen removal technology. However, due to the difficulty in culturing, current understanding of their behavior is limited. In this study, anaerobic microfluidic chips were used to study anammox bacteria, showing great advantages over reactors. On-chip fluorescence in situ hybridization (FISH) showed the relative abundance of free form anammox bacteria increased by 56.1 % after one week's culture, an increase that is three times higher than that of bioreactor (17.1 %). For granular form cultures, the nitrogen removal load reached 2.34 ∼ 2.51 kg-N/(m3·d), which was also substantially higher than the bioreactor (∼1.22 kg-N/(m3·d)). Furthermore, studying the kinetics of nitrite inhibition of granular sludge with different particle sizes (100-900 μm) showed that the maximum ammonia load and the nitrite semi-saturation coefficient noticeably decreased for smaller particle sizes. These results illustrate the usefulness of the microfluidic method for in-depth understanding anammox process and its implementation.
Collapse
Affiliation(s)
- Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Siyuan Mao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tiansi Xu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xueyan Ma
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huabing Yin
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, UK.
| | - Yong Qiu
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Li W, Peng YF. Advances in microfluidic chips based on islet hormone-sensing techniques. World J Diabetes 2023; 14:17-25. [PMID: 36684385 PMCID: PMC9850799 DOI: 10.4239/wjd.v14.i1.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/11/2022] [Accepted: 12/07/2022] [Indexed: 01/10/2023] Open
Abstract
Diabetes mellitus is a global health problem resulting from islet dysfunction or insulin resistance. The mechanisms of islet dysfunction are still under investigation. Islet hormone secretion is the main function of islets, and serves an important role in the homeostasis of blood glucose. Elucidating the detailed mechanism of islet hormone secretome distortion can provide clues for the treatment of diabetes. Therefore, it is crucial to develop accurate, real-time, labor-saving, high-throughput, automated, and cost-effective techniques for the sensing of islet secretome. Microfluidic chips, an elegant platform that combines biology, engineering, computer science, and biomaterials, have attracted tremendous interest from scientists in the field of diabetes worldwide. These tiny devices are miniatures of traditional experimental systems with more advantages of time-saving, reagent-minimization, automation, high-throughput, and online detection. These features of microfluidic chips meet the demands of islet secretome analysis and a variety of chips have been designed in the past 20 years. In this review, we present a brief introduction of microfluidic chips, and three microfluidic chips-based islet hormone sensing techniques. We focus mainly on the theory of these techniques, and provide detailed examples based on these theories with the hope of providing some insights into the design of future chips or whole detection systems.
Collapse
Affiliation(s)
- Wei Li
- Department of Endocrinology, Suzhou Hospital of Anhui Medical University, Suzhou 234000, Anhui Province, China
| | - You-Fan Peng
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
6
|
Han CH, Ma JY, Zou W, Qu JL, Du Y, Li N, Liu Y, Jin G, Leng AJ, Liu J. 3D Microfluidic System for Evaluating Inhibitory Effect of Chinese Herbal Medicine Oldenlandia diffusa on Human Malignant Glioma Invasion Combined with Network Pharmacology Analysis. Chin J Integr Med 2023; 29:52-60. [PMID: 36401750 DOI: 10.1007/s11655-021-3726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To investigate the anti-invasion efficacy of the ethanol extract of Oldenlandia diffusa Will. (EEOD) on a three-dimensional (3D) human malignant glioma (MG) cell invasion and perfusion model based on microfluidic chip culture and the possible mechanism of action of Oldenlandia diffusa Will. (OD). METHODS The comprehensive pharmacodynamic analysis method in this study was based on microfluidic chip 3D cell perfusion culture technology, and the action mechanism of Chinese medicine (CM) on human MG cells was investigated through network pharmacology analysis. First, the components of EEOD were analyzed by ultraperformance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Then, cell viability and apoptosis were assessed to determine the optimum concentration of EEOD for invasion experiments, and two-dimensional (2D) migration and invasion abilities of U87 and U251 MG cells were evaluated using scratch wound and Transwell assays. The possible mechanism underlying the effects of EEOD on glioma was analyzed through a network pharmacology approach. RESULTS Thirty-five compounds of EEOD were detected by UPLC-Q-TOF/MS. EEOD suppressed the viability of MG cells, promoted their apoptosis, and inhibited their migratory and invasive potentials (all P<0.05). Network pharmacology analysis showed that OD inhibited the invasion of MG cells by directly regulating MAPK and Wnt pathways through MAPK, EGFR, MYC, GSK3B, and other targets. The anti-invasion effect of OD was also found to be related to the indirect regulation of microtubule cytoskeleton organization. CONCLUSIONS ]EEOD could inhibit the invasion of human MG cells, and the anti-invasion mechanism of OD might be regulating MAPK and Wnt signaling pathways and microtubule cytoskeleton organization.
Collapse
Affiliation(s)
- Chun-Hui Han
- Stem Cells Clinical Research Institution, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China.,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, 116023, Liaoning Province, China
| | - Jing-Yun Ma
- Stem Cells Clinical Research Institution, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China.,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, 116023, Liaoning Province, China
| | - Wei Zou
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, 116023, Liaoning Province, China
| | - Jia-Lin Qu
- Integrated Chinese and Western Medicine Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Yang Du
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Na Li
- Stem Cells Clinical Research Institution, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Yong Liu
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Guo Jin
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, 116023, Liaoning Province, China
| | - Ai-Jing Leng
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Jing Liu
- Stem Cells Clinical Research Institution, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China. .,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, 116023, Liaoning Province, China.
| |
Collapse
|
7
|
Kumari M, Swarupa P, Kesari KK, Kumar A. Microbial Inoculants as Plant Biostimulants: A Review on Risk Status. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010012. [PMID: 36675961 PMCID: PMC9860928 DOI: 10.3390/life13010012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Modern agriculture systems are copiously dependent on agrochemicals such as chemical fertilizers and pesticides intended to increase crop production and yield. The indiscriminate use of these chemicals not only affects the growth of plants due to the accumulation of toxic compounds, but also degrades the quality and life-supporting properties of soil. There is a dire need to develop some green approach that can resolve these issues and restore soil fertility and sustainability. The use of plant biostimulants has emerged as an environmentally friendly and acceptable method to increase crop productivity. Biostimulants contain biological substances which may be capable of increasing or stimulating plant growth in an eco-friendly manner. They are mostly biofertilizers that provide nutrients and protect plants from environmental stresses such as drought and salinity. In contrast to the protection of crop products, biostimulants not only act on the plant's vigor but also do not respond to direct actions against pests or diseases. Plant biostimulants improve nutrient mobilization and uptake, tolerance to stress, and thus crop quality when applied to plants directly or in the rhizospheric region. They foster plant growth and development by positively affecting the crop life-cycle starting from seed germination to plant maturity. Legalized application of biostimulants causes no hazardous effects on the environment and primarily provides nutrition to plants. It nurtures the growth of soil microorganisms, which leads to enhanced soil fertility and also improves plant metabolism. Additionally, it may positively influence the exogenous microbes and alter the equilibrium of the microfloral composition of the soil milieu. This review frequently cites the characterization of microbial plant biostimulants that belong to either a high-risk group or are closely related to human pathogens such as Pueudomonas, Klebsiella, Enterobacter, Acinetobacter, etc. These related pathogens cause ailments including septicemia, gastroenteritis, wound infections, inflammation in the respiratory system, meningitis, etc., of varied severity under different conditions of health status such as immunocompromized and comorbidity. Thus it may attract the related concern to review the risk status of biostimulants for their legalized applications in agriculture. This study mainly emphasizes microbial plant biostimulants and their safe application concerns.
Collapse
Affiliation(s)
- Menka Kumari
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand Cheri-Manatu, Kamre, Kanke, Rachi 835222, India
| | - Preeti Swarupa
- Department of Microbiology, Patna Women’s College, Patna 800001, India
| | - Kavindra Kumar Kesari
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Correspondence: or (K.K.K.); (A.K.)
| | - Anil Kumar
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand Cheri-Manatu, Kamre, Kanke, Rachi 835222, India
- Correspondence: or (K.K.K.); (A.K.)
| |
Collapse
|
8
|
Shahrivari S, Aminoroaya N, Ghods R, Latifi H, Afjei SA, Saraygord-Afshari N, Bagheri Z. Toxicity of trastuzumab for breast cancer spheroids: Application of a novel on-a-chip concentration gradient generator. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Advances in Nucleic Acid Amplification-Based Microfluidic Devices for Clinical Microbial Detection. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10040123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Accurate and timely detection of infectious pathogens is urgently needed for disease treatment and control of possible outbreaks worldwide. Conventional methods for pathogen detection are usually time-consuming and labor-intensive. Novel strategies for the identification of pathogenic nucleic acids are necessary for practical application. The advent of microfluidic technology and microfluidic devices has offered advanced and miniaturized tools to rapidly screen microorganisms, improving many drawbacks of conventional nucleic acid amplification-based methods. In this review, we summarize advances in the microfluidic approach to detect pathogens based on nucleic acid amplification. We survey microfluidic platforms performing two major types of nucleic acid amplification strategies, namely, polymerase chain reaction (PCR) and isothermal nucleic acid amplification. We also provide an overview of nucleic acid amplification-based platforms including studies and commercialized products for SARS-CoV-2 detection. Technologically, we focus on the design of the microfluidic devices, the selected methods for sample preparation, nucleic acid amplification techniques, and endpoint analysis. We also compare features such as analysis time, sensitivity, and specificity of different platforms. The first section of the review discusses methods used in microfluidic devices for upstream clinical sample preparation. The second section covers the design, operation, and applications of PCR-based microfluidic devices. The third section reviews two common types of isothermal nucleic acid amplification methods (loop-mediated isothermal amplification and recombinase polymerase amplification) performed in microfluidic systems. The fourth section introduces microfluidic applications for nucleic acid amplification-based detection of SARS-CoV-2. Finally, the review concludes with the importance of full integration and quantitative analysis for clinical microbial identification.
Collapse
|
10
|
Zhang Y, Chen X. Particle separation in microfluidics using different modal ultrasonic standing waves. ULTRASONICS SONOCHEMISTRY 2021; 75:105603. [PMID: 34044322 PMCID: PMC8233384 DOI: 10.1016/j.ultsonch.2021.105603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 05/14/2023]
Abstract
Microfluidic technology has great advantages in the precise manipulation of micro and nano particles, and the separation of micro and nano particles based on ultrasonic standing waves has attracted much attention for its high efficiency and simplicity of structure. This paper proposes a device that uses three modes of ultrasonic standing waves to continuously separate particles with positive acoustic contrast factor in microfluidics. Three modes of acoustic standing waves are used simultaneously in different parts of the microchannel. According to the different acoustic radiation force received by the particles, the particles are finally separated to the pressure node lines on both sides and the center of the microchannel. In this separation method, initial hydrodynamic focusing and satisfying various equilibrium constraints during the separation process are the key. Through numerical simulation, the resonance frequency of the interdigital transducer, the distribution of sound pressure in the liquid, and the relationship between the interdigital electrode voltage and the output sound pressure are obtained. Finally, the entire separation process in the microchannel was simulated, and the separation of the two particles was successfully achieved. This work has laid a certain theoretical foundation for the rapid diagnosis of diseases in practical applications.
Collapse
Affiliation(s)
- Yaolong Zhang
- College of Transportation, Ludong University, Yantai, Shandong 264025, China; Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Xueye Chen
- College of Transportation, Ludong University, Yantai, Shandong 264025, China.
| |
Collapse
|
11
|
Rodrigues CF, Azevedo NF, Miranda JM. Integration of FISH and Microfluidics. Methods Mol Biol 2021; 2246:249-261. [PMID: 33576994 DOI: 10.1007/978-1-0716-1115-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Suitable molecular methods for a faster microbial identification in food and clinical samples have been explored and optimized during the last decades. However, most molecular methods still rely on time-consuming enrichment steps prior to detection, so that the microbial load can be increased and reach the detection limit of the techniques.In this chapter, we describe an integrated methodology that combines a microfluidic (lab-on-a-chip) platform, designed to concentrate cell suspensions and speed up the identification process in Saccharomyces cerevisiae , and a peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) protocol optimized and adapted to microfluidics. Microfluidic devices with different geometries were designed, based on computational fluid dynamics simulations, and subsequently fabricated in polydimethylsiloxane by soft lithography. The microfluidic designs and PNA-FISH procedure described here are easily adaptable for the detection of other microorganisms of similar size.
Collapse
Affiliation(s)
- Célia F Rodrigues
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - João M Miranda
- CEFT - Transport Phenomena Research Center, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.
| |
Collapse
|
12
|
Dervisevic E, Tuck KL, Voelcker NH, Cadarso VJ. Recent Progress in Lab-On-a-Chip Systems for the Monitoring of Metabolites for Mammalian and Microbial Cell Research. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5027. [PMID: 31752167 PMCID: PMC6891382 DOI: 10.3390/s19225027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Lab-on-a-chip sensing technologies have changed how cell biology research is conducted. This review summarises the progress in the lab-on-a-chip devices implemented for the detection of cellular metabolites. The review is divided into two subsections according to the methods used for the metabolite detection. Each section includes a table which summarises the relevant literature and also elaborates the advantages of, and the challenges faced with that particular method. The review continues with a section discussing the achievements attained due to using lab-on-a-chip devices within the specific context. Finally, a concluding section summarises what is to be resolved and discusses the future perspectives.
Collapse
Affiliation(s)
- Esma Dervisevic
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia;
| | - Kellie L. Tuck
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia;
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia;
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC 3168, Australia
- The Melbourne Centre for Nanofabrication, Australian National Fabrication Facility-Victorian Node, Clayton, VIC 3800, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Victor J. Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia;
- The Melbourne Centre for Nanofabrication, Australian National Fabrication Facility-Victorian Node, Clayton, VIC 3800, Australia
| |
Collapse
|
13
|
Chen X, Wang J, Shen HY, Su X, Cao Y, Li T, Gan N. Microfluidic Chip for Multiplex Detection of Trace Chemical Contaminants Based on Magnetic Encoded Aptamer Probes and Multibranched DNA Nanostructures as Signal Tags. ACS Sens 2019; 4:2131-2139. [PMID: 31366194 DOI: 10.1021/acssensors.9b00963] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The development of multiplex assays to simultaneously monitor multiclass chemical contaminants that commonly coexist in foods, such as heavy metal ions, antibiotics, and estrogen residues, is gaining attention. Here, a microfluidic chip (MC)-based multianalysis method coupled with magnetic encoded aptamer probes was used for simultaneous detection of kanamycin, 17β-estradiol, and lead ion (Pb2+). Using this innovative strategy, the magnetic bead (MB)-based encoded probes labeled with aptamer hybrid chains were first used to selectively capture multiple targets, followed by generating single-stranded primers. The primers triggered a multibranched hybridization chain reaction (mHCR). Finally, three kinds of complementary strands (C-DNAs) with different lengths were hybridized with the arms of the mHCR products to form three types of multibranched DNA nanostructures. The decrement signals of C-DNAs were employed for qualification of targets. As the signal tags corresponded to different targets, the DNA nanostructures realized "one target for the decrease of massive C-DNAs" to improve sensitivity. The use of MB-based encoded probes could achieve magnetic separation to eliminate interference in the complex. The detection limits of this method were 1.76 × 10-4 nM (kanamycin), 1.18 × 10-4 nM (17β-estradiol), and 1.29 × 10-4 nM (lead ion). Furthermore, the MC platform is reusable and can be used for more than 4000 samples. The assay combining the MC with MB-based encoded probes with multibranched DNA signal tags offers a universal, reusable, and high-throughput detection platform for screening multiclass chemical contaminants in food samples with complex matrices.
Collapse
Affiliation(s)
- Xixue Chen
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 31521, China
| | - Jiaqi Wang
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 31521, China
| | - Hao-Yu Shen
- Ningbo Institute of Technology, Zhejiang University; Ningbo 315100, China
| | - XiuRong Su
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 31521, China
| | - Yuting Cao
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 31521, China
| | - Tianhua Li
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 31521, China
| | - Ning Gan
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 31521, China
| |
Collapse
|
14
|
Sakthivel K, O'Brien A, Kim K, Hoorfar M. Microfluidic analysis of heterotypic cellular interactions: A review of techniques and applications. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Connector-Free World-to-Chip Interconnection for Microfluidic Devices. MICROMACHINES 2019; 10:mi10030166. [PMID: 30818805 PMCID: PMC6471718 DOI: 10.3390/mi10030166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/16/2023]
Abstract
In the development of functional lab-on-a-chip (LOC), there is a need to produce a reliable and high pressure connection between capillary tubes and microfluidic devices for carrying fluids. The current technologies still have limitations in achieving ideal interconnection since they are bulky, expensive or complicated. In this paper, a novel connector-free technique using an interference fit mechanism is introduced for world-to-chip interconnection. The proposed technique has considerable potential for replacing current interconnection tools for microfluidic devices due to the advantages including no chemical contamination, easy plugging, enough strength to sustain pressure, high density integration, simple and rapid integration.
Collapse
|
16
|
Kong X, Tian S, Chen T, Huang Y. Functional detection of the original generation of hippocampal cells planted on to the micro-fluidic chip with artificial neuronal network using the patch clamp recording technique: a preliminary study. Int J Neurosci 2018; 129:430-437. [PMID: 30334641 DOI: 10.1080/00207454.2018.1538142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE The design of pattern that limits the hippocampal cells growth is an important explore for realizing a simplified artificial neuronal network in vitro. MATERIALS AND METHODS In this study, we examined the pattern in micro-fluidic chip to stipulate the hippocampal cells adhesion, growth and the formation of a functional neuronal network in vitro. Patch clamp recording technique was used to detect the growth situation and biological function of the haippocampal cells on the micro-fluidic chip which could simulate environment in vivo. RESULTS We showed that the number of neurons cultured was about 5000-6000 cells on the micro-fluidic chip, which was conductive to the hippocampal cells growth. The result of patch clamp recording technique showed the signals of sodium and potassium channels, meanwhile, it also revealed the signals of synaptic connection. CONCLUSIONS These findings involve placing cells in specific locations to create organized structures, and explore the spread function of synaptic on the micro-fluidic chip.
Collapse
Affiliation(s)
- Xianmin Kong
- a School of Life Science and Bioengineering , Beijing University of Technology , Beijing , People's Republic of China
| | - Shanshan Tian
- b Laser Institute Beijing University of Technology , Beijing , People's Republic of China
| | - Tao Chen
- b Laser Institute Beijing University of Technology , Beijing , People's Republic of China
| | - Yinghui Huang
- a School of Life Science and Bioengineering , Beijing University of Technology , Beijing , People's Republic of China
| |
Collapse
|
17
|
|
18
|
Zhang D, Bi H, Liu B, Qiao L. Detection of Pathogenic Microorganisms by Microfluidics Based Analytical Methods. Anal Chem 2018; 90:5512-5520. [PMID: 29595252 DOI: 10.1021/acs.analchem.8b00399] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Microfluidics based biochemical analysis shows distinctive advantages for fast detection of pathogenic microorganisms. This Feature summarizes the progress in the past decade on microfluidic methods for purification and detection of pathogenic bacteria and viruses as well as their applications in food safety control, environmental monitoring, and clinical diagnosis.
Collapse
Affiliation(s)
- Dongxue Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials , Fudan University , Shanghai , China 200433
| | - Hongyan Bi
- College of Food Science and Engineering , Shanghai Ocean University , Shanghai , China 201306
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials , Fudan University , Shanghai , China 200433
| | - Liang Qiao
- Department of Chemistry, Shanghai Stomatological Hospital, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials , Fudan University , Shanghai , China 200433
| |
Collapse
|
19
|
Damiati S, Mhanna R, Kodzius R, Ehmoser EK. Cell-Free Approaches in Synthetic Biology Utilizing Microfluidics. Genes (Basel) 2018; 9:E144. [PMID: 29509709 PMCID: PMC5867865 DOI: 10.3390/genes9030144] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 11/16/2022] Open
Abstract
Synthetic biology is a rapidly growing multidisciplinary branch of science which aims to mimic complex biological systems by creating similar forms. Constructing an artificial system requires optimization at the gene and protein levels to allow the formation of entire biological pathways. Advances in cell-free synthetic biology have helped in discovering new genes, proteins, and pathways bypassing the complexity of the complex pathway interactions in living cells. Furthermore, this method is cost- and time-effective with access to the cellular protein factory without the membrane boundaries. The freedom of design, full automation, and mimicking of in vivo systems reveal advantages of synthetic biology that can improve the molecular understanding of processes, relevant for life science applications. In parallel, in vitro approaches have enhanced our understanding of the living system. This review highlights the recent evolution of cell-free gene design, proteins, and cells integrated with microfluidic platforms as a promising technology, which has allowed for the transformation of the concept of bioprocesses. Although several challenges remain, the manipulation of biological synthetic machinery in microfluidic devices as suitable 'homes' for in vitro protein synthesis has been proposed as a pioneering approach for the development of new platforms, relevant in biomedical and diagnostic contexts towards even the sensing and monitoring of environmental issues.
Collapse
Affiliation(s)
- Samar Damiati
- Department of Biochemistry, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia.
| | - Rami Mhanna
- Biomedical Engineering Program, The American University of Beirut (AUB), Beirut 1107-2020, Lebanon.
| | - Rimantas Kodzius
- Mathematics and Natural Sciences Department, The American University of Iraq, Sulaimani, Sulaymaniyah 46001, Iraq.
- Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), 80539 Munich, Germany.
- Faculty of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany.
| | - Eva-Kathrin Ehmoser
- Department of Nanobiotechnology, Institute for Synthetic Bioarchitecture, University of Natural Resources and Life Sciences, 1190 Vienna, Austria.
| |
Collapse
|
20
|
Chen X, Ren Y, Liu W, Feng X, Jia Y, Tao Y, Jiang H. A Simplified Microfluidic Device for Particle Separation with Two Consecutive Steps: Induced Charge Electro-osmotic Prefocusing and Dielectrophoretic Separation. Anal Chem 2017; 89:9583-9592. [PMID: 28783330 DOI: 10.1021/acs.analchem.7b02892] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Continuous dielectrophoretic separation is recognized as a powerful technique for a large number of applications including early stage cancer diagnosis, water quality analysis, and stem-cell-based therapy. Generally, the prefocusing of a particle mixture into a stream is an essential process to ensure all particles are subjected to the same electric field geometry in the separation region. However, accomplishing this focusing process either requires hydrodynamic squeezing, which requires an encumbering peripheral system and a complicated operation to drive and control the fluid motion, or depends on dielectrophoretic forces, which are highly sensitive to the dielectric characterization of particles. An alternative focusing technique, induced charge electro-osmosis (ICEO), has been demonstrated to be effective in focusing an incoming mixture into a particle stream as well as nonselective regarding the particles of interest. Encouraged by these aspects, we propose a hybrid method for microparticle separation based on a delicate combination of ICEO focusing and dielectrophoretic deflection. This method involves two steps: focusing the mixture into a thin particle stream via ICEO vortex flow and separating the particles of differing dielectic properties through dielectrophoresis. To demonstrate the feasibility of the method proposed, we designed and fabricated a microfluidic chip and separated a mixture consisting of yeast cells and silica particles with an efficiency exceeding 96%. This method has good potential for flexible integration into other microfluidic chips in the future.
Collapse
Affiliation(s)
- Xiaoming Chen
- School of Mechatronics Engineering, Harbin Institute of Technology , Harbin 150001, People's Republic of China
| | - Yukun Ren
- School of Mechatronics Engineering, Harbin Institute of Technology , Harbin 150001, People's Republic of China.,State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin 150001, People's Republic of China
| | - Weiyu Liu
- School of Mechatronics Engineering, Harbin Institute of Technology , Harbin 150001, People's Republic of China
| | - Xiangsong Feng
- School of Mechatronics Engineering, Harbin Institute of Technology , Harbin 150001, People's Republic of China
| | - Yankai Jia
- School of Mechatronics Engineering, Harbin Institute of Technology , Harbin 150001, People's Republic of China
| | - Ye Tao
- School of Mechatronics Engineering, Harbin Institute of Technology , Harbin 150001, People's Republic of China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology , Harbin 150001, People's Republic of China.,State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin 150001, People's Republic of China
| |
Collapse
|
21
|
New Equipment and Devices for Therapeutic Purpose. Int Neurourol J 2017; 21:S2-3. [PMID: 28446008 PMCID: PMC5426428 DOI: 10.5213/inj.1720edi004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
22
|
Abstract
Microfluidics is considered an important technology that is suitable for numerous biomedical applications, including cancer diagnosis, metastasis, drug delivery, and tissue engineering. Although microfluidics is still considered to be a new approach in urological research, several pioneering studies have been reported in recent years. In this paper, we reviewed urological research works using microfluidic devices. Microfluidic devices were used for the detection of prostate and bladder cancer and the characterization of cancer microenvironments. The potential applications of microfluidics in urinary analysis and sperm sorting were demonstrated. The use of microfluidic devices in urology research can provide high-throughput, high-precision, and low-cost analyzing platforms.
Collapse
|
23
|
Holton AB, Sinatra FL, Kreahling J, Conway AJ, Landis DA, Altiok S. Microfluidic Biopsy Trapping Device for the Real-Time Monitoring of Tumor Microenvironment. PLoS One 2017; 12:e0169797. [PMID: 28085924 PMCID: PMC5235371 DOI: 10.1371/journal.pone.0169797] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/21/2016] [Indexed: 01/09/2023] Open
Abstract
The tumor microenvironment is composed of cellular and stromal components such as tumor cells, mesenchymal cells, immune cells, cancer associated fibroblasts and the supporting extracellular matrix. The tumor microenvironment provides crucial support for growth and progression of tumor cells and affects tumor response to therapeutic interventions. To better understand tumor biology and to develop effective cancer therapeutic agents it is important to develop preclinical platforms that can faithfully recapitulate the tumor microenvironment and the complex interaction between the tumor and its surrounding stromal elements. Drug studies performed in vitro with conventional two-dimensional cancer cell line models do not optimally represent clinical drug response as they lack true tumor heterogeneity and are often performed in static culture conditions lacking stromal tumor components that significantly influence the metabolic activity and proliferation of cells. Recent microfluidic approaches aim to overcome such obstacles with the use of cell lines derived in artificial three-dimensional supportive gels or micro-chambers. However, absence of a true tumor microenvironment and full interstitial flow, leads to less than optimal evaluation of tumor response to drug treatment. Here we report a continuous perfusion microfluidic device coupled with microscopy and image analysis for the assessment of drug effects on intact fresh tumor tissue. We have demonstrated that fine needle aspirate biopsies obtained from patient-derived xenograft models of adenocarcinoma of the lung can successfully be analyzed for their response to ex vivo drug treatment within this biopsy trapping microfluidic device, wherein a protein kinase C inhibitor, staurosporine, was used to assess tumor cell death as a proof of principle. This approach has the potential to study tumor tissue within its intact microenvironment to better understand tumor response to drug treatments and eventually to choose the most effective drug and drug combination for individual patients in a cost effective and timely manner.
Collapse
Affiliation(s)
- Angela Babetski Holton
- Draper, Cambridge, Massachusetts, United States of America
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, United States of America
| | | | - Jenny Kreahling
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Amy J. Conway
- Draper, Cambridge, Massachusetts, United States of America
| | | | - Soner Altiok
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
24
|
Fully-Programmable, Low-Cost, “Do-It-Yourself” Pressure Source for General Purpose Use in the Microfluidic Laboratory. INVENTIONS 2016. [DOI: 10.3390/inventions1020013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Kilinc D, Schwab J, Rampini S, Ikpekha OW, Thampi A, Blasiak A, Li P, Schwamborn R, Kolch W, Matallanas D, Lee GU. A microfluidic dual gradient generator for conducting cell-based drug combination assays. Integr Biol (Camb) 2016; 8:39-49. [DOI: 10.1039/c5ib00209e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We present a microfluidic gradient generator that exposes cultured cells to orthogonally-aligned linear concentration gradients of two molecules. Live-cell assays quantifying apoptotic signaling and cell motility are provided as proof-of-concept.
Collapse
Affiliation(s)
- Devrim Kilinc
- School of Chemistry and Chemical Biology
- University College Dublin
- Dublin 4
- Ireland
- UCD Conway Institute
| | - Jefrem Schwab
- School of Chemistry and Chemical Biology
- University College Dublin
- Dublin 4
- Ireland
| | - Stefano Rampini
- School of Chemistry and Chemical Biology
- University College Dublin
- Dublin 4
- Ireland
| | - Oshoke W. Ikpekha
- School of Chemistry and Chemical Biology
- University College Dublin
- Dublin 4
- Ireland
| | - Ashwin Thampi
- School of Chemistry and Chemical Biology
- University College Dublin
- Dublin 4
- Ireland
| | - Agata Blasiak
- School of Chemistry and Chemical Biology
- University College Dublin
- Dublin 4
- Ireland
| | - Peng Li
- School of Chemistry and Chemical Biology
- University College Dublin
- Dublin 4
- Ireland
| | | | - Walter Kolch
- UCD Conway Institute
- Dublin 4
- Ireland
- Systems Biology Ireland
- UCD
| | | | - Gil U. Lee
- School of Chemistry and Chemical Biology
- University College Dublin
- Dublin 4
- Ireland
- UCD Conway Institute
| |
Collapse
|
26
|
Digital Microfluidics for Manipulation and Analysis of a Single Cell. Int J Mol Sci 2015; 16:22319-32. [PMID: 26389890 PMCID: PMC4613310 DOI: 10.3390/ijms160922319] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 12/31/2022] Open
Abstract
The basic structural and functional unit of a living organism is a single cell. To understand the variability and to improve the biomedical requirement of a single cell, its analysis has become a key technique in biological and biomedical research. With a physical boundary of microchannels and microstructures, single cells are efficiently captured and analyzed, whereas electric forces sort and position single cells. Various microfluidic techniques have been exploited to manipulate single cells through hydrodynamic and electric forces. Digital microfluidics (DMF), the manipulation of individual droplets holding minute reagents and cells of interest by electric forces, has received more attention recently. Because of ease of fabrication, compactness and prospective automation, DMF has become a powerful approach for biological application. We review recent developments of various microfluidic chips for analysis of a single cell and for efficient genetic screening. In addition, perspectives to develop analysis of single cells based on DMF and emerging functionality with high throughput are discussed.
Collapse
|
27
|
Feng X, Liu BF, Li J, Liu X. Advances in coupling microfluidic chips to mass spectrometry. MASS SPECTROMETRY REVIEWS 2015; 34:535-57. [PMID: 24399782 DOI: 10.1002/mas.21417] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 05/26/2023]
Abstract
Microfluidic technology has shown advantages of low sample consumption, reduced analysis time, high throughput, and potential for integration and automation. Coupling microfluidic chips to mass spectrometry (Chip-MS) can greatly improve the overall analytical performance of MS-based approaches and expand their potential applications. In this article, we review the advances of Chip-MS in the past decade, covering innovations in microchip fabrication, microchips coupled to electrospray ionization (ESI)-MS and matrix-assisted laser desorption/ionization (MALDI)-MS. Development of integrated microfluidic systems for automated MS analysis will be further documented, as well as recent applications of Chip-MS in proteomics, metabolomics, cell analysis, and clinical diagnosis.
Collapse
MESH Headings
- Animals
- Chromatography, Liquid/instrumentation
- Chromatography, Liquid/methods
- Electrophoresis, Microchip/instrumentation
- Electrophoresis, Microchip/methods
- Equipment Design
- Humans
- Lab-On-A-Chip Devices
- Lipids/analysis
- Metabolomics/instrumentation
- Metabolomics/methods
- Polysaccharides/analysis
- Proteins/analysis
- Proteomics/instrumentation
- Proteomics/methods
- Spectrometry, Mass, Electrospray Ionization/instrumentation
- Spectrometry, Mass, Electrospray Ionization/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- Xiaojun Feng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianjun Li
- Human Health Therapeutics, National Research Council Canada, Ottawa, Ontario, Canada K1A 0R6
| | - Xin Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
28
|
A microfluidic digital single-cell assay for the evaluation of anticancer drugs. Anal Bioanal Chem 2014; 407:1139-48. [PMID: 25433683 DOI: 10.1007/s00216-014-8325-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022]
Abstract
Digital single-cell assays hold high potentials for the analysis of cell apoptosis and the evaluation of chemotherapeutic reagents for cancer therapy. In this paper, a microfluidic hydrodynamic trapping system was developed for digital single-cell assays with the capability of monitoring cellular dynamics over time. The microfluidic chip was designed with arrays of bypass structures for trapping individual cells without the need for surface modification, external electric force, or robotic equipment. After optimization of the bypass structure by both numerical simulations and experiments, a single-cell trapping efficiency of ∼90 % was achieved. We demonstrated the method as a digital single-cell assay for the evaluation of five clinically established chemotherapeutic reagents. As a result, the half maximal inhibitory concentration (IC50) values of these compounds could be conveniently determined. We further modeled the gradual decrease of active drugs over time which was often observed in vivo after an injection to investigate cell apoptosis against chemotherapeutic reagents. The developed method provided a valuable means for cell apoptotic analysis and evaluation of anticancer drugs.
Collapse
|
29
|
Larsen EKU, Mikkelsen MBL, Larsen NB. Protein and cell patterning in closed polymer channels by photoimmobilizing proteins on photografted poly(ethylene glycol) diacrylate. BIOMICROFLUIDICS 2014; 8:064127. [PMID: 25587375 PMCID: PMC4282676 DOI: 10.1063/1.4905093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/16/2014] [Indexed: 05/14/2023]
Abstract
Definable surface chemistry is essential for many applications of microfluidic polymer systems. However, small cross-section channels with a high surface to volume ratio enhance passive adsorption of molecules that depletes active molecules in solution and contaminates the channel surface. Here, we present a one-step photochemical process to coat the inner surfaces of closed microfluidic channels with a nanometer thick layer of poly(ethylene glycol) (PEG), well known to strongly reduce non-specific adsorption, using only commercially available reagents in an aqueous environment. The coating consists of PEG diacrylate (PEGDA) covalently grafted to polymer surfaces via UV light activation of the water soluble photoinitiator benzoyl benzylamine, a benzophenone derivative. The PEGDA coating was shown to efficiently limit the adsorption of antibodies and other proteins to <5% of the adsorbed amount on uncoated polymer surfaces. The coating could also efficiently suppress the adhesion of mammalian cells as demonstrated using the HT-29 cancer cell line. In a subsequent equivalent process step, protein in aqueous solution could be anchored onto the PEGDA coating in spatially defined patterns with a resolution of <15 μm using an inverted microscope as a projection lithography system. Surface patterns of the cell binding protein fibronectin were photochemically defined inside a closed microfluidic device that was initially homogeneously coated by PEGDA. The resulting fibronectin patterns were shown to greatly improve cell adhesion compared to unexposed areas. This method opens for easy surface modification of closed microfluidic systems through combining a low protein binding PEG-based coating with spatially defined protein patterns of interest.
Collapse
Affiliation(s)
- Esben Kjær Unmack Larsen
- Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark , DK-2800 Kgs. Lyngby, Denmark
| | - Morten Bo Lindholm Mikkelsen
- Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark , DK-2800 Kgs. Lyngby, Denmark
| | - Niels B Larsen
- Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark , DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
30
|
Bhise NS, Ribas J, Manoharan V, Zhang YS, Polini A, Massa S, Dokmeci MR, Khademhosseini A. Organ-on-a-chip platforms for studying drug delivery systems. J Control Release 2014; 190:82-93. [PMID: 24818770 DOI: 10.1016/j.jconrel.2014.05.004] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/24/2014] [Accepted: 05/02/2014] [Indexed: 01/03/2023]
Abstract
Novel microfluidic tools allow new ways to manufacture and test drug delivery systems. Organ-on-a-chip systems - microscale recapitulations of complex organ functions - promise to improve the drug development pipeline. This review highlights the importance of integrating microfluidic networks with 3D tissue engineered models to create organ-on-a-chip platforms, able to meet the demand of creating robust preclinical screening models. Specific examples are cited to demonstrate the use of these systems for studying the performance of drug delivery vectors and thereby reduce the discrepancies between their performance at preclinical and clinical trials. We also highlight the future directions that need to be pursued by the research community for these proof-of-concept studies to achieve the goal of accelerating clinical translation of drug delivery nanoparticles.
Collapse
Affiliation(s)
- Nupura S Bhise
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - João Ribas
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; Biocant - Biotechnology Innovation Center, 3060-197 Cantanhede, Portugal
| | - Vijayan Manoharan
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Yu Shrike Zhang
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Alessandro Polini
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Solange Massa
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Mehmet R Dokmeci
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Ali Khademhosseini
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, USA; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| |
Collapse
|
31
|
Hao M, Liu R, Zhang H, Li Y, Jing M. Detection of glutathione within single mice hepatocytes using microfluidic chips coupled with a laser-induced fluorescence system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 125:7-11. [PMID: 24534424 DOI: 10.1016/j.saa.2013.12.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 11/29/2013] [Accepted: 12/04/2013] [Indexed: 06/03/2023]
Abstract
A rapid and accurate detection of glutathione (GSH) content in single cells is important to the early diagnosis and prevention of diseases. A microfluidic system allows the manipulation of trace amounts of reagents and single cells in a simple and cheap glass chip coupled with laser induced fluorescence (LIF) detection. 2,3-Naphthalenedicarboxaldehyde (NDA) was used as the derivatization reagent to label GSH in cells. Microchannel surface derivatization and optimization of injection and separation were investigated in detail, and then the GSH in single mice hepatocyte was separated and detected under optimum conditions with a linear range of 5×10(-4) M~5×10(-3) M and a detection limit of 4.47×10(-5) M. This study provides a simple and effective method for rapid GSH detection in single cells using few reagents.
Collapse
Affiliation(s)
- Minglu Hao
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 27# Shanda South Road, Shandong Province, Jinan 250100, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 27# Shanda South Road, Shandong Province, Jinan 250100, PR China.
| | - Hao Zhang
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 27# Shanda South Road, Shandong Province, Jinan 250100, PR China
| | - Yating Li
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 27# Shanda South Road, Shandong Province, Jinan 250100, PR China
| | - Mingyang Jing
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 27# Shanda South Road, Shandong Province, Jinan 250100, PR China
| |
Collapse
|
32
|
Polini A, Prodanov L, Bhise NS, Manoharan V, Dokmeci MR, Khademhosseini A. Organs-on-a-chip: a new tool for drug discovery. Expert Opin Drug Discov 2014; 9:335-52. [PMID: 24620821 DOI: 10.1517/17460441.2014.886562] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The development of emerging in vitro tissue culture platforms can be useful for predicting human response to new compounds, which has been traditionally challenging in the field of drug discovery. Recently, several in vitro tissue-like microsystems, also known as 'organs-on-a-chip', have emerged to provide new tools for better evaluating the effects of various chemicals on human tissue. AREAS COVERED The aim of this article is to provide an overview of the organs-on-a-chip systems that have been recently developed. First, the authors introduce single-organ platforms, focusing on the most studied organs such as liver, heart, blood vessels and lung. Later, the authors briefly describe tumor-on-a-chip platforms and highlight their application for testing anti-cancer drugs. Finally, the article reports a few examples of other organs integrated in microfluidic chips along with preliminary multiple-organs-on-a-chip examples. The article also highlights key fabrication points as well as the main application areas of these devices. EXPERT OPINION This field is still at an early stage and major challenges need to be addressed prior to the embracement of these technologies by the pharmaceutical industry. To produce predictive drug screening platforms, several organs have to be integrated into a single microfluidic system representative of a humanoid. The routine production of metabolic biomarkers of the organ constructs, as well as their physical environment, have to be monitored prior to and during the delivery of compounds of interest to be able to translate the findings into useful discoveries.
Collapse
Affiliation(s)
- Alessandro Polini
- Brigham and Women's Hospital, Harvard Medical School, Division of Biomedical Engineering, Department of Medicine , Cambridge, MA 02139 , USA
| | | | | | | | | | | |
Collapse
|
33
|
Jubery TZ, Srivastava SK, Dutta P. Dielectrophoretic separation of bioparticles in microdevices: A review. Electrophoresis 2014; 35:691-713. [DOI: 10.1002/elps.201300424] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 12/04/2013] [Accepted: 12/09/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Talukder Z. Jubery
- School of Mechanical and Materials Engineering; Washington State University; Pullman WA USA
| | - Soumya K. Srivastava
- Department of Chemical and Materials Engineering; University of Idaho; Moscow ID USA
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering; Washington State University; Pullman WA USA
| |
Collapse
|
34
|
Li Y, Feng X, Du W, Li Y, Liu BF. Ultrahigh-Throughput Approach for Analyzing Single-Cell Genomic Damage with an Agarose-Based Microfluidic Comet Array. Anal Chem 2013; 85:4066-73. [DOI: 10.1021/ac4000893] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yiwei Li
- Britton Chance Center for Biomedical
Photonics at Wuhan
National Laboratory for Optoelectronics−Hubei Bioinformatics
and Molecular Imaging Key Laboratory, Systems Biology Theme, Department
of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan
430074, China
| | - Xiaojun Feng
- Britton Chance Center for Biomedical
Photonics at Wuhan
National Laboratory for Optoelectronics−Hubei Bioinformatics
and Molecular Imaging Key Laboratory, Systems Biology Theme, Department
of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan
430074, China
| | - Wei Du
- Britton Chance Center for Biomedical
Photonics at Wuhan
National Laboratory for Optoelectronics−Hubei Bioinformatics
and Molecular Imaging Key Laboratory, Systems Biology Theme, Department
of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan
430074, China
| | - Ying Li
- Britton Chance Center for Biomedical
Photonics at Wuhan
National Laboratory for Optoelectronics−Hubei Bioinformatics
and Molecular Imaging Key Laboratory, Systems Biology Theme, Department
of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan
430074, China
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical
Photonics at Wuhan
National Laboratory for Optoelectronics−Hubei Bioinformatics
and Molecular Imaging Key Laboratory, Systems Biology Theme, Department
of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan
430074, China
| |
Collapse
|
35
|
Recent advances in microchip electrophoresis for amino acid analysis. Anal Bioanal Chem 2013; 405:7907-18. [DOI: 10.1007/s00216-013-6830-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/25/2013] [Accepted: 02/07/2013] [Indexed: 12/27/2022]
|
36
|
Sivagnanam V, Gijs MAM. Exploring Living Multicellular Organisms, Organs, and Tissues Using Microfluidic Systems. Chem Rev 2013; 113:3214-47. [DOI: 10.1021/cr200432q] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Martin A. M. Gijs
- Laboratory
of Microsystems, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne,
Switzerland
| |
Collapse
|
37
|
Tehranirokh M, Kouzani AZ, Francis PS, Kanwar JR. Microfluidic devices for cell cultivation and proliferation. BIOMICROFLUIDICS 2013; 7:51502. [PMID: 24273628 PMCID: PMC3829894 DOI: 10.1063/1.4826935] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/24/2013] [Indexed: 05/07/2023]
Abstract
Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications such as tissue engineering, diagnostics, drug screening, immunology, cancer studies, stem cell proliferation and differentiation, and neurite guidance. Microfluidic technology allows dynamic cell culture in microperfusion systems to deliver continuous nutrient supplies for long term cell culture. It offers many opportunities to mimic the cell-cell and cell-extracellular matrix interactions of tissues by creating gradient concentrations of biochemical signals such as growth factors, chemokines, and hormones. Other applications of cell cultivation in microfluidic systems include high resolution cell patterning on a modified substrate with adhesive patterns and the reconstruction of complicated tissue architectures. In this review, recent advances in microfluidic platforms for cell culturing and proliferation, for both simple monolayer (2D) cell seeding processes and 3D configurations as accurate models of in vivo conditions, are examined.
Collapse
|
38
|
Adler B, Boström T, Ekström S, Hober S, Laurell T. Miniaturized and Automated High-Throughput Verification of Proteins in the ISET Platform with MALDI MS. Anal Chem 2012; 84:8663-9. [DOI: 10.1021/ac3017983] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Belinda Adler
- Department of Measurement Technology
and Industrial Electrical Engineering, Division of Nanobiotechnology, Lund University, Box 118, SE-211 00 Lund, Sweden
| | - Tove Boström
- Division of Proteomics, School
of Biotechnology, AlbaNova University Center, KTH, SE-106 91 Stockholm, Sweden
| | - Simon Ekström
- Department of Measurement Technology
and Industrial Electrical Engineering, Division of Nanobiotechnology, Lund University, Box 118, SE-211 00 Lund, Sweden
| | - Sophia Hober
- Division of Proteomics, School
of Biotechnology, AlbaNova University Center, KTH, SE-106 91 Stockholm, Sweden
| | - Thomas Laurell
- Department of Measurement Technology
and Industrial Electrical Engineering, Division of Nanobiotechnology, Lund University, Box 118, SE-211 00 Lund, Sweden
| |
Collapse
|
39
|
Bead affinity chromatography in a temperature-controllable microsystem for biomarker detection. Anal Bioanal Chem 2012; 404:2267-75. [DOI: 10.1007/s00216-012-6380-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/17/2012] [Accepted: 08/22/2012] [Indexed: 12/12/2022]
|
40
|
|
41
|
Sun J, Zheng Y, Feng X, Du W, Liu BF. Analysis of intercellular calcium signaling using microfluidic adjustable laminar flow for localized chemical stimulation. Anal Chim Acta 2012; 721:104-9. [PMID: 22405307 DOI: 10.1016/j.aca.2012.01.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 01/20/2012] [Accepted: 01/26/2012] [Indexed: 01/09/2023]
Abstract
The propagation of intercellular calcium signals provides a mechanism to coordinate cell population activity, which is essential for regulating cell behavior and organ development. However, existing analytical methods are difficult to realize localized chemical stimulation of a single cell among a population of cells that are in close contact with one another for studying the propagation of calcium wave. In this work, a microfluidic method is presented for the analysis of contact-dependent propagation of intercellular calcium wave induced by extracellular ATP using multiple laminar flows. Adjacent cells were seeded ∼300 μm downstream the intersection of a Y-shaped microchannel with negative pressure pulses. Consequently, the lateral diffusion distance of the chemical at cell locations was limited to ∼26 μm with a total flow rate of 20 μL min(-1), which prevented the interference of diffusion-induced cellular responses. Localized stimulation of the target cell with ATP induced the propagation of intercellular calcium wave among the cell population. In addition, studies on the spread of intercellular calcium wave under octanol inhibition allowed us to characterize the gap junction mediated cell-cell communication. Thus, this novel device will provide a versatile platform for intercellular signal transduction studies and high throughput drug screening.
Collapse
Affiliation(s)
- Jian Sun
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, People's Republic of China
| | | | | | | | | |
Collapse
|
42
|
Kašička V. Recent developments in CE and CEC of peptides (2009-2011). Electrophoresis 2011; 33:48-73. [DOI: 10.1002/elps.201100419] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 12/12/2022]
|
43
|
Advances on Biomedical Research in Caenorhabditis elegans Based on Microfluidic Device*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2011.00079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Coleman RA. Human tissue in the evaluation of safety and efficacy of new medicines: a viable alternative to animal models? ISRN PHARMACEUTICS 2011; 2011:806789. [PMID: 22389860 PMCID: PMC3263708 DOI: 10.5402/2011/806789] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 05/15/2011] [Indexed: 11/23/2022]
Abstract
The pharma Industry's ability to develop safe and effective new drugs to market is in serious decline.
Arguably, a major contributor to this is the Industry's extensive reliance on nonhuman biology-based test methods to determine potential
safety and efficacy, objective analysis of which reveals poor predictive value. An obvious alternative approach is to use human-based tests,
but only if they are available, practical, and effective. While in vivo (phase 0 microdosing with high sensitivity mass spectroscopy)
and in silico (using established human biological data), technologies are increasingly being used, in vitro human approaches
are more rarely employed. However, not only are increasingly sophisticated in vitro test methods now available or under development,
but the basic ethically approved infrastructure through which human cells and tissues may be acquired is established. Along with clinical microdosing
and in silico approaches, more effective access to and use of human cells and tissues in vitro provide exciting and potentially
more effective opportunities for the assessment of safety and efficacy of new medicines.
Collapse
|
45
|
Tian R, Hoa XD, Lambert JP, Pezacki JP, Veres T, Figeys D. Development of a multiplexed microfluidic proteomic reactor and its application for studying protein-protein interactions. Anal Chem 2011; 83:4095-102. [PMID: 21520965 DOI: 10.1021/ac200194d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mass spectrometry-based proteomics techniques have been very successful for the identification and study of protein-protein interactions. Typically, immunopurification of protein complexes is conducted, followed by protein separation by gel electrophoresis and in-gel protein digestion, and finally, mass spectrometry is performed to identify the interacting partners. However, the manual processing of the samples is time-consuming and error-prone. Here, we developed a polymer-based microfluidic proteomic reactor aimed at the parallel analysis of minute amounts of protein samples obtained from immunoprecipitation. The design of the proteomic reactor allows for the simultaneous processing of multiple samples on the same devices. Each proteomic reactor on the device consists of SCX beads packed and restricted into a 1 cm microchannel by two integrated pillar frits. The device is fabricated using a combination of low-cost hard cyclic olefin copolymer thermoplastic and elastomeric thermoplastic materials (styrene/(ethylene/butylenes)/styrene) using rapid hot-embossing replication techniques with a polymer-based stamp. Three immunopurified protein samples are simultaneously captured, reduced, alkylated, and digested on the device within 2-3 h instead of the days required for the conventional protein-protein interaction studies. The limit of detection of the microfluidic proteomic reactor was shown to be lower than 2 ng of protein. Furthermore, the application of the microfluidic proteomic reactor was demonstrated for the simultaneous processing of the interactome of the histone variant Htz1 in wild-type yeast and in a swr1Δ yeast strain compared to an untagged control using a novel three-channel microfluidic proteomic reactor.
Collapse
Affiliation(s)
- Ruijun Tian
- Ottawa Institute of Systems Biology, National Research Council, Boucherville, QC, Canada J4B 6Y4
| | | | | | | | | | | |
Collapse
|
46
|
Sun J, Wang J, Chen P, Feng X, Du W, Liu BF. A chemical signal generator for resolving temporal dynamics of single cells. Anal Bioanal Chem 2011; 400:2973-81. [PMID: 21499676 DOI: 10.1007/s00216-011-4987-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/02/2011] [Accepted: 04/05/2011] [Indexed: 10/18/2022]
Abstract
To investigate rapid cell signaling, analytical methods are required that can generate repeatable chemical signals for stimulating live cells with high temporal resolution. Here, we present a chemical signal generator based on hydrodynamic gating, permitting flexible stimulation of single adherent cells with a temporal resolution of 20 ms. Studies of adenosine triphosphate (ATP)-induced calcium signaling in HeLa cells were demonstrated using this developed method. Consecutive treatment of the cells with ATP pulses of 20 or 1 s led to an increase of latency, which might be another indicator of receptor desensitization in addition to the decrease in the amplitude of calcium spikes. With increasing duration of ATP pulses from milliseconds to a few seconds, the cellular responses transitioned from single calcium spikes to calcium oscillation gradually. We expected this method to open up a new avenue for potential investigation of rapid cell signaling.
Collapse
Affiliation(s)
- Jian Sun
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, China
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Gap junctions (GJ) can no longer be thought of as simple channel forming structures that mediate intercellular communication. Hemi-channel and channel-independent functions of connexins (Cxs) have been described and numerous Cx interacting partners have been uncovered ranging from enzymes to structural and scaffolding molecules to transcription factors. With the growing number of Cx partners and functions, including well-documented roles for Cxs as conditional tumor suppressors, it has become essential to understand how Cxs are regulated in a context-dependent manner to mediate distinct functions. In this review we will shed light on the tissue and context-dependent regulation and function of Cxs and on the importance of Cx-interactions in modulating tissue-specific function. We will emphasize how the context-dependent functions of Cxs can help in understanding the impact of Cx mis-expression on cancer development and, ultimately, explore whether Cxs can be used as potential therapeutic targets in cancer treatment. In the end, we will address the need for developing relevant assays for studying Cx and GJ functions and will highlight how advances in bioengineering tools and the design of 3D biological platforms can help studying gap junction function in real time in a non-intrusive manner.
Collapse
Affiliation(s)
- R M Mroue
- Division of Life Sciences, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
48
|
Huh YS, Jeon SJ, Lee EZ, Park HS, Hong WH. Microfluidic extraction using two phase laminar flow for chemical and biological applications. KOREAN J CHEM ENG 2011. [DOI: 10.1007/s11814-010-0533-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Shi W, Wen H, Lin B, Qin J. Microfluidic Platform for the Study of Caenorhabditis elegans. MICROFLUIDICS 2011; 304:323-38. [DOI: 10.1007/128_2011_145] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
50
|
Choi S, Goryll M, Sin LYM, Wong PK, Chae J. Microfluidic-based biosensors toward point-of-care detection of nucleic acids and proteins. MICROFLUIDICS AND NANOFLUIDICS 2011; 10:231-247. [PMID: 32214951 PMCID: PMC7087901 DOI: 10.1007/s10404-010-0638-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 04/26/2010] [Indexed: 05/14/2023]
Abstract
This article reviews state-of-the-art microfluidic biosensors of nucleic acids and proteins for point-of-care (POC) diagnostics. Microfluidics is capable of analyzing small sample volumes (10-9-10-18 l) and minimizing costly reagent consumption as well as automating sample preparation and reducing processing time. The merger of microfluidics and advanced biosensor technologies offers new promises for POC diagnostics, including high-throughput analysis, portability and disposability. However, this merger also imposes technological challenges on biosensors, such as high sensitivity and selectivity requirements with sample volumes orders of magnitude smaller than those of conventional practices, false response errors due to non-specific adsorption, and integrability with other necessary modules. There have been many prior review articles on microfluidic-based biosensors, and this review focuses on the recent progress in last 5 years. Herein, we review general technologies of DNA and protein biosensors. Then, recent advances on the coupling of the biosensors to microfluidics are highlighted. Finally, we discuss the key challenges and potential solutions for transforming microfluidic biosensors into POC diagnostic applications.
Collapse
Affiliation(s)
- Seokheun Choi
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 USA
| | - Michael Goryll
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 USA
| | - Lai Yi Mandy Sin
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721 USA
| | - Pak Kin Wong
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721 USA
| | - Junseok Chae
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 USA
| |
Collapse
|