Chen L, Tian X, Xia D, Nie Y, Lu L, Yang C, Zhou Z. Novel Colorimetric Method for Simultaneous Detection and Identification of Multimetal Ions in Water: Sensitivity, Selectivity, and Recognition Mechanism.
ACS OMEGA 2019;
4:5915-5922. [PMID:
31459740 PMCID:
PMC6648319 DOI:
10.1021/acsomega.9b00312]
[Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Accurate recognition and speciation analysis of heavy-metal ions in complex hydrological environments is always a serious challenge. In this work, we proposed a small-molecule-based ultrasensitive colorimetric detection strategy and successfully applied it to the accurate detection of Fe2+, Fe3+, Co2+, and Hg2+ in groundwater through the specific recognition of multiple ligands of different metal ions. The detection limits for Hg2+, Co2+, Fe2+, and Fe3+ are calculated to be 6.51, 0.34, 0.49, and 1.01 ppb, respectively, which are far below the drinking water standards and superior to most of the reported colorimetric sensors. Remarkably, the speciation analysis of Fe2+/Fe3+ also has been successfully realized by a one-step method without complex pretreatment. The speciation and concentration of Fe2+ and Fe3+ in actual water samples can be accurately identified and monitored. In addition, as an attempt of visual onsite detection, we have developed a simple test strip, which has been applied to visual monitoring of four metal ions with the detection limit estimated by the naked eye to be as low as ppb level. This proposed colorimetric method realizes the rapid, sensitive, and portable multiple metal ions recognition and Fe2+/Fe3+ speciation analysis, displaying great potential for onsite rapid water quality analysis.
Collapse