1
|
Zhuang L, Gong J, Zhang P, Zhang D, Zhao Y, Yang J, Liu G, Zhang Y, Shen Q. Research progress of loop-mediated isothermal amplification in the detection of Salmonella for food safety applications. DISCOVER NANO 2024; 19:124. [PMID: 39105889 PMCID: PMC11303641 DOI: 10.1186/s11671-024-04075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Salmonella, the prevailing zoonotic pathogen within the Enterobacteriaceae family, holds the foremost position in global bacterial poisoning incidents, thereby signifying its paramount importance in public health. Consequently, the imperative for expeditious and uncomplicated detection techniques for Salmonella in food is underscored. After more than two decades of development, loop-mediated isothermal amplification (LAMP) has emerged as a potent adjunct to the polymerase chain reaction, demonstrating significant advantages in the realm of isothermal amplification. Its growing prominence is evident in the increasing number of reports on its application in the rapid detection of Salmonella. This paper provides a systematic exposition of the technical principles and characteristics of LAMP, along with an overview of the research progress made in the rapid detection of Salmonella using LAMP and its derivatives. Additionally, the target genes reported in various levels, including Salmonella genus, species, serogroup, and serotype, are summarized, aiming to offer a valuable reference for the advancement of LAMP application in Salmonella detection. Finally, we look forward to the development direction of LAMP and expect more competitive methods to provide strong support for food safety applications.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Ping Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Di Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Guofang Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
2
|
Crego-Vicente B, del Olmo MD, Muro A, Fernández-Soto P. Multiplexing LAMP Assays: A Methodological Review and Diagnostic Application. Int J Mol Sci 2024; 25:6374. [PMID: 38928080 PMCID: PMC11203869 DOI: 10.3390/ijms25126374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The loop-mediated isothermal amplification (LAMP) technique is a great alternative to PCR-based methods, as it is fast, easy to use and works with high sensitivity and specificity without the need for expensive instruments. However, one of the limitations of LAMP is difficulty in achieving the simultaneous detection of several targets in a single tube, as the methodologies that allow this rely on fluorogenic probes containing specific target sequences, complicating their adaptation and the optimization of assays. Here, we summarize different methods for the development of multiplex LAMP assays based on sequence-specific detection, illustrated with a schematic representation of the technique, and evaluate their practical application based on the real-time detection and quantification of results, the possibility to visualize the results at a glance, the prior stabilization of reaction components, promoting the point-of-care use, the maximum number of specific targets amplified, and the validation of the technique in clinical samples. The various LAMP multiplexing methodologies differ in their operating conditions and mechanism. Each methodology has its advantages and disadvantages, and the choice among them will depend on specific application interests.
Collapse
Affiliation(s)
| | | | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (B.C.-V.); (M.D.d.O.)
| | - Pedro Fernández-Soto
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (B.C.-V.); (M.D.d.O.)
| |
Collapse
|
3
|
Zeng H, Huang S, Chen Y, Chen M, He K, Fu C, Wang Q, Zhang F, Wang L, Xu X. Label-Free Sequence-Specific Visualization of LAMP Amplified Salmonella via DNA Machine Produces G-Quadruplex DNAzyme. BIOSENSORS 2023; 13:bios13050503. [PMID: 37232864 DOI: 10.3390/bios13050503] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
Salmonella is one of four key global causes of diarrhea, and in humans, it is generally contracted through the consumption of contaminated food. It is necessary to develop an accurate, simple, and rapid method to monitor Salmonella in the early phase. Herein, we developed a sequence-specific visualization method based on loop-mediated isothermal amplification (LAMP) for the detection of Salmonella in milk. With restriction endonuclease and nicking endonuclease, amplicons were produced into single-stranded triggers, which further promoted the generation of a G-quadruplex by a DNA machine. The G-quadruplex DNAzyme possesses peroxidase-like activity and catalyzes the color development of 2,2'-azino-di-(3-ethylbenzthiazoline sulfonic acid) (ABTS) as the readouts. The feasibility for real samples analysis was also confirmed with Salmonella spiked milk, and the sensitivity was 800 CFU/mL when observed with the naked eye. Using this method, the detection of Salmonella in milk can be completed within 1.5 h. Without the involvement of any sophisticated instrument, this specific colorimetric method can be a useful tool in resource-limited areas.
Collapse
Affiliation(s)
- Huan Zeng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Shuqin Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yunong Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Minshi Chen
- Technology Center of Fuzhou Customs District, Fuzhou 350015, China
| | - Kaiyu He
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Caili Fu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Qiang Wang
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fang Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Liu Wang
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| | - Xiahong Xu
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
4
|
Microfluidic chip and isothermal amplification technologies for the detection of pathogenic nucleic acid. J Biol Eng 2022; 16:33. [PMID: 36457138 PMCID: PMC9714395 DOI: 10.1186/s13036-022-00312-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
The frequency of outbreaks of newly emerging infectious diseases has increased in recent years. The coronavirus disease 2019 (COVID-19) outbreak in late 2019 has caused a global pandemic, seriously endangering human health and social stability. Rapid detection of infectious disease pathogens is a key prerequisite for the early screening of cases and the reduction in transmission risk. Fluorescence quantitative polymerase chain reaction (qPCR) is currently the most commonly used pathogen detection method, but this method has high requirements in terms of operating staff, instrumentation, venues, and so forth. As a result, its application in the settings such as poorly conditioned communities and grassroots has been limited, and the detection needs of the first-line field cannot be met. The development of point-of-care testing (POCT) technology is of great practical significance for preventing and controlling infectious diseases. Isothermal amplification technology has advantages such as mild reaction conditions and low instrument dependence. It has a promising prospect in the development of POCT, combined with the advantages of high integration and portability of microfluidic chip technology. This study summarized the principles of several representative isothermal amplification techniques, as well as their advantages and disadvantages. Particularly, it reviewed the research progress on microfluidic chip-based recombinase polymerase isothermal amplification technology and highlighted future prospects.
Collapse
|
5
|
Garg N, Ahmad FJ, Kar S. Recent advances in loop-mediated isothermal amplification (LAMP) for rapid and efficient detection of pathogens. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100120. [PMID: 35909594 PMCID: PMC9325740 DOI: 10.1016/j.crmicr.2022.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 11/01/2022] Open
Abstract
Significance of LAMP method in rapid disease diagnosis is highlighted. Different detection methods for amplicon visualization are explained. Advancements in LAMP technique for disease identification are summarized. Trends in development of LAMP disease diagnosis are discussed.
Loop-mediated isothermal amplification (LAMP) method has been demonstrated to bea reliable and robust method for detection and identification of viral and microbial pathogens. LAMP method of amplification, coupled with techniques for easy detection of amplicons, makes a simple-to-operate and easy-to-read molecular diagnostic tool for both laboratory and on-field settings. Several LAMP-based diagnostic kits and assays have been developed that are specifically targeted against a variety of pathogens. With the growing needs of the demanding molecular diagnostic industry, many technical advances have been made over the years by combining the basic LAMP principle with several other molecular approaches like real-time detection, multiplex methods, chip-based assays.This has resulted in enhancing thethe sensitivity and accuracy of LAMP for more rigorous and wide-ranging pathogen detection applications. This review summarizes the current developments in LAMP technique and their applicability in present and future disease diagnosis.
Collapse
|
6
|
He S, Huang Y, Ma Y, Yu H, Pang B, Liu X, Yin C, Wang X, Wei Y, Tian Y, Zhao C, Xu K, Wang J, Lv C, Song X, Jin M. Detection of four foodborne pathogens based on magnetic separation multiplex PCR and capillary electrophoresis. Biotechnol J 2021; 17:e2100335. [PMID: 34599551 DOI: 10.1002/biot.202100335] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 02/01/2023]
Abstract
Foodborne pathogen contamination is a major safety issue for many foods and is causing concern worldwide. In this study, a detection system based on magnetic separation, multiplex PCR (MPCR) and capillary electrophoresis (CE) technologies was developed for the simultaneous detection of four foodborne pathogens. Magnetic separation technology is used to rapidly capture pathogenic bacteria in food samples, and then a combination of MPCR and CE can be used to greatly increase detection sensitivity. The detection limit for bacterial DNA reached 10-5 -10-7 ng μL-1 and in the analysis of mocked food samples, the assay showed good sensitivity for bacterial detection ranging from 101 to 105 CFU mL-1 with excellent specificity. Compared to similar detection methodologies, this technique avoids the need for time-consuming enrichment cultures, is more sensitive, and can be used to assay simultaneously four foodborne pathogens.
Collapse
Affiliation(s)
- Shiyu He
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yanzhi Huang
- Research Laboratory, Changchun Children's Hospital, Changchun, Jilin, China
| | - Yingwei Ma
- Research Laboratory, Changchun Children's Hospital, Changchun, Jilin, China
| | - Haoyan Yu
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Bo Pang
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xingxing Liu
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Caihong Yin
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xiaomu Wang
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yuan Wei
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yuling Tian
- Research Laboratory, Changchun Children's Hospital, Changchun, Jilin, China
| | - Chao Zhao
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Kun Xu
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
- Engineering Research Center of Jilin Public Health Testing, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Juan Wang
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Chunping Lv
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xiuling Song
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Minghua Jin
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
You M, Peng P, Xue Z, Tong H, He W, Mao P, Liu Q, Yao C, Xu F. A fast and ultrasensitive ELISA based on rolling circle amplification. Analyst 2021; 146:2871-2877. [PMID: 33899835 DOI: 10.1039/d1an00355k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A highly sensitive ELISA is critical for early diagnosis and biomarker discovery of various diseases. Although various ELISA technologies have been developed with high sensitivity, they are limited by poor repeatability, high cost, the dependence on complex equipment and/or a prolonged reaction time. To this end, we developed a fast and ultrasensitive ELISA (termed RELISA) based on rolling circle amplification (RCA) and enzymatic signal amplification. The RELISA is established on the traditional ELISA, with only one more RCA step that can be accomplished within 10 minutes. The prolonged single strand DNA (ssDNA) from RCA is able to enrich abundant horseradish peroxidase conjugate (HRP) modified detection probes. Consequently, the intensive HRP is able to catalyze TMB-H2O2 to produce significantly enhanced colorimetric signals. With CEACAM-7 as a model biomarker, the RELISA achieves the limit of detection as low as 2.82 pg mL-1, which is ∼50 times higher than that of the traditional ELISA. Therefore, we envision that the developed RELISA would be a powerful tool for the early diagnosis of various major diseases.
Collapse
Affiliation(s)
- Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China. and Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Ping Peng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China. and Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China and Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China.
| | - Zhenrui Xue
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China. and Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China and Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China.
| | - Haoyang Tong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China. and Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Wanghong He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China. and Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Ping Mao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China. and Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China and Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China.
| | - Qi Liu
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China.
| | - Chunyan Yao
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China. and State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, P.R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China. and Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China
| |
Collapse
|
8
|
Xue Y, Kong Q, Ding H, Xie C, Zheng B, Zhuo X, Ding J, Tong Q, Lou D, Lu S, Lv H. A novel loop-mediated isothermal amplification-lateral-flow-dipstick (LAMP-LFD) device for rapid detection of Toxoplasma gondii in the blood of stray cats and dogs. ACTA ACUST UNITED AC 2021; 28:41. [PMID: 33944774 PMCID: PMC8095094 DOI: 10.1051/parasite/2021039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/18/2021] [Indexed: 11/14/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite that causes toxoplasmosis and threatens warm-blooded animal and human health worldwide. Simple and applicable diagnostic methods are urgently needed to guide development of effective approaches for prevention of toxoplasmosis. Most molecular diagnostic tools for T. gondii infection require high technical skills, sophisticated equipment, and a controlled lab environment. In this study, we developed a loop-mediated isothermal amplification-lateral-flow-dipstick (LAMP-LFD) assay that specifically targets the 529 bp for detecting T. gondii infection. This novel portable device is universal, fast, user-friendly, and guarantees experimental sensitivity as well as low risk of aerosol contamination. Our LAMP-LFD assay has a detection limit of 1 fg of T. gondii DNA, and shows no cross-reaction with other parasitic pathogens, including Cryptosporidium parvum, Leishmania donovani, and Plasmodium vivax. We validated the developed assay by detecting T. gondii in DNA extracted from blood samples collected from 318 stray cats and dogs sampled from Deqing, Wenzhou, Yiwu, Lishui and Zhoushan cities across Zhejiang province, Eastern China. The LAMP-LFD device detected T. gondii DNA in 4.76 and 4.69% of stray cats and dogs, respectively. In conclusion, the developed LAMP-LFD assay is efficient, minimizes aerosol contamination, and is therefore suitable for detecting T. gondii across basic medical institutions and field settings.
Collapse
Affiliation(s)
- Yangji Xue
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Zhejiang Academy of Medical Sciences 310013 Hangzhou PR China - Hangzhou Medical College 310053 Hangzhou PR China
| | - Qingming Kong
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Zhejiang Academy of Medical Sciences 310013 Hangzhou PR China - Hangzhou Medical College 310053 Hangzhou PR China
| | - Haojie Ding
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Zhejiang Academy of Medical Sciences 310013 Hangzhou PR China - Hangzhou Medical College 310053 Hangzhou PR China
| | - Chengzuo Xie
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Zhejiang Academy of Medical Sciences 310013 Hangzhou PR China - Hangzhou Medical College 310053 Hangzhou PR China
| | - Bin Zheng
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Zhejiang Academy of Medical Sciences 310013 Hangzhou PR China - Hangzhou Medical College 310053 Hangzhou PR China
| | - Xunhui Zhuo
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Zhejiang Academy of Medical Sciences 310013 Hangzhou PR China - Hangzhou Medical College 310053 Hangzhou PR China
| | - Jianzu Ding
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Zhejiang Academy of Medical Sciences 310013 Hangzhou PR China - Hangzhou Medical College 310053 Hangzhou PR China
| | - Qunbo Tong
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Zhejiang Academy of Medical Sciences 310013 Hangzhou PR China - Hangzhou Medical College 310053 Hangzhou PR China
| | - Di Lou
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Zhejiang Academy of Medical Sciences 310013 Hangzhou PR China - Hangzhou Medical College 310053 Hangzhou PR China
| | - Shaohong Lu
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Zhejiang Academy of Medical Sciences 310013 Hangzhou PR China - Hangzhou Medical College 310053 Hangzhou PR China
| | - Hangjun Lv
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Zhejiang Academy of Medical Sciences 310013 Hangzhou PR China - Hangzhou Medical College 310053 Hangzhou PR China
| |
Collapse
|
9
|
Bangpanwimon K, Mittraparp-arthorn P, Srinitiwarawong K, Tansila N. Non-Invasive Colorimetric Magneto Loop-Mediated Isothermal Amplification (CM-LAMP) Method for Helicobacter pylori Detection. J Microbiol Biotechnol 2021; 31:501-509. [PMID: 33746187 PMCID: PMC9705857 DOI: 10.4014/jmb.2101.01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
More than half the world's population is thought to be infected with Helicobacter pylori. Although the majority of infected people are asymptomatic, H. pylori infection may cause gastric ulcers and deadly gastric cancer. Owing to the difficulty and invasiveness of current routine culture and diagnostic methods, a highly sensitive and specific noninvasive assay for H. pylori is of interest. This study highlighted the design and performance of a colorimetric magneto loop-mediated isothermal amplification (CM-LAMP) assay to detect H. pylori in spiked saliva samples. LF primers were coated on magnetic nanoparticles by carbodiimide-induced immobilization and functionally used for solidphase amplification. During the LAMP reaction at 66°C, biotin-tagged FIPs were incorporated into LAMP amplicons. The colorimetric signal developed after the addition of NeutrAvidin horseradish peroxidase conjugate (NA-HRP) and ABTS. None of the tested microorganisms, including closely related bacteria, was shown positive by the CM-LAMP assay except H. pylori isolates. This novel platform was highly specific and 100-fold more sensitive (40 CFU/ml or 0.2 CFU per reaction) than the PCR and conventional LAMP assays for the detection of H. pylori in spiked saliva. Our results demonstrated the feasibility of using this noninvasive molecular diagnostic test to detect H. pylori in saliva samples.
Collapse
Affiliation(s)
- Khotchawan Bangpanwimon
- Department of Microbiology, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand
| | - Pimonsri Mittraparp-arthorn
- Department of Microbiology, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand,Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand
| | - Kanchana Srinitiwarawong
- Department of Microbiology, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand
| | - Natta Tansila
- Faculty of Medical Technology, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand,Corresponding author Phone: +66-74-289106 Fax: +66-74-289101 E-mail:
| |
Collapse
|
10
|
Zhang P, Song M, Dou L, Xiao Y, Li K, Shen G, Ying B, Geng J, Yang D, Wu Z. Development of a fluorescent DNA nanomachine for ultrasensitive detection of Salmonella enteritidis without labeling and enzymes. Mikrochim Acta 2020; 187:376. [PMID: 32518968 DOI: 10.1007/s00604-020-04334-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/16/2020] [Indexed: 02/08/2023]
Abstract
A capture probe complex containing a specific Salmonella enteritidis (S. enteritidis) aptamer and partly hybridized signal trigger sequence was designed with the ability to directly detect viable S. enteritidis. In the presence of the target S. enteritidis, single-stranded trigger sequences were liberated and in turn reacted with hairpins I, II, and III to initiate the triple strand migration reaction; this in turn produced numerous hairpin I·II·III complexes with scaffolds of copper nanoparticles (CuNPs) and replaced the trigger sequence which initiated the next cycle of triple migration reaction. Cyclically, the reuse of the trigger sequences and the successive, cascading production of scaffolds of CuNPs achieved the synthesis of highly fluorescent CuNPs, thus providing significantly enhanced fluorescent signals to achieve ultrasensitive detection of live S. enteritidis as low as 25 CFU/mL with a linear range of detection from 50 to 104 CFU/mL with an emission wavelength at 590 nm. By integrating the triple cascade strand migration amplification with recyclable trigger sequences, aptamer-based target recognition, and self-protection mediated by CuNPs hairpin scaffolds, this is the first report on a non-labeled, non-enzymatic, modification-free, and DNA extraction-free ultrasensitive fluorescent biosensor for the direct detection of live Salmonella, which is distinguished from dead Salmonella. It also provides a new strategy to detect viable bacteria by applying the CuNPs, thus extending the application of metal nanoparticles. Graphical abstract.
Collapse
Affiliation(s)
- Peng Zhang
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, Guangzhou, 510006, China.,Shenzhen Institute of Geriatrics, Shenzhen, 518020, China.,The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, China.,The Second People's Hospital of Shenzhen, Shenzhen, 518035, China.,Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Mengxiao Song
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Linqin Dou
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yuling Xiao
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiju Li
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Guangzhen Shen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Binwu Ying
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Depo Yang
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhengzhi Wu
- Shenzhen Institute of Geriatrics, Shenzhen, 518020, China.,The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, China.,The Second People's Hospital of Shenzhen, Shenzhen, 518035, China.,The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, China
| |
Collapse
|
11
|
Yang H, Xiao M, Lai W, Wan Y, Li L, Pei H. Stochastic DNA Dual-Walkers for Ultrafast Colorimetric Bacteria Detection. Anal Chem 2020; 92:4990-4995. [PMID: 32164404 DOI: 10.1021/acs.analchem.9b05149] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid, sensitive, and reliable pathogen detection is growing in importance in human health and safety. In this work, we report a stochastic DNA dual-walker-based colorimetric biosensor for bacterial detection. In the presence of target bacteria, two kinds of released multiple walking strands are allowed for continuous walking on the Au nanoparticle (AuNP)-based 3D track, resulting in destabilized aggregation of AuNP-based probes. The induced color change from red to blue can serve as an analytical signal for colorimetric detection of target bacteria. We demonstrated that this mothed enables sensitive and specific bacterial detection within 15 min due to its ultrafast reaction kinetics and sensitive color change, showing a linear response ranging from 100 to 105 CFU/mL with a limit of detection of 1 CFU/mL. Moreover, we also realized analysis of practical samples using this colorimetric biosensor. Given its features of rapid, sensitive, specific, and reliable analysis, our stochastic dual-walker-based colorimetric biosensor shows much promise in point-of-care testing for bacteria detection.
Collapse
Affiliation(s)
- Haihong Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| |
Collapse
|
12
|
Instrument-Free and Visual Detection of Salmonella Based on Magnetic Nanoparticles and an Antibody Probe Immunosensor. Int J Mol Sci 2019; 20:ijms20184645. [PMID: 31546808 PMCID: PMC6769488 DOI: 10.3390/ijms20184645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 11/17/2022] Open
Abstract
Salmonella, a common foodborne pathogen, causes many cases of foodborne illness and poses a threat to public health worldwide. Immunological detection systems can be combined with nanoparticles to develop sensitive and portable detection technologies for timely screening of Salmonella infections. Here, we developed an antibody-probe-based immuno-N-hydroxysuccinimide (NHS) bead (AIB) system to detect Salmonella. After adding the antibody probe, Salmonella accumulated in the samples on the surfaces of the immuno-NHS beads (INBs), forming a sandwich structure (INB–Salmonella–probes). We demonstrated the utility of our AIB diagnostic system for detecting Salmonella in water, milk, and eggs, with a sensitivity of 9 CFU mL−1 in less than 50 min. The AIB diagnostic system exhibits highly specific detection and no cross-reaction with other similar microbial strains. With no specialized equipment or technical requirements, the AIB diagnostic method can be used for visual, rapid, and point-of-care detection of Salmonella.
Collapse
|
13
|
Deng MH, Zhong LY, Kamolnetr O, Limpanont Y, Lv ZY. Detection of helminths by loop-mediated isothermal amplification assay: a review of updated technology and future outlook. Infect Dis Poverty 2019; 8:20. [PMID: 30905322 PMCID: PMC6432754 DOI: 10.1186/s40249-019-0530-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/07/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Helminths are endemic in more than half of the world's countries, raising serious public health concerns. Accurate diagnosis of helminth infection is crucial to control strategies. Traditional parasitological methods, serological tests and PCR-based assays are the major means of the diagnosis of helminth infection, but they are time-consuming and/or expensive, and sometimes provide inaccurate results. Loop mediated isothermal amplification (LAMP) assay, a sensitive, simple and rapid method was therefore developed for detection of helminths. This study aims to discuss the current status of application of LAMP on helminths detection and to make a comprehensive evaluation about this updated technology and its future outlook by comparing with several other diagnostic methods. MAIN BODY This review summarizes LAMP assay applied for helminth detection and helminthiasis surveillance. The basic principle of LAMP is introduced to help better understand its characteristics and each reported assay is assessed mainly based on its detection sensitivity, specificity and limitations, in comparison with other common diagnostic tests. Moreover, we discuss the limitations of the assays so as to clarify some potential ways of improvement. CONCLUSIONS Here, we summarize and discuss the advantages, disadvantages and promising future of LAMP in heliminth detection, which is expected to help update current knowledge and future perspectives of LAMP in highly sensitive and specific diagnosis and surveillance of helminthiasis and other parasitic diseases, and can contribute to the elimination of the diseases from endemic areas.
Collapse
Affiliation(s)
- Miao-Han Deng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080 China
| | - Lan-Yi Zhong
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080 China
| | - Okanurak Kamolnetr
- Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Yanin Limpanont
- Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Zhi-Yue Lv
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080 China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080 China
- Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 519000 China
| |
Collapse
|
14
|
Hu L, Stones R, Brown EW, Allard MW, Ma LM, Zhang G. DNA sequences and predicted protein structures of prot6E and sefA genes for Salmonella ser. Enteritidis detection. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Shang Y, Sun J, Ye Y, Zhang J, Zhang Y, Sun X. Loop-mediated isothermal amplification-based microfluidic chip for pathogen detection. Crit Rev Food Sci Nutr 2018; 60:201-224. [DOI: 10.1080/10408398.2018.1518897] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yuting Shang
- State Key Laboratory of Food Science and Technology School of Food Science National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology School of Food Science National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology School of Food Science National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jumei Zhang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology School of Food Science National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology School of Food Science National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
16
|
Target-triggered three-way junction in conjugation with catalytic concatemers-functionalized nanocomposites provides a highly sensitive colorimetric method for miR-21 detection. Biosens Bioelectron 2018; 117:567-574. [PMID: 30005375 DOI: 10.1016/j.bios.2018.06.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022]
Abstract
With the great advances in DNA nanotechnology, scientists have shown interest in developing dynamic nanostructures for theranostic applications, analyte sensing and cargo delivery. Here, we present a specific enzyme-free ultrasensitive platform based on a multilayer coupled signal amplification strategy to quantify miR-21 molecule. The biosensor was integrated based on three signal amplification gadgets, namely a translator-mediated catalytic hairpin assembly (CHA), a multilayer DNA concatemer on the surface of gold decorated magnetic nanoparticle (GMNP), and a DNAzyme-mediated catalytic signal amplification. MiR-21 mediates the release of a DNA translator from an immobilized duplex to engage in a CHA reaction using three hairpins, including a GMNP-conjugated hairpin 1 (H1), biotin-labeled hairpin 2 (H2) and a GMNP-conjugated hairpin 3 (H3) to form a three-way junction (3WJ). Meanwhile, a plenty of initiator strand 0 (S0) on GMNPs - each of which has been bifunctionalized with S0/H1 or S0/H3 - drive several multilayer peroxidase-mimicking DNAzyme concatemers in the presence of two accessory oligonucleotides; strand 1 (S1) and strand 2 (S2). Since a G-rich sequence was attached at the 5'-end of S1 strand, in the presence of hemin cofactor, an active G-quadruplex DNAzyme with peroxidase activity was formed. The concatemers on the surface of GMNPs can convert a colorless substrate to a green product. The biosensor can detect as low as 1 aM of miR-21 and provide an excellent capability to discriminate single-base mismatches. The required time for the formulation of the assay reagents is about three days and the reaction time for the detection of miR-21 takes place in less than four hours.
Collapse
|
17
|
Lau HY, Botella JR. Advanced DNA-Based Point-of-Care Diagnostic Methods for Plant Diseases Detection. FRONTIERS IN PLANT SCIENCE 2017; 8:2016. [PMID: 29375588 PMCID: PMC5770625 DOI: 10.3389/fpls.2017.02016] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/13/2017] [Indexed: 05/07/2023]
Abstract
Diagnostic technologies for the detection of plant pathogens with point-of-care capability and high multiplexing ability are an essential tool in the fight to reduce the large agricultural production losses caused by plant diseases. The main desirable characteristics for such diagnostic assays are high specificity, sensitivity, reproducibility, quickness, cost efficiency and high-throughput multiplex detection capability. This article describes and discusses various DNA-based point-of care diagnostic methods for applications in plant disease detection. Polymerase chain reaction (PCR) is the most common DNA amplification technology used for detecting various plant and animal pathogens. However, subsequent to PCR based assays, several types of nucleic acid amplification technologies have been developed to achieve higher sensitivity, rapid detection as well as suitable for field applications such as loop-mediated isothermal amplification, helicase-dependent amplification, rolling circle amplification, recombinase polymerase amplification, and molecular inversion probe. The principle behind these technologies has been thoroughly discussed in several review papers; herein we emphasize the application of these technologies to detect plant pathogens by outlining the advantages and disadvantages of each technology in detail.
Collapse
Affiliation(s)
- Han Yih Lau
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, Serdang, Malaysia
| | - Jose R. Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
18
|
A simplified globally affordable experimental setup for monitoring DNA diagnosis by a QD-based technique. Folia Microbiol (Praha) 2017; 63:229-235. [PMID: 29116587 DOI: 10.1007/s12223-017-0554-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
The unavailability of simple, quick, and sensitive genetic-based molecular diagnostic techniques has become the main driving force for inventing new approaches in the era of quantum dots (QDs): a new class of fluorescent probes with fascinating optical electronic properties. Using the unique size-dependent light-emitting properties of QDs, we have developed a QD-based ultrasensitive technique which removes the necessity for the genetic amplification step required in almost all types of molecular-based diagnostic techniques. The selectivity of the new approach is warranted by the careful design of a pair of specific oligonucleotide probes, chemically modified at their 5'-ends. Our results indicated the selective detection of Salmonella typhi in an assay time of 50 min with a limit of detection (LOD) of 2 CFU/mL. The rapidity, selectivity, and sensitivity and the low assay cost make the new diagnostic technique a promising new tool for laboratory and field-based approaches to molecular diagnosis of health-threatening pathogens. Graphical abstract.
Collapse
|
19
|
Kumar Y, Bansal S, Jaiswal P. Loop-Mediated Isothermal Amplification (LAMP): A Rapid and Sensitive Tool for Quality Assessment of Meat Products. Compr Rev Food Sci Food Saf 2017; 16:1359-1378. [DOI: 10.1111/1541-4337.12309] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Yogesh Kumar
- ICAR-Central Inst. of Post-Harvest Engineering and Technology (CIPHET); Ludhiana India
| | - Sangita Bansal
- ICAR-Central Inst. of Post-Harvest Engineering and Technology (CIPHET); Ludhiana India
| | - Pranita Jaiswal
- ICAR-Central Inst. of Post-Harvest Engineering and Technology (CIPHET); Ludhiana India
| |
Collapse
|
20
|
Sun YL, Yen CH, Tu CF. Immunocapture loop-mediated isothermal amplification assays for the detection of canine parvovirus. J Virol Methods 2017; 249:94-101. [PMID: 28834737 DOI: 10.1016/j.jviromet.2017.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/15/2017] [Accepted: 08/15/2017] [Indexed: 11/17/2022]
Abstract
A loop-mediated isothermal amplification (LAMP) assay was used for rapid canine parvovirus (CPV) diagnosis. To reduce the time required and increase the sensitivity of the assay, an immunocapture (IC) technique was developed in this study to exclude the DNA extraction step in molecular diagnostic procedures for CPV. A polyclonal rabbit anti-CPV serum was produced against VP2-EpC that was cloned via DNA recombination. The polyclonal anti-VP2-EpC serum was used for virus capture to prepare microtubes. IC-LAMP was performed to amplify a specific CPV target gene sequence from the CPV viral particles that were captured on the microtubes, and the amplicons were analyzed using agarose electrophoresis or enzyme-linked immunosorbent assay (IC-LAMP-ELISA) and lateral-flow dipstick (IC-LAMP-LFD). The detection sensitivities of IC-LAMP, IC-LAMP-ELISA, and IC-LAMP-LFD were 10-1, 10-1, and 10-1 TCID50/mL, respectively. Using the IC-LAMP-ELISA and IC-LAMP-LFD assays, the complete CPV diagnostic process can be achieved within 1.5h. Both of the developed IC-LAMP-based assays are simple, direct visual and efficient techniques that are applicable to the detection of CPV.
Collapse
Affiliation(s)
- Yu-Ling Sun
- Aquatic Technology Laboratories, Agricultural Technology Research Institute, No. 1, Ln. 51, Dahu Rd., Xiangshan Dist, 300 Hsinchu, Taiwan.
| | - Chon-Ho Yen
- Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu, Taiwan
| | - Ching-Fu Tu
- Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu, Taiwan
| |
Collapse
|
21
|
Ravan H, Amandadi M, Esmaeili-Mahani S. DNA Domino-Based Nanoscale Logic Circuit: A Versatile Strategy for Ultrasensitive Multiplexed Analysis of Nucleic Acids. Anal Chem 2017; 89:6021-6028. [PMID: 28459545 DOI: 10.1021/acs.analchem.7b00607] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In recent years, the analytical application of logical nanodevices has attracted much attention for making accurate decisions on molecular diagnosis. Herein, a DNA domino-based nanoscale logic circuit has been constructed by integrating three logic gates (AND-AND-YES) for simultaneous analysis of multiple nucleic acid biomarkers. In the first AND gate, a chimeric target DNA comprising of four biomarkers was hybridized to three biomarker-specific oligonucleotides (TRs) via their 5'-end regions and to a capture probe-magnetic microparticle. After harvesting the complex, 3' overhang regions of the TRs were labeled with three distinct monolayer double-stranded (ds) DNA-gold nanoparticles (DNA-AuNPs). Upon gleaning the complex and addition of initiator oligonucleotide, a series of toehold-mediated strand displacement reactions, which are reminiscent of a domino chain, spontaneously occurred between the confined dsDNAs on the nanoparticles' surface in the second AND gate. The output of the second gate entered into the last gate and triggered an exponential hairpin assembly to form four-way junction nanostructures. The resulting nanostructures bear split parts of DNAzyme at each end of the four arms which, in the presence of hemin, form catalytic hemin/G-quadruplex DNAzymes with peroxidase activity. The smart biosensor has exhibited a turn-on signal when all biomarkers are present in the sample. In fact, should any of the biomarkers be nonexistent, the signal remains turned-off. The biosensor can detect the biomarkers with a LOD value of 100 aM and a noticeable capability to discriminate single-nucleotide substitutions.
Collapse
Affiliation(s)
- Hadi Ravan
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman , Kerman, Iran 7616914111
| | - Mojdeh Amandadi
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman , Kerman, Iran 7616914111
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman , Kerman, Iran 7616914111
| |
Collapse
|
22
|
Zhao Y, Jiang X, Qu Y, Pan R, Pang X, Jiang Y, Man C. Salmonella detection in powdered dairy products using a novel molecular tool. J Dairy Sci 2017; 100:3480-3496. [DOI: 10.3168/jds.2016-12535] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/21/2017] [Indexed: 11/19/2022]
|
23
|
Du L, Xia Y, He Y, Pu Q, Hua R, Wu W. Development and evaluation of enzyme-linked immunosorbent assay of nucleic acid sequence-based amplification for diagnosis of invasive aspergillosis. AMB Express 2016; 6:91. [PMID: 27714704 PMCID: PMC5053951 DOI: 10.1186/s13568-016-0266-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/29/2016] [Indexed: 11/10/2022] Open
Abstract
Invasive aspergillosis (IA) is a life-threatening infection in immunocompromised patients, rapid and sensitive detection of Aspergillus from clinical samples has been a major challenge in the early diagnosis of IA. An enzyme-linked immunosorbent assay of nucleic acid sequence-based amplification (NASBA-ELISA) was developed to fulfil the need for the efficient diagnosis of these infections. The primers targeting 18S rRNA were selected for the amplification of Aspergillus RNA by the isothermal digoxigenin (DIG)-labeling NASBA process. The DIG-labeled RNA amplicons were hybridized with a specific biotinylated DNA probe immobilized on streptavidin-coated microtiter plate. The hybrids were colorimetrically detected by the addition of an anti-DIG antibodies linked to ALP and substrate (disodium 4-nitrophenyl phosphate). The detection limit of the Aspergillus NABSA-ELISA system was 1 CFU and the RNA in non-target bacteria or fungus was not amplified. The performance of this NASBA-ELISA compared to RT-PCR and galactomannan (GM) was evaluated by testing blood samples from 86 patients at high risk for IA. The sensitivity of NASBA-ELISA, RT-PCR and GM-ELISA was 80.56 % (95 % CI 63.98-91.81), 72.22 % (95 % CI 54.81-85.80), 58.33 % (95 % CI 40.76-74.49), respectively, and the specificity was 80.00 % (95 % CI 66.28-89.97), 84.00 % (95 % CI 70.89-92.83), 82.00 % (95 % CI 68.56-91.42). The efficiency of the three methods in various combinations was also evaluated. Combination of NASBA-ELISA and GM-ELISA testing achieved perfect specificity (100 %; 95 % CI 92.89-100) and perfect positive predictive value (100 %; 95 % CI 83.16-100). The best sensitivity (97.22 %; 95 % CI 85.47-99.93) and the highest Youden index (0.652) were obtained by testing with both NASBA and RT-PCR in parallel. In conclusion, the NASBA-ELISA assay consists of an alternative process for large-scale samples detection with semi-quantitative results and provides good clinical performance without resorting to expensive equipment. This assay makes it possible for the NASBA based RNA diagnosis to become a routine work in laboratories in less developed countries with fewer resources.
Collapse
|
24
|
Sutarlie L, Ow SY, Su X. Nanomaterials-based biosensors for detection of microorganisms and microbial toxins. Biotechnol J 2016; 12. [PMID: 27787955 DOI: 10.1002/biot.201500459] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 01/13/2023]
Abstract
Detection of microorganisms and microbial toxins is important for health and safety. Due to their unique physical and chemical properties, nanomaterials have been extensively used to develop biosensors for rapid detection of microorganisms with microbial cells and toxins as target analytes. In this paper, the design principles of nanomaterials-based biosensors for four selected analyte categories (bacteria cells, toxins, mycotoxins, and protozoa cells), closely associated with the target analytes' properties is reviewed. Five signal transducing methods that are less equipment intensive (colorimetric, fluorimetric, surface enhanced Raman scattering, electrochemical, and magnetic relaxometry methods) is described and compared for their sensory performance (in term oflimit of detection, dynamic range, and response time) for all analyte categories. In the end, the suitability of these five sensing principles for on-site or field applications is discussed. With a comprehensive coverage of nanomaterials, design principles, sensing principles, and assessment on the sensory performance and suitability for on-site application, this review offers valuable insight and perspective for designing suitable nanomaterials-based microorganism biosensors for a given application.
Collapse
Affiliation(s)
- Laura Sutarlie
- Insitute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Innovis, Singapore
| | - Sian Yang Ow
- Insitute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Innovis, Singapore
| | - Xiaodi Su
- Insitute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Innovis, Singapore.,Department of Chemistry, National University of Singapore, Singapore
| |
Collapse
|
25
|
Dehghan Esmatabadi MJ, Bozorgmehr A, Motalebzadeh H, Bodaghabadi N, Farhangi B, Babashah S, Sadeghizadeh M. Techniques for Evaluation of LAMP Amplicons and their Applications in Molecular Biology. Asian Pac J Cancer Prev 2016; 16:7409-14. [PMID: 26625736 DOI: 10.7314/apjcp.2015.16.17.7409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Loop-mediated isothermal amplification (LAMP) developed by Notomi et al. (2000) has made it possible to amplify DNA with high specificity, efficiency and rapidity under isothermal conditions. The ultimate products of LAMP are stem-loop structures with several inverted repeats of the target sequence and cauliflower-like patterns with multiple loops shaped by annealing between every other inverted repeats of the amplified target in the similar strand. Because the amplification process in LAMP is achieved by using four to six distinct primers, it is expected to amplify the target region with high selectivity. However, evaluation of reaction accuracy or quantitative inspection make it necessary to append other procedures to scrutinize the amplified products. Hitherto, various techniques such as turbidity assessment in the reaction vessel, post-reaction agarose gel electrophoresis, use of intercalating fluorescent dyes, real-time turbidimetry, addition of cationic polymers to the reaction mixture, polyacrylamide gel-based microchambers, lateral flow dipsticks, fluorescence resonance energy transfer (FRET), enzyme-linked immunosorbent assays and nanoparticle-based colorimetric tests have been utilized for this purpose. In this paper, we reviewed the best-known techniques for evaluation of LAMP amplicons and their applications in molecular biology beside their advantages and deficiencies. Regarding the properties of each technique, the development of innovative prompt, cost-effective and precise molecular detection methods for application in the broad field of cancer research may be feasible.
Collapse
|
26
|
Isothermal RNA detection through the formation of DNA concatemers containing HRP-mimicking DNAzymes on the surface of gold nanoparticles. Biosens Bioelectron 2016; 80:67-73. [DOI: 10.1016/j.bios.2016.01.047] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/16/2016] [Accepted: 01/18/2016] [Indexed: 12/21/2022]
|
27
|
Safavieh M, Kanakasabapathy MK, Tarlan F, Ahmed MU, Zourob M, Asghar W, Shafiee H. Emerging Loop-Mediated Isothermal Amplification-Based Microchip and Microdevice Technologies for Nucleic Acid Detection. ACS Biomater Sci Eng 2016; 2:278-294. [PMID: 28503658 PMCID: PMC5425166 DOI: 10.1021/acsbiomaterials.5b00449] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rapid, sensitive, and selective pathogen detection is of paramount importance in infectious disease diagnosis and treatment monitoring. Currently available diagnostic assays based on polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) are time-consuming, complex, and relatively expensive, thus limiting their utility in resource-limited settings. Loop-mediated isothermal amplification (LAMP) technique has been used extensively in the development of rapid and sensitive diagnostic assays for pathogen detection and nucleic acid analysis and hold great promise for revolutionizing point-of-care molecular diagnostics. Here, we review novel LAMP-based lab-on-a-chip (LOC) diagnostic assays developed for pathogen detection over the past several years. We review various LOC platforms based on their design strategies for pathogen detection and discuss LAMP-based platforms still in development and already in the commercial pipeline. This review is intended as a guide to the use of LAMP techniques in LOC platforms for molecular diagnostics and genomic amplifications.
Collapse
Affiliation(s)
- Mohammadali Safavieh
- Division of Biomedical Engineering, Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Lansdowne Street, Cambridge, Massachusetts 02139, United States
| | - Manoj K. Kanakasabapathy
- Division of Biomedical Engineering, Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Lansdowne Street, Cambridge, Massachusetts 02139, United States
| | - Farhang Tarlan
- Division of Biomedical Engineering, Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Lansdowne Street, Cambridge, Massachusetts 02139, United States
| | - Minhaz U. Ahmed
- Biosensors and Biotechnology Laboratory, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, Negara Brunei Darussalam
| | - Mohammed Zourob
- Department of Chemistry, College of Science, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh 11533, Saudi Arabia
| | - Waseem Asghar
- Department of Computer Engineering & Electrical Engineering and Computer Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| | - Hadi Shafiee
- Division of Biomedical Engineering, Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Lansdowne Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
28
|
Implementing a two-layer feed-forward catalytic DNA circuit for enzyme-free and colorimetric detection of nucleic acids. Anal Chim Acta 2016; 910:68-74. [DOI: 10.1016/j.aca.2016.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/02/2016] [Accepted: 01/07/2016] [Indexed: 12/25/2022]
|
29
|
Zhang P, Liu H, Ma S, Men S, Li Q, Yang X, Wang H, Zhang A. A label-free ultrasensitive fluorescence detection of viable Salmonella enteritidis using enzyme-induced cascade two-stage toehold strand-displacement-driven assembly of G-quadruplex DNA. Biosens Bioelectron 2016; 80:538-542. [PMID: 26894984 DOI: 10.1016/j.bios.2016.02.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/25/2016] [Accepted: 02/10/2016] [Indexed: 11/30/2022]
Abstract
The harm of Salmonella enteritidis (S. enteritidis ) to public health mainly by contaminating fresh food and water emphasizes the urgent need for rapid detection techniques to help control the spread of the pathogen. In this assay, an newly designed capture probe complex that contained specific S. enteritidis-aptamer and hybridized signal target sequence was used for viable S. enteritidis recognition directly. In the presence of the target S. enteritidis, single-stranded target sequences were liberated and initiated the replication-cleavage reaction, producing numerous G-quadruplex structures with a linker on the 3'-end. And then, the sensing system took innovative advantage of quadratic linker-induced strand-displacement for the first time to release target sequence in succession, leading to the cyclic reuse of the target sequences and cascade signal amplification, thereby achieving the successive production of G-quadruplex structures. The fluorescent dye, N-Methyl mesoporphyrin IX, binded to these G-quadruplex structures and generated significantly enhanced fluorescent signals to achieve highly sensitive detection of S. enteritidis down to 60 CFU/mL with a linear range from 10(2) to 10(7)CFU/mL. By coupling the cascade two-stage target sequences-recyclable toehold strand-displacement with aptamer-based target recognition successfully, it is the first report on a novel non-label, modification-free and DNA extraction-free ultrasensitive fluorescence biosensor for detecting viable S. enteritidis directly, which can discriminate from dead S. enteritidis.
Collapse
Affiliation(s)
- Peng Zhang
- College of Life Sciences, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China; Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu 610065, China; "985 Project" Science Innovative Platform for Resource and Environment Protection of Southwestern, Chengdu 610065, China
| | - Hui Liu
- College of Life Sciences, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China; Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu 610065, China; "985 Project" Science Innovative Platform for Resource and Environment Protection of Southwestern, Chengdu 610065, China
| | - Suzhen Ma
- College of Life Sciences, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China; Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu 610065, China; "985 Project" Science Innovative Platform for Resource and Environment Protection of Southwestern, Chengdu 610065, China
| | - Shuai Men
- College of Life Sciences, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China; Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu 610065, China; "985 Project" Science Innovative Platform for Resource and Environment Protection of Southwestern, Chengdu 610065, China
| | - Qingzhou Li
- College of Life Sciences, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China; Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu 610065, China; "985 Project" Science Innovative Platform for Resource and Environment Protection of Southwestern, Chengdu 610065, China
| | - Xin Yang
- College of Life Sciences, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China; Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu 610065, China; "985 Project" Science Innovative Platform for Resource and Environment Protection of Southwestern, Chengdu 610065, China
| | - Hongning Wang
- College of Life Sciences, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China; Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu 610065, China; "985 Project" Science Innovative Platform for Resource and Environment Protection of Southwestern, Chengdu 610065, China.
| | - Anyun Zhang
- College of Life Sciences, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China; Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu 610065, China; "985 Project" Science Innovative Platform for Resource and Environment Protection of Southwestern, Chengdu 610065, China
| |
Collapse
|
30
|
Ravan H, Amandadi M, Sanadgol N. A highly specific and sensitive loop-mediated isothermal amplification method for the detection of Escherichia coli O157:H7. Microb Pathog 2015; 91:161-5. [PMID: 26724736 DOI: 10.1016/j.micpath.2015.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/19/2015] [Accepted: 12/22/2015] [Indexed: 01/25/2023]
Abstract
E. coli O157:H7 is one of the most important foodborne pathogen that causes some human illnesses such as bloody diarrhea, hemolytic-uremic syndrome, and kidney failure. We developed a loop-mediated isothermal amplification (LAMP) assay with six special primers that target a highly specific 299-bp region of the Z3276 gene for the detection of E. coli O157:H7. Among 117 bacterial strains tested in this study, positive results were only obtained from E. coli O157:H7 strains. The sensitivity level of the Z3276-LAMP assay was determined to be 5 CFU/reaction tube in pure bacterial culture. Moreover, the LAMP assay was successfully applied to artificially contaminated ground beef with a sensitivity level of 10(3) CFU/mL without pre-enrichment and 10 CFU/mL after a 4-h pre-enrichment. In conclusion, the present LAMP assay would be a useful and powerful tool for the rapid, sensitive, and specific diagnosis of E. coli O157:H7 strains in resource limited laboratories.
Collapse
Affiliation(s)
- Hadi Ravan
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Mojdeh Amandadi
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Science, Zabol University, Zabol, Iran; Pharmaceutical Science Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
31
|
Zhang X, Lowe SB, Gooding JJ. Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosens Bioelectron 2014; 61:491-9. [DOI: 10.1016/j.bios.2014.05.039] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 01/20/2023]
|
32
|
Leem H, Shukla S, Song X, Heu S, Kim M. An Efficient Liposome-Based Immunochromatographic Strip Assay for the Sensitive Detection of S
almonella
Typhimurium in Pure Culture. J Food Saf 2014. [DOI: 10.1111/jfs.12119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hyerim Leem
- Department of Food Science and Technology; Yeungnam University; 280 Daehak-ro Gyeongsan-si Gyeongsangbuk-do 712-749 Korea
| | - Shruti Shukla
- Department of Food Science and Technology; Yeungnam University; 280 Daehak-ro Gyeongsan-si Gyeongsangbuk-do 712-749 Korea
| | - Xinjie Song
- Department of Food Science and Technology; Yeungnam University; 280 Daehak-ro Gyeongsan-si Gyeongsangbuk-do 712-749 Korea
| | - Seunggi Heu
- Microbial Safety Division; National Academy of Agricultural Science; Suwon-si Gyonggi-do Korea
| | - Myunghee Kim
- Department of Food Science and Technology; Yeungnam University; 280 Daehak-ro Gyeongsan-si Gyeongsangbuk-do 712-749 Korea
| |
Collapse
|
33
|
Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis. Anal Chim Acta 2014; 811:81-7. [DOI: 10.1016/j.aca.2013.12.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 12/05/2013] [Accepted: 12/09/2013] [Indexed: 11/30/2022]
|
34
|
Fang Z, Wu W, Lu X, Zeng L. Lateral flow biosensor for DNA extraction-free detection of Salmonella based on aptamer mediated strand displacement amplification. Biosens Bioelectron 2014; 56:192-7. [PMID: 24491961 DOI: 10.1016/j.bios.2014.01.015] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/07/2014] [Indexed: 02/07/2023]
Abstract
Convenient and sensitive point-of-care rapid diagnostic tests for food-borne pathogens have been a long-felt need of clinicians. Traditional approaches such as culture-based methods have good sensitivity and specificity, but they tend to be tedious and time-consuming. Herein we present a simple and sensitive aptamer based biosensor for rapid detection of Salmonella enteritidis (S. enteritidis). One of the aptamers specific for the outmembrane of S. enteritidis was used for magnetic bead enrichments. Another aptamer against S. enteritidis was used as a reporter for this pathogen, which was amplified by isothermal strand displacement amplification (SDA) and further detected by a lateral flow biosensor. As low as 10(1) colony forming unit (CFU) of S. enteritidis was detected in this study. Without DNA extraction, the reduced handling and simpler equipment requirement render this assay a simple and rapid alternative to conventional methods.
Collapse
Affiliation(s)
- Zhiyuan Fang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Wei Wu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xuewen Lu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lingwen Zeng
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
35
|
Nikbakht H, Gill P, Tabarraei A, Niazi A. Nanomolecular detection of human influenza virus type A using reverse transcription loop-mediated isothermal amplification assisted with rod-shaped gold nanoparticles. RSC Adv 2014. [DOI: 10.1039/c3ra47398h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
36
|
Sun YL, Yen CH, Tu CF. Visual detection of canine parvovirus based on loop-mediated isothermal amplification combined with enzyme-linked immunosorbent assay and with lateral flow dipstick. J Vet Med Sci 2013; 76:509-16. [PMID: 24334855 PMCID: PMC4064134 DOI: 10.1292/jvms.13-0448] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Loop-mediated isothermal
amplification (LAMP) combined with enzyme-linked immunosorbent assay (LAMP–ELISA) and with
lateral flow dipstick (LAMP–LFD) are rapid, sensitive and specific methods for the visual
detection of clinical pathogens. In this study, LAMP–ELISA and LAMP–LFD were developed for
the visual detection of canine parvovirus (CPV). For LAMP, a set of four primers
(biotin-labeled forward inner primers) was designed to specifically amplify a region of
the VP2 gene of CPV. The optimum time and temperature for LAMP were 60 min and 65°C,
respectively. The specific capture oligonucleotide probes, biotin-labeled CPV probe for
LAMP–ELISA and fluorescein isothiocyanate-labeled CPV probe for LAMP–LFD were also
designed for hybridization with LAMP amplicons on streptavidin-coated wells and LFD
strips, respectively. For the comparison of detection sensitivity, conventional PCR and
LAMP for CPV detection were also performed. The CPV detection limits by PCR, PCR–ELISA,
LAMP, LAMP–ELISA and LAMP–LFD were 102, 102, 10−1,
10−1 and 10−1 TCID50/ml, respectively.
In tests using artificially contaminated dog fecal samples, the samples with CPV
inoculation levels of ≥1 TCID50/ml gave positive results by
both LAMP–ELISA and LAMP–LFD. Our data indicated that both LAMP–ELISA and LAMP–LFD are
promising as rapid, sensitive and specific methods for an efficient diagnosis of CPV
infection.
Collapse
Affiliation(s)
- Yu-Ling Sun
- Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City, Taiwan, R.O.C
| | | | | |
Collapse
|
37
|
|
38
|
Ravan H, Kashanian S, Sanadgol N, Badoei-Dalfard A, Karami Z. Strategies for optimizing DNA hybridization on surfaces. Anal Biochem 2013; 444:41-6. [PMID: 24121011 DOI: 10.1016/j.ab.2013.09.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 01/15/2023]
Abstract
Specific and predictable hybridization of the polynucleotide sequences to their complementary counterparts plays a fundamental role in the rational design of new nucleic acid nanodevices. Generally, nucleic acid hybridization can be performed using two major strategies, namely hybridization of DNA or RNA targets to surface-tethered oligonucleotide probes (solid-phase hybridization) and hybridization of the target nucleic acids to randomly distributed probes in solution (solution-phase hybridization). Investigations into thermodynamic and kinetic parameters of these two strategies showed that hybridization on surfaces is less favorable than that of the same sequence in solution. Indeed, the efficiency of DNA hybridization on surfaces suffers from three constraints: (1) electrostatic repulsion between DNA strands on the surface, (2) steric hindrance between tethered DNA probes, and (3) nonspecific adsorption of the attached oligonucleotides to the solid surface. During recent years, several strategies have been developed to overcome the problems associated with DNA hybridization on surfaces. Optimizing the probe surface density, application of a linker between the solid surface and the DNA-recognizing sequence, optimizing the pH of DNA hybridization solutions, application of thiol reagents, and incorporation of a polyadenine block into the terminal end of the recognizing sequence are among the most important strategies for enhancing DNA hybridization on surfaces.
Collapse
Affiliation(s)
- Hadi Ravan
- Department of Biology, Faculty of Science, Shahid Bahonar University, 76169-14111 Kerman, Iran.
| | | | | | | | | |
Collapse
|
39
|
Ravan H, Yazdanparast R. Loop region-specific oligonucleotide probes for loop-mediated isothermal amplification–enzyme-linked immunosorbent assay truly minimize the instrument needed for detection process. Anal Biochem 2013; 439:102-8. [DOI: 10.1016/j.ab.2013.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/13/2013] [Accepted: 04/15/2013] [Indexed: 11/25/2022]
|
40
|
Focke F, Haase I, Fischer M. Loop-mediated isothermal amplification (LAMP): methods for plant species identification in food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:2943-2949. [PMID: 23432417 DOI: 10.1021/jf304295b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Loop-mediated isothermal amplification (LAMP) is a DNA-based analytical method that can be used as an isothermal alternative to polymerase chain reaction (PCR). In comparison to PCR, the advantage of LAMP is the possibility to perform the isothermal reaction without any sophisticated technical equipment; only a water bath is needed, and naked eye detection is sufficient. Up to now, an application of LAMP methods for the detection of even closely related plant species in food or feed matrices has not been described, whereas a large number of PCR methods for that topic are cited in the literature. The aim of the study was the evaluation of LAMP-based methods for plant species identification with respect to method parameters such as R(2), LOD, and LOQ. An existing (real-time) PCR method (for the detection of spices) was used for comparison. It could be shown that the developed LAMP methods have potential as alternative strategies to PCR in DNA-based analysis.
Collapse
Affiliation(s)
- Felix Focke
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg , Grindelallee 117, 20146 Hamburg, Germany
| | | | | |
Collapse
|
41
|
Riyaz-Ul-Hassan S, Verma V, Qazi GN. Real-time PCR-based rapid and culture-independent detection of Salmonella in dairy milk--addressing some core issues. Lett Appl Microbiol 2013; 56:275-82. [PMID: 23347051 DOI: 10.1111/lam.12046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/12/2013] [Accepted: 01/16/2013] [Indexed: 11/29/2022]
Abstract
In this study, methodologies were developed for cost-effective, rapid and user-friendly culture-independent detection of Salmonella in milk by real-time PCR. The SYBR Green-based real-time PCR assay was standardized with primers targeting the Salmonella enterotoxin gene (stn) that have been earlier used for its detection by conventional PCR. Inclusivity tests generated the specific amplifications with a Tm corresponding to 81 ± 0·5°C. The specificity of the reaction was evaluated with a panel of 36 non-Salmonella strains. Standard curves generated, with different number of cells of this organism in milk, depicted the detection of five cells with a CT value of 37·17 (SD 0·43). To make the assays user-friendly and suitable for field applications, protocols were also established for the immobilization of the SYBR Green reaction mixes in the reaction tubes. The immobilized master mixes were stable at 25°C for 4 months and at 8°C for over 6 months. Total DNA was prepared from 150 samples of full-fat dairy milk and subjected to real-time PCR detection wherein 31 samples tested positive for Salmonella. The time of analysis was <5 h.
Collapse
Affiliation(s)
- S Riyaz-Ul-Hassan
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India.
| | | | | |
Collapse
|