1
|
Nourani N, Taghvimi A, Bavili-Tabrizi A, Javadzadeh Y, Dastmalchi S. Microextraction Techniques for Sample Preparation of Amphetamines in Urine: A Comprehensive Review. Crit Rev Anal Chem 2024; 54:1304-1319. [PMID: 36093632 DOI: 10.1080/10408347.2022.2113028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Psychological disorders and dramatic social problems are serious concerns regarding the abuse of amphetamine and its stimulant derivatives worldwide. Consumers of such drugs experience great euphoria along with serious health problems. Determination and quantification of amphetamine-type stimulants are indispensable skills for clinical and forensic laboratories. Analysis of low drug doses in bio-matrices necessitates applications of simple and also effective preparation steps. The preparation procedures not only eliminate adverse matrix effects, but also provide reasonable clean-up and pre-concentration benefits. The current review presents different methods used for sample preparation of amphetamines from urine as the most frequently used biological matrix. The advantages and limitations of various sample preparation methods were discussed focusing on the miniaturized methods.
Collapse
Affiliation(s)
- Nasim Nourani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Taghvimi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Bavili-Tabrizi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, North Cyprus, Turkey
| |
Collapse
|
2
|
Tůma P. Progress in on-line, at-line, and in-line coupling of sample treatment with capillary and microchip electrophoresis over the past 10 years: A review. Anal Chim Acta 2023; 1261:341249. [PMID: 37147053 DOI: 10.1016/j.aca.2023.341249] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
The review presents an evaluation of the development of on-line, at-line and in-line sample treatment coupled with capillary and microchip electrophoresis over the last 10 years. In the first part, it describes different types of flow-gating interfaces (FGI) such as cross-FGI, coaxial-FGI, sheet-flow-FGI, and air-assisted-FGI and their fabrication using molding into polydimethylsiloxane and commercially available fittings. The second part deals with the coupling of capillary and microchip electrophoresis with microdialysis, solid-phase, liquid-phase, and membrane based extraction techniques. It mainly focuses on modern techniques such as extraction across supported liquid membrane, electroextraction, single drop microextraction, head space microextraction, and microdialysis with high spatial and temporal resolution. Finally, the design of sequential electrophoretic analysers and fabrication of SPE microcartridges with monolithic and molecularly imprinted polymeric sorbents are discussed. Applications include the monitoring of metabolites, neurotransmitters, peptides and proteins in body fluids and tissues to study processes in living organisms, as well as the monitoring of nutrients, minerals and waste compounds in food, natural and wastewater.
Collapse
Affiliation(s)
- Petr Tůma
- Department of Hygiene, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic.
| |
Collapse
|
3
|
Novel developments in capillary electrophoresis miniaturization, sampling, detection and portability: An overview of the last decade. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
Suntornsuk L, Anurukvorakun O. Sensitivity enhancement in capillary electrophoresis and their applications for analyses of pharmaceutical and related biochemical substances. Electrophoresis 2021; 43:939-954. [PMID: 34902168 DOI: 10.1002/elps.202100236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/11/2022]
Abstract
This review aims to illustrate sensitivity enhancement methods in capillary electrophoresis (CE) and their applications for pharmaceutical and related biochemical substance analyses. The first two parts of the article describe the introduction and principle of CE. The main part focuses on strategies for sensitivity improvement in CE including detector and capillary technologies and pre-concentration techniques. Applications of these techniques for pharmaceutical and biomedical substance analyses are surveyed during the years 2018-2021. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Leena Suntornsuk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Oraphan Anurukvorakun
- Department of Cosmetic Science, Phranakorn Rajabhat University, Bangkok, 10220, Thailand
| |
Collapse
|
5
|
|
6
|
Poboży E, Trojanowicz M. Application of Capillary Electrophoresis for Determination of Inorganic Analytes in Waters. Molecules 2021; 26:6972. [PMID: 34834063 PMCID: PMC8625978 DOI: 10.3390/molecules26226972] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Aside from HPLC and GC, capillary electrophoresis (CE) is one of the most important techniques for high-performance separations in modern analytical chemistry. Its main advantages are the possibility of using different detection techniques, the possibility of in-capillary sample processing for preconcentration or derivatization, and ease of instrumental miniaturization down to the microfluidic scale. Those features are utilized in the separation of macromolecules in biochemistry and in genetic investigations, but they can be also used in determinations of inorganic ions in water analysis. This review, based on about 100 original research works, presents applications of CE methods in water analysis reported in recent decade, mostly regarding conductivity detection or indirect UV detection. The developed applications include analysis of high salinity sea waters, as well as analysis of other surface waters and drinking waters.
Collapse
Affiliation(s)
- Ewa Poboży
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - Marek Trojanowicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
- Laboratory of Nuclear Analytical Techniques, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| |
Collapse
|
7
|
Facile and highly efficient three-phase single drop microextraction in-line coupled with capillary electrophoresis. J Chromatogr A 2021; 1655:462520. [PMID: 34517164 DOI: 10.1016/j.chroma.2021.462520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 11/23/2022]
Abstract
A high-performance version of in-line, three-phase direct immersion-single drop microextraction (DI-SDME) coupled with capillary electrophoresis (CE) was demonstrated using a commercial CE instrument, and all the major and minor details were described to provide an easy-to-follow and user-friendly protocol. The excellent sample cleanup and enrichment power of this method was demonstrated with nonsteroidal anti-inflammatory drugs (NSAIDs) in human urine. The only preparation of urine samples was the addition of HCl to acidify the urine sample to pH 2. The acidic NSAIDs in the acidified urine sample were extracted into a basic acceptor drop covered with a thin organic layer attached to the inlet tip of a capillary immersed in the sample. A simple but powerful DI-SDME-CE method could be carried out automatically without any modification of the existing CE instrument. For improved performance, sample agitation and heating were employed by installing a microstirrer and a thermostating jacket in the sample tray. With 10 min of DI-SDME at 35°C with stirring, NSAIDs such as ketoprofen, ibuprofen, and naproxen in urine were enriched 340-970-fold with intraday and interday RSDs of 0.8-2.4% and 1.1-3.6%, respectively. The LODs obtained with in-line coupled CE/UV were 10-50 nM (2-10 µg/L). The performance of DI-SDME-CE/UV was also demonstrated by determining the naproxen level in human urine collected 24 h after taking a single oral dose of the drug. The spike recovery of naproxen from a single-point standard addition to the urine sample was 80%. Our high-performance three-phase DI-SDME-CE method is quite promising for the analysis of ionizable trace analytes in a complex sample matrix.
Collapse
|
8
|
Purgat K, Kośka I, Kubalczyk P. The Use of Single Drop Microextraction and Field Amplified Sample Injection for CZE Determination of Homocysteine Thiolactone in Urine. Molecules 2021; 26:5687. [PMID: 34577158 PMCID: PMC8468900 DOI: 10.3390/molecules26185687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/03/2022] Open
Abstract
Two cheap, simple and reproducible methods for the electrophoretic determination of homocysteine thiolactone (HTL) in human urine have been developed and validated. The first method utilizes off-line single drop microextraction (SDME), whereas the second one uses off-line SDME in combination with field amplified sample injection (FASI). The off-line SDME protocol consists of the following steps: urine dilution with 0.2 mol/L, pH 8.2 phosphate buffer (1:2, v/v), chloroform addition, drop formation and extraction of HTL. The pre-concentration of HTL inside a separation capillary was performed by FASI. For sample separation, the 0.1 mol/L pH 4.75 phosphate buffer served as the background electrolyte, and HTL was detected at 240 nm. A standard fused-silica capillary (effective length 55.5 cm, 75 μm id) and a separation voltage of 21 kV (~99 μA) were used. Electrophoretic separation was completed within 7 min, whereas the LOD and LOQ for HTL were 0.04 and 0.1 μmol/L urine, respectively. The calibration curve in urine was linear in the range of 0.1-0.5 μmol/L, with R2 = 0.9991. The relative standard deviation of the points of the calibration curve varied from 2.4% to 14.9%. The intra- and inter-day precision and recovery were 6.4-10.2% (average 6.0% and 6.7%) and 94.9-102.7% (average 99.7% and 99.5%), respectively. The analytical procedure was successfully applied to the analysis of spiked urine samples obtained from apparently healthy volunteers.
Collapse
Affiliation(s)
- Krystian Purgat
- Department of Environmental Chemistry, Faculty of Chemistry, University of Lodz, 163 Pomorska Str., 90-236 Lodz, Poland;
| | - Izabella Kośka
- Department of Environmental Chemistry, Faculty of Chemistry, University of Lodz, 163 Pomorska Str., 90-236 Lodz, Poland;
- Doctoral School of Exact and Natural Sciences, University of Lodz, 12/16 Banacha Str., 90-237 Lodz, Poland
| | - Paweł Kubalczyk
- Department of Environmental Chemistry, Faculty of Chemistry, University of Lodz, 163 Pomorska Str., 90-236 Lodz, Poland;
| |
Collapse
|
9
|
Dmitrienko SG, Apyari VV, Tolmacheva VV, Gorbunova MV. Liquid–Liquid Extraction of Organic Compounds into a Single Drop of the Extractant: Overview of Reviews. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821080049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Delove Tegladza I, Qi T, Chen T, Alorku K, Tang S, Shen W, Kong D, Yuan A, Liu J, Lee HK. Direct immersion single-drop microextraction of semi-volatile organic compounds in environmental samples: A review. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122403. [PMID: 32126428 DOI: 10.1016/j.jhazmat.2020.122403] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Single-drop microextraction (SDME) techniques are efficient approaches to pretreatment of aqueous samples. The main advantage of SDME lies in the miniaturization of the solvent extraction process, minimizing the hazards associated with the use of toxic organic solvents. Thus, SDME techniques are cost-effective, and represent less harm to the environment, subscribing to green analytical chemistry principles. In practice, two main approaches can be used to perform SDME - direct immersion (DI)-SDME and headspace (HS)-SDME. Even though the DI-SDME has been shown to be quite effective for extraction and enrichment of various organic compounds, applications of DI-SDME are normally more suitable for moderately polar and non-polar semi-volatile organic compounds (SVOCs) using organic solvents which are immiscible with water. In this review, we present a historical overview and current advances in DI-SDME, including the common analytical tools which are usually coupled with DI-SDME. The review also focuses on applications concerning SVOCs in environmental samples. Currents trends in DI-SDME and possible future direction of the procedure are discussed.
Collapse
Affiliation(s)
- Isaac Delove Tegladza
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Tong Qi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Tianyu Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Kingdom Alorku
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Jianfeng Liu
- Shanghai Waigaoqiao Shipbuilding Co., Ltd, Shanghai, 200137, PR China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
11
|
Direct Analysis of Psilocin and Muscimol in Urine Samples Using Single Drop Microextraction Technique In-Line with Capillary Electrophoresis. Molecules 2020; 25:molecules25071566. [PMID: 32235328 PMCID: PMC7181278 DOI: 10.3390/molecules25071566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/25/2022] Open
Abstract
The fully automated system of single drop microextraction coupled with capillary electrophoresis (SDME-CE) was developed for in-line preconcentration and determination of muscimol (MUS) and psilocin (PSC) from urine samples. Those two analytes are characteristic active metabolites of Amanita and Psilocybe mushrooms, evoking visual and auditory hallucinations. Study analytes were selectively extracted from the donor phase (urine samples, pH 4) into the organic phase (a drop of octanol layer), and re-extracted to the acidic acceptor (background electrolyte, BGE), consisting of 25 mM phosphate buffer (pH 3). The optimized conditions for the extraction procedure of a 200 µL urine sample allowed us to obtain more than a 170-fold enrichment effect. The calibration curves were linear in the range of 0.05–50 mg L−1, with the correlation coefficients from 0.9911 to 0.9992. The limit of detections was determined by spiking blank urine samples with appropriate standards, i.e., 0.004 mg L−1 for PSC and 0.016 mg L−1 for MUS, respectively. The limits of quantification varied from 0.014 mg L−1 for PSC and 0.045 mg L−1 for MUS. The developed method practically eliminated the sample clean-up step, which was limited only to simple dilution (1:1, v/v) and pH adjustment.
Collapse
|
12
|
Purgat K, Olejarz P, Kośka I, Głowacki R, Kubalczyk P. Determination of homocysteine thiolactone in human urine by capillary zone electrophoresis and single drop microextraction. Anal Biochem 2020; 596:113640. [PMID: 32092290 DOI: 10.1016/j.ab.2020.113640] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/28/2022]
Abstract
A simple, fast, sensitive and reproducible capillary zone electrophoresis (CZE) method with single drop microextraction (SDME) for determination of homocysteine thiolactone (HTL) in human urine has been developed and validated. The method is characterized by good precision, high accuracy, short analysis time and low consumption of reagents. The procedure consists only of few steps: urine sample centrifugation, dilution with phosphate buffer and methanol, chloroform addition onto the top of donor phase, on-line SDME in CE system, sample separation by CZE and ultraviolet detection of HTL at 240 nm. The background electrolyte was 0.1 M pH 4.75 phosphate buffer. Effective separation was achieved within 6.04 min under the separation voltage of 24 kV (~110 μA). The LOQ and LOD for HTL were 50 and 25 nM urine, respectively. The calibration curve in urine showed linearity in the range of 50-200 nM, with R2 0.9995. The intra- and inter-day precision and recovery were 4.0-14.5% (average 8.7% and 9.3%) and 92.7-115.5% (average 103.6% and 104.8%), respectively. The procedure was successfully applied to analysis of urine samples.
Collapse
Affiliation(s)
- Krystian Purgat
- University of Lodz, Faculty of Chemistry, Department of Environmental Chemistry, Poland
| | - Patrycja Olejarz
- University of Lodz, Faculty of Chemistry, Department of Environmental Chemistry, Poland
| | - Izabella Kośka
- University of Lodz, Faculty of Chemistry, Department of Environmental Chemistry, Poland; University of Lodz, Doctoral School of Exact and Natural Sciences, Poland
| | - Rafał Głowacki
- University of Lodz, Faculty of Chemistry, Department of Environmental Chemistry, Poland
| | - Paweł Kubalczyk
- University of Lodz, Faculty of Chemistry, Department of Environmental Chemistry, Poland.
| |
Collapse
|
13
|
Integration of three-phase microelectroextraction sample preparation into capillary electrophoresis. J Chromatogr A 2020; 1610:460570. [PMID: 31607447 DOI: 10.1016/j.chroma.2019.460570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022]
Abstract
A major strength of capillary electrophoresis (CE) is its ability to inject small sample volumes. However, there is a great mismatch between injection volume (typically <100 nL) and sample volumes (typically 20-1500 µL). Electromigration-based sample preparation methods are based on similar principles as CE. The combination of these methods with capillary electrophoresis could tackle obstacles in the analysis of dilute samples. This study demonstrates coupling of three-phase microelectroextraction (3PEE) to CE for sample preparation and preconcentration of large volume samples while requiring minimal adaptation of CE equipment. In this set-up, electroextraction takes place from an aqueous phase, through an organic filter phase, into an aqueous droplet that is hanging at the capillary inlet. The first visual proof-of-concept for this set-up showed successful extraction using the cationic dye crystal violet (CV). The potential of 3PEE for bioanalysis was demonstrated by successful extraction of the biogenic amines serotonin (5-HT), tyrosine (Tyr) and tryptophan (Trp). Under optimized conditions limits of detection (LOD) were 15 nM and 33 nM for 5-HT and Tyr respectively (with Trp as an internal standard). These LODs are comparable to other similar preconcentration methods that have been reported in conjunction with CE. Good linearity (R2 > 0.9967) was observed for both model analytes. RSDs for peak areas in technical replicates, interday and intraday variability were all satisfactory, i.e., below 14%. 5-HT, Tyr and Trp spiked to human urine were successfully extracted and separated. These results underline the great potential of 3PEE as an integrated enrichment technique from biological samples and subsequent sensitive metabolomics analysis.
Collapse
|
14
|
Practical sample pretreatment techniques coupled with capillary electrophoresis for real samples in complex matrices. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115702] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Application of dispersive liquid-liquid microextraction based on solidification of floating organic drop for the determination of extractables from pharmaceutical packaging materials. Talanta 2019; 209:120540. [PMID: 31891992 DOI: 10.1016/j.talanta.2019.120540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/26/2019] [Accepted: 11/03/2019] [Indexed: 02/05/2023]
Abstract
A new method was established for the determination of the extractables from pharmaceutical packaging materials using dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) coupled with ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). Packaging samples were filled with three kinds of buffer solutions: acid buffer (pH = 3), alkaline buffer (pH = 9) and 0.9% NaCl solution to extract as many extractables as possible, and then the extractables in buffer solutions were enriched by DLLME-SFO technique. Parameters affecting the efficiency of the extraction procedure were evaluated and optimized, including the type and volume of dispersant, extractant volume, pH and vortex-mixing time. After optimization, the values obtained for limits of detection and quantification for three kinds of common antioxidants were 0.3 and 1.0 μg/L respectively, and good linearity (R2 > 0.99) was observed in their respective concentration ranges. The recoveries ranged from 80.61% to 117.87% at three spiked levels with the relative standard deviations (RSDs) between 0.92% and 9.29% (n = 6) in all three buffer solutions. The developed method was successfully applied to the analysis of extractables from pharmaceutical packaging materials. The results indicated that the proposed procedure is a novel, sensitive, fast and repeatable method and has a great significance for evaluation of safety of pharmaceutical packaging materials.
Collapse
|
16
|
Santos EB, Valsecchi C, Gonçalves JLS, Ávila LF, Menezes JW. Coupling Single-Drop Microextraction with SERS: A Demonstration Using p-MBA on Gold Nanohole Array Substrate. SENSORS (BASEL, SWITZERLAND) 2019; 19:s19204394. [PMID: 31614470 PMCID: PMC6832577 DOI: 10.3390/s19204394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 08/28/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
Single-drop microextraction (SDME) was coupled with surface-enhanced Raman scattering (SERS) to provide sample extraction and pre-concentration for detection of analyte at low concentrations. A gold nanohole array substrate (AuNHAS), fabricated by interference lithography, was used as SERS substrate and para-mercaptobenzoic acid (p-MBA) was tested as a probe molecule, in the concentration range 10-8-10-4 mol L-1. With this approach, a limit of 10-7 mol L-1 was clearly detected. To improve the detection to lower p-MBA concentration, as 10-8 mol L-1, the SDME technique was applied. The p-MBA Raman signature was detected in two performed extractions and its new concentration was determined to be ~4.6 × 10-5 mol L-1. This work showed that coupling SDME with SERS allowed a rapid (5 min) and efficient pre-concentration (from 10-8 mol L-1 to 10-5 mol L-1), detection, and quantification of the analyte of interest, proving to be an interesting analytical tool for SERS applications.
Collapse
Affiliation(s)
- Elias B Santos
- LQANano, Federal University of São Paulo, São José dos Campos-SP, 12231-280, Brazil.
| | - Chiara Valsecchi
- Engineering Department, Federal University of Pampa, Alegrete-RS, 97546-550, Brazil.
| | | | - Luis F Ávila
- Applied Optics Laboratory-School of Technology, State University of Campinas, Limeira-SP, 13484-350, Brazil.
| | - Jacson W Menezes
- Engineering Department, Federal University of Pampa, Alegrete-RS, 97546-550, Brazil.
| |
Collapse
|
17
|
|
18
|
Ali I, Suhail M, Alharbi OML, Hussain I. Advances in sample preparation in chromatography for organic environmental pollutants analyses. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1579739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Imran Ali
- Department of Chemistry, College of Science, Taibah University, Al-Medina Al-Munawarah, Saudi Arabia
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Mohd. Suhail
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Omar M. L. Alharbi
- Department of Biology, College of Science, Taibah University, Al-Medina Al-Munawarah, Saudi Arabia
| | - Iqbal Hussain
- Department of General Studies, Jubail Industrial College, Jubail Industrial City, Saudi Arabia
| |
Collapse
|
19
|
Abstract
Saliva, as the first body fluid encountering with the exogenous materials, has good correlation with blood and plays an important role in bioanalysis. However, saliva has not been studied as much as the other biological fluids mainly due to restricted access to its large volumes. In recent years, there is a growing interest for saliva analysis owing to the emergence of miniaturized sample preparation methods. The purpose of this paper is to review all microextraction methods and their principles of operation. In the following, we examine the methods used to analyze saliva up to now and discuss the potential of the other microextraction methods for saliva analysis to encourage research groups for more focus on this important subject area.
Collapse
|
20
|
Efficient determination of amphetamine and methylamphetamine in human urine using electro-enhanced single-drop microextraction with in-drop derivatization and gas chromatography. Anal Chim Acta 2019; 1045:162-168. [DOI: 10.1016/j.aca.2018.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 11/18/2022]
|
21
|
Tang S, Qi T, Ansah PD, Nalouzebi Fouemina JC, Shen W, Basheer C, Lee HK. Single-drop microextraction. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
In-line coupling of supported liquid membrane extraction to capillary electrophoresis for simultaneous analysis of basic and acidic drugs in urine. J Chromatogr A 2017; 1519:137-144. [DOI: 10.1016/j.chroma.2017.08.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 12/11/2022]
|
23
|
Determination of HMF in Vinegar and Soy Sauce Using Two-Step Ultrasonic Assisted Liquid–Liquid Micro-Extraction Coupled with Capillary Electrophoresis-Ultraviolet Detection. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1018-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Residual determination of anesthetic menthol in fishes by SDME/GC–MS. Food Chem 2017; 229:674-679. [DOI: 10.1016/j.foodchem.2017.02.087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 11/30/2016] [Accepted: 02/17/2017] [Indexed: 11/20/2022]
|
25
|
Kubáň P. Salt Removal from Microliter Sample Volumes by Multiple Phase Microelectromembrane Extractions Across Free Liquid Membranes. Anal Chem 2017; 89:8476-8483. [DOI: 10.1021/acs.analchem.7b02017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Veveří 97, CZ-60200 Brno, Czech Republic
| |
Collapse
|
26
|
Šlampová A, Kubáň P. Injections from sub-μL sample volumes in commercial capillary electrophoresis. J Chromatogr A 2017; 1497:164-171. [DOI: 10.1016/j.chroma.2017.03.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 11/17/2022]
|
27
|
Lopes D, Dias AN, Simão V, Carasek E. Determination of emerging contaminants in aqueous matrices with hollow fiber-supported dispersive liquid-liquid microextraction (HF-DLLME) and separation/detection by liquid chromatography – Diode array detection. Microchem J 2017. [DOI: 10.1016/j.microc.2016.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Thang LY, See HH, Quirino JP. Multistacking from Two Sample Streams in Nonaqueous Microchip Electrophoresis. Anal Chem 2016; 88:9915-9919. [DOI: 10.1021/acs.analchem.6b02790] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lee Yien Thang
- Centre
for Sustainable Nanomaterials, IbnuSina Institute for Scientific and
Industrial Research, UniversitiTeknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
- Department
of Chemistry, Faculty of Science, UniversitiTeknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Hong Heng See
- Centre
for Sustainable Nanomaterials, IbnuSina Institute for Scientific and
Industrial Research, UniversitiTeknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
- Department
of Chemistry, Faculty of Science, UniversitiTeknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Joselito P. Quirino
- Centre
for Sustainable Nanomaterials, IbnuSina Institute for Scientific and
Industrial Research, UniversitiTeknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
- Department
of Chemistry, Faculty of Science, UniversitiTeknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
- Australian
Centre for Research on Separation Science, School of Physical Sciences
− Chemistry, University of Tasmania, 7001 Hobart, Tasmania, Australia
| |
Collapse
|
29
|
El-Hady DA, Albishri HM, Wätzig H. Ionic liquids in enhancing the sensitivity of capillary electrophoresis: Off-line and on-line sample preconcentration techniques. Electrophoresis 2016; 37:1609-23. [DOI: 10.1002/elps.201600069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/26/2016] [Accepted: 03/29/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Deia Abd El-Hady
- Department of Chemistry, Faculty of Science; University of Jeddah; Jeddah Saudi Arabia
- Department of Chemistry, Faculty of Science; Assiut University; Assiut Egypt
| | - Hassan M. Albishri
- Department of Chemistry, Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
| | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical Chemistry; TU Braunschweig; Braunschweig Germany
| |
Collapse
|
30
|
YILMAZ E, SOYLAK M. Latest trends, green aspects, and innovations in liquid-phase--based microextraction techniques: a review. Turk J Chem 2016. [DOI: 10.3906/kim-1605-26] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
31
|
García-Vázquez A, Borrull F, Calull M, Aguilar C. Single-drop microextraction combined in-line with capillary electrophoresis for the determination of nonsteroidal anti-inflammatory drugs in urine samples. Electrophoresis 2015; 37:274-81. [DOI: 10.1002/elps.201500373] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/30/2015] [Accepted: 10/21/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Alejandro García-Vázquez
- Department of Analytical and Organic Chemistry, Faculty of Chemistry; Universitat Rovira i Virgili; Tarragona Spain
| | - Francesc Borrull
- Department of Analytical and Organic Chemistry, Faculty of Chemistry; Universitat Rovira i Virgili; Tarragona Spain
| | - Marta Calull
- Department of Analytical and Organic Chemistry, Faculty of Chemistry; Universitat Rovira i Virgili; Tarragona Spain
| | - Carme Aguilar
- Department of Analytical and Organic Chemistry, Faculty of Chemistry; Universitat Rovira i Virgili; Tarragona Spain
| |
Collapse
|
32
|
Wang H, Liu Y, Wei S, Yao S, Zhang J, Huang H. Selective extraction and determination of fluoroquinolones in bovine milk samples with montmorillonite magnetic molecularly imprinted polymers and capillary electrophoresis. Anal Bioanal Chem 2015; 408:589-98. [PMID: 26542835 DOI: 10.1007/s00216-015-9140-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/08/2015] [Accepted: 10/21/2015] [Indexed: 02/06/2023]
Abstract
A sensitive and selective method for separating fluoroquinolones (FQs) from bovine milk samples was successfully developed using montmorillonite magnetic molecularly imprinted polymers (MMMIPs) as adsorbents. MMMIPs were prepared using montmorillonite as carrier, fleroxacin (FLE) as template molecule, and Fe3O4 magnetite as magnetic component. MMMIPs possessed high adsorption capacity of 46.3 mg g(-1) for FLE. A rapid and convenient magnetic solid-phase extraction procedure coupled with capillary electrophoresis was established with MMMIPs as adsorbents for simultaneous and selective extraction of four FQs in bovine milk samples. Limits of detection ranged between 12.9 and 18.8 μg L(-1), and the RSDs were between 1.8% and 8.6%. The proposed method was successfully applied to spike bovine milk samples with recoveries of 92.7%-108.6%.
Collapse
Affiliation(s)
- Hongwu Wang
- School of Chemistry & Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, China.
| | - Yanqing Liu
- School of Chemistry & Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Shoulian Wei
- School of Chemistry & Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, China.
| | - Su Yao
- School of Chemistry & Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Jiali Zhang
- Department of Chemistry, East China Jiaotong University, Nanchang, 330013, China
| | - Huichang Huang
- School of Chemistry & Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| |
Collapse
|
33
|
Springer VH, Lista AG. In-line coupled single drop liquid-liquid-liquid microextraction with capillary electrophoresis for determining fluoroquinolones in water samples. Electrophoresis 2015; 36:1572-9. [DOI: 10.1002/elps.201400602] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Valeria H. Springer
- Analytical Chemistry Section; INQUISUR (UNS-CONICET); Bahía Blanca Buenos Aires Argentina
| | - Adriana G. Lista
- Analytical Chemistry Section; INQUISUR (UNS-CONICET); Bahía Blanca Buenos Aires Argentina
| |
Collapse
|
34
|
Pantůčková P, Kubáň P, Boček P. Sensitivity enhancement in direct coupling of supported liquid membrane extractions to capillary electrophoresis by means of transient isotachophoresis and large electrokinetic injections. J Chromatogr A 2015; 1389:1-7. [DOI: 10.1016/j.chroma.2015.02.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/05/2015] [Accepted: 02/10/2015] [Indexed: 11/26/2022]
|
35
|
Breadmore MC, Tubaon RM, Shallan AI, Phung SC, Abdul Keyon AS, Gstoettenmayr D, Prapatpong P, Alhusban AA, Ranjbar L, See HH, Dawod M, Quirino JP. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2012-2014). Electrophoresis 2015; 36:36-61. [DOI: 10.1002/elps.201400420] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Michael C. Breadmore
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Ria Marni Tubaon
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Aliaa I. Shallan
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Sui Ching Phung
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Aemi S. Abdul Keyon
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
- Faculty of Science; Department of Chemistry, Universiti Teknologi Malaysia; Johor Malaysia
| | - Daniel Gstoettenmayr
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Pornpan Prapatpong
- Faculty of Pharmacy; Department of Pharmaceutical Chemistry, Mahidol University; Rajathevee Bangkok Thailand
| | - Ala A. Alhusban
- Faculty of Health Sciences, School of Pharmacy; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Leila Ranjbar
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Hong Heng See
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
- Ibnu Sina Institute for Fundamental Science Studies; Universiti Teknologi Malaysia; Johor Malaysia
| | - Mohamed Dawod
- Department of Chemistry; University of Michigan; Ann Arbor MI USA
- Faculty of Pharmacy; Department of Analytical Chemistry, Al-Azhar University; Cairo Egypt
| | - Joselito P. Quirino
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| |
Collapse
|
36
|
Yan Y, Chen X, Hu S, Bai X. Applications of liquid-phase microextraction techniques in natural product analysis: A review. J Chromatogr A 2014; 1368:1-17. [DOI: 10.1016/j.chroma.2014.09.068] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 11/27/2022]
|
37
|
Preconcentration in micro-electromembrane extraction across free liquid membranes. Anal Chim Acta 2014; 848:43-50. [DOI: 10.1016/j.aca.2014.07.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/01/2014] [Accepted: 07/23/2014] [Indexed: 11/21/2022]
|
38
|
Maham M, Kiarostami V, Waqif-Husain S, Sharifabadi MK. Analysis of chlorpheniramine in human urine samples using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography. BRAZ J PHARM SCI 2014. [DOI: 10.1590/s1984-82502014000300014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple and environmentally friendly microextraction technique was used for determination of chlorpheniramine (CPM), an antihistamine drug, in human urine samples using dispersive liquid-liquid microextraction (DLLME) followed by high performance liquid chromatography with diode array detection (HPLC-DAD). In this extraction technique, an appropriate mixture of acetonitrile (disperser solvent) and carbon tetrachloride (extraction solvent) was rapidly injected into the urine sample containing the target analyte. Tiny droplets of extractant were formed and dispersed into the sample solution and then sedimented at the bottom of the conical test tube by centrifugation. Under optimal conditions, the calibration curve was linear in the range of 0.055-5.5 µg mL-1, with a detection limit of 16.5 ng mL-1. This proposed method was successfully applied to the analysis of real urine samples. Low consumption of toxic organic solvents, simplicity of operation, low cost and acceptable figures of merit are the main advantages of the proposed technique.
Collapse
|
39
|
Rajabi M, Ghanbari H, Barfi B, Asghari A, Haji-Esfandiari S. Ionic liquid-based ultrasound-assisted surfactant-emulsified microextraction for simultaneous determination of three important flavoring compounds in plant extracts and urine samples. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.04.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Nojavan S, Gorji T, Davarani SSH, Morteza-Najarian A. Solvent selection in ultrasonic-assisted emulsification microextraction: Comparison between high- and low-density solvents by means of novel type of extraction vessel. Anal Chim Acta 2014; 838:51-7. [DOI: 10.1016/j.aca.2014.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/03/2014] [Indexed: 01/24/2023]
|
41
|
Kailasa SK, Mehta VN, Wu HF. Recent developments of liquid-phase microextraction techniques directly combined with ESI- and MALDI-mass spectrometric techniques for organic and biomolecule assays. RSC Adv 2014. [DOI: 10.1039/c3ra47347c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
42
|
Kitagawa F, Otsuka K. Recent applications of on-line sample preconcentration techniques in capillary electrophoresis. J Chromatogr A 2014; 1335:43-60. [DOI: 10.1016/j.chroma.2013.10.066] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 12/21/2022]
|
43
|
Romanova EV, Aerts JT, Croushore CA, Sweedler JV. Small-volume analysis of cell-cell signaling molecules in the brain. Neuropsychopharmacology 2014; 39:50-64. [PMID: 23748227 PMCID: PMC3857641 DOI: 10.1038/npp.2013.145] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/26/2013] [Accepted: 05/06/2013] [Indexed: 12/19/2022]
Abstract
Modern science is characterized by integration and synergy between research fields. Accordingly, as technological advances allow new and more ambitious quests in scientific inquiry, numerous analytical and engineering techniques have become useful tools in biological research. The focus of this review is on cutting edge technologies that aid direct measurement of bioactive compounds in the nervous system to facilitate fundamental research, diagnostics, and drug discovery. We discuss challenges associated with measurement of cell-to-cell signaling molecules in the nervous system, and advocate for a decrease of sample volumes to the nanoliter volume regimen for improved analysis outcomes. We highlight effective approaches for the collection, separation, and detection of such small-volume samples, present strategies for targeted and discovery-oriented research, and describe the required technology advances that will empower future translational science.
Collapse
Affiliation(s)
- Elena V Romanova
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jordan T Aerts
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Callie A Croushore
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan V Sweedler
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
44
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2011-2013). Electrophoresis 2013; 35:69-95. [PMID: 24255019 DOI: 10.1002/elps.201300331] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 01/15/2023]
Abstract
The review presents a comprehensive survey of recent developments and applications of capillary and microchip electroseparation methods (zone electrophoresis, ITP, IEF, affinity electrophoresis, EKC, and electrochromatography) for analysis, isolation, purification, and physicochemical and biochemical characterization of peptides. Advances in the investigation of electromigration properties of peptides, in the methodology of their analysis, including sample preseparation, preconcentration and derivatization, adsorption suppression and EOF control, as well as in detection of peptides, are presented. New developments in particular CE and CEC modes are reported and several types of their applications to peptide analysis are described: conventional qualitative and quantitative analysis, determination in complex (bio)matrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid, sequence and chiral analysis, and peptide mapping of proteins. Some micropreparative peptide separations are shown and capabilities of CE and CEC techniques to provide relevant physicochemical characteristics of peptides are demonstrated.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
45
|
|
46
|
Poinsot V, Ong-Meang V, Gavard P, Couderc F. Recent advances in amino acid analysis by capillary electromigration methods, 2011-2013. Electrophoresis 2013; 35:50-68. [DOI: 10.1002/elps.201300306] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/11/2013] [Accepted: 09/11/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Véréna Poinsot
- Laboratoire des IMRCP; Université Paul Sabatier; Toulouse France
| | | | - Pierre Gavard
- Laboratoire des IMRCP; Université Paul Sabatier; Toulouse France
| | - François Couderc
- Laboratoire des IMRCP; Université Paul Sabatier; Toulouse France
| |
Collapse
|
47
|
Kocúrová L, Balogh IS, Andruch V. A glance at achievements in the coupling of headspace and direct immersion single-drop microextraction with chromatographic techniques. J Sep Sci 2013; 36:3758-68. [DOI: 10.1002/jssc.201300575] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Lívia Kocúrová
- Department of Analytical Chemistry; Pavol Jozef Šafárik University in Košice; Slovak Republic
| | - Ioseph S. Balogh
- Department of Chemistry; College of Nyíregyháza; Nyíregyháza Hungary
| | - Vasil Andruch
- Department of Analytical Chemistry; Pavol Jozef Šafárik University in Košice; Slovak Republic
| |
Collapse
|
48
|
Breadmore MC, Shallan AI, Rabanes HR, Gstoettenmayr D, Abdul Keyon AS, Gaspar A, Dawod M, Quirino JP. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2010-2012). Electrophoresis 2013; 34:29-54. [PMID: 23161056 DOI: 10.1002/elps.201200396] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 12/21/2022]
Abstract
CE has been alive for over two decades now, yet its sensitivity is still regarded as being inferior to that of more traditional methods of separation such as HPLC. As such, it is unsurprising that overcoming this issue still generates much scientific interest. This review continues to update this series of reviews, first published in Electrophoresis in 2007, with updates published in 2009 and 2011 and covers material published through to June 2012. It includes developments in the field of stacking, covering all methods from field amplified sample stacking and large volume sample stacking, through to isotachophoresis, dynamic pH junction and sweeping. Attention is also given to online or inline extraction methods that have been used for electrophoresis.
Collapse
Affiliation(s)
- Michael C Breadmore
- Australian Centre for Research on Separation Science, School of Chemistry, University of Tasmania, Hobart, Tasmania, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The extraction and/or purification of drugs and medicines from biological matrices are important objectives in investigating their toxicological and pharmaceutical properties. Many widely used methods such as liquid–liquid extraction or SPE, used for extracting, purifying and enriching drugs and medicines found in biological materials, involve laborious, intensive and expensive preparatory procedures, and they require organic solvents that are toxic to both humans and the environment. Recent trends are focused on miniaturization, high-throughput and automation techniques. All the advantages and disadvantages of these techniques and devices in biological analysis are presented, and their applications in the extraction and/or purification of drugs and medicines from biological matrices are discussed in this review.
Collapse
|
50
|
Recent advances in on-line concentration and separation of amino acids using capillary electrophoresis. Anal Bioanal Chem 2013; 405:7919-30. [DOI: 10.1007/s00216-013-6906-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/23/2013] [Accepted: 03/08/2013] [Indexed: 11/25/2022]
|