1
|
Piasecki W, Lament K. Application of Potentiometric and Electrophoretic Measurements to Evaluate the Reversibility of Adsorption of Divalent Ions from a Solution on Titanium Dioxide. Molecules 2024; 29:555. [PMID: 38338300 PMCID: PMC11154309 DOI: 10.3390/molecules29030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The adsorption of divalent ions on metal oxides is controlled by the pH of a solution. It is commonly assumed that this is a reversible process for pH changes. However, there are reports that the sorption of ions on oxides may not be reversible. To verify this, we used potentiometric titration, ion-selective electrodes (ISEs), and electrokinetic measurements to examine the reversibility of the adsorption of hydrogen ions and three metal ions (Ca2+, Cu2+, and Fe2+) on TiO2. The ferrous ion was used as a reference because its adsorption is entirely irreversible. The surface charge determined by potentiometric titration and the adsorption edges measured using ISE indicate that the adsorption of copper ions is reversible with changes in pH. In the case of calcium ions, the results suggest a certain degree of irreversibility. There are apparent differences in the electrokinetic potential data obtained during titration with base and acid, which suggests that the adsorption is irreversible. We have explained this contradiction by considering the complex and dynamic nature of electrophoretic mobility. In our opinion, potentiometric titration may be the simplest and most reliable method for assessing the reversibility of multivalent ion adsorption.
Collapse
Affiliation(s)
- Wojciech Piasecki
- Department of Physical Education and Health, Józef Piłsudski University of Physical Education in Warsaw, Akademicka 2, 21-500 Biała Podlaska, Poland;
| | | |
Collapse
|
2
|
Wardak C, Pietrzak K, Morawska K, Grabarczyk M. Ion-Selective Electrodes with Solid Contact Based on Composite Materials: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:5839. [PMID: 37447689 DOI: 10.3390/s23135839] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Potentiometric sensors are the largest and most commonly used group of electrochemical sensors. Among them, ion-selective electrodes hold a prominent place. Since the end of the last century, their re-development has been observed, which is a consequence of the introduction of solid contact constructions, i.e., electrodes without an internal electrolyte solution. Research carried out in the field of potentiometric sensors primarily focuses on developing new variants of solid contact in order to obtain devices with better analytical parameters, and at the same time cheaper and easier to use, which has been made possible thanks to the achievements of material engineering. This paper presents an overview of new materials used as a solid contact in ion-selective electrodes over the past several years. These are primarily composite and hybrid materials that are a combination of carbon nanomaterials and polymers, as well as those obtained from carbon and polymer nanomaterials in combination with others, such as metal nanoparticles, metal oxides, ionic liquids and many others. Composite materials often have better mechanical, thermal, electrical, optical and chemical properties than the original components. With regard to their use in the construction of ion-selective electrodes, it is particularly important to increase the capacitance and surface area of the material, which makes them more effective in the process of charge transfer between the polymer membrane and the substrate material. This allows to obtain sensors with better analytical and operational parameters. Brief characteristics of electrodes with solid contact, their advantages and disadvantages, as well as research methods used to assess their parameters and analytical usefulness were presented. The work was divided into chapters according to the type of composite material, while the data in the table were arranged according to the type of ion. Selected basic analytical parameters of the obtained electrodes have been collected and summarized in order to better illustrate and compare the achievements that have been described till now in this field of analytical chemistry, which is potentiometry. This comprehensive review is a compendium of knowledge in the research area of functional composite materials and state-of-the-art SC-ISE construction technologies.
Collapse
Affiliation(s)
- Cecylia Wardak
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square. 3, 20-031 Lublin, Poland
| | - Karolina Pietrzak
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Klaudia Morawska
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square. 3, 20-031 Lublin, Poland
| | - Malgorzata Grabarczyk
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square. 3, 20-031 Lublin, Poland
| |
Collapse
|
3
|
Mahanty B, Verma PK, Mohapatra PK. Evidence of Eu(III) Dual Binding in a PVC‐Based Electrochemical Sensor with
N,N,N’,N’
‐Tetrapentyl Diglycolamide (TPDGA) as the Ionophore: Potentiometric and Luminescence studies. ChemistrySelect 2023. [DOI: 10.1002/slct.202204681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Bholanath Mahanty
- Radiochemistry division Bhabha Atomic Research Centre Trombay, Mumbai 400085 India
| | - Parveen K. Verma
- Radiochemistry division Bhabha Atomic Research Centre Trombay, Mumbai 400085 India
| | | |
Collapse
|
4
|
Hussein OG, Ahmed DA, Abdelkawy M, Rezk MR, Mahmoud AM, Rostom Y. Novel solid-contact ion-selective electrode based on a polyaniline transducer layer for determination of alcaftadine in biological fluid. RSC Adv 2023; 13:7645-7655. [PMID: 36908536 PMCID: PMC9993128 DOI: 10.1039/d3ra00597f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Fabrication of a novel ion selective electrode for determining alcaftadine was achieved. The glassy carbon electrode (GCE) was utilized as a substrate in fabrication of an electrochemical sensor containing polyaniline (PANI) as an ion-to-electron transducer layer. A PVC polymeric matrix and nitrophenyl-octyl-ether were employed in designing the ion-sensing membrane (ISM). Potential stability was improved and minimization of electrical signal drift was achieved for inhibition of water layer formation at the electrode interface. Potential stability was achieved by inclusion of PANI between the electronic substrate and the ion-sensing membrane. The sensor's performance was evaluated following IUPAC recommendations. The sensor dynamic linear range was from 1.0 × 10-2 to 1.0 × 10-6 mol L-1 and it had a 6.3 × 10-7 mol L-1 detection limit. The selectivity and capabilities of the formed alcaftadine sensor were tested in the presence of its pharmaceutical formulation excipients as well as its degradation products. Additionally, the sensor was capable of quantifying the studied drug in a rabbit aqueous humor. Method's greenness profile was evaluated by the means of Analytical Greenness (AGREE) metric assessment tool.
Collapse
Affiliation(s)
- Ola G Hussein
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt Cairo Egypt
| | - Dina A Ahmed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt Cairo Egypt
| | - Mohamed Abdelkawy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Mamdouh R Rezk
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Amr M Mahmoud
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Yasmin Rostom
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| |
Collapse
|
5
|
8-Hydroxyquinoline intercalated montmorillonite composite: characterization and application for copper ion determination as potentiometric electrode. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
6
|
Soliman RM, Rostom Y, Mahmoud AM, Fayez YM, Mostafa NM, Monir HH. Novel Fabricated Potentiometric Sensors for Selective Determination of Carbinoxamine with Different Greenness Evaluation Perspectives. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Lazo-Fraga AR, Hernández MP, Díaz-García AM, Viltres-Portales M, Estévez-Hernández O. 3,3-Disubstituted 1-acylthioureas as ionophores for Pb(II)-ion selective electrodes: physical and chemical characterization of the sensing membranes. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2152814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ana Rosa Lazo-Fraga
- Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Vedado, La Habana, Cuba
| | - Mayra Paulina Hernández
- Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Vedado, La Habana, Cuba
| | | | - Marcia Viltres-Portales
- Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Vedado, La Habana, Cuba
| | - Osvaldo Estévez-Hernández
- Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Vedado, La Habana, Cuba
| |
Collapse
|
8
|
Electrically Enhanced Sensitivity (EES) of Ion-Selective Membrane Electrodes and Membrane-Based Ion Sensors. MEMBRANES 2022; 12:membranes12080763. [PMID: 36005678 PMCID: PMC9415162 DOI: 10.3390/membranes12080763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 01/27/2023]
Abstract
The use of external electronic enforcement in ion-sensor measurements is described. The objective is to improve the open-circuit (potentiometric) sensitivity of ion sensors. The sensitivity determines the precision of analyte determination and has been of interest since the beginning of ion-sensor technology. Owing to the theoretical interpretation founded by W.E. Nernst, the sensitivity is characterized by the slope and numerically predicted. It is empirically determined and validated during calibration by measuring an electromotive force between the ion sensor and the reference electrode. In practice, this measurement is made with commercial potentiometers that function as unaltered “black boxes”. This report demonstrates that by gaining access to a meter’s electrical systems and allowing for versatile signal summations, the empirical slope can be increased favorably. To prove the validity of the approach presented, flow-through ion-sensor blocks used in routine measurements of blood electrolytes (Na+, K+, Li+, Cl−) and multielectrode probes with flat surfaces, similar to those applied previously for monitoring transmembrane fluxes of Na+, K+, Cl− through living biological cells, are used. Several options to serve real-life electroanalytical challenges, including linear calibration for sensors with high-resistance membranes, responses with non-Nernstian slopes, non-linear calibration, and discrimination of nonfunctional sensors, are shown.
Collapse
|
9
|
Zhai J, Luo B, Li A, Dong H, Jin X, Wang X. Unlocking All-Solid Ion Selective Electrodes: Prospects in Crop Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:5541. [PMID: 35898054 PMCID: PMC9331676 DOI: 10.3390/s22155541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
This paper reviews the development of all-solid-state ion-selective electrodes (ASSISEs) for agricultural crop detection. Both nutrient ions and heavy metal ions inside and outside the plant have a significant influence on crop growth. This review begins with the detection principle of ASSISEs. The second section introduces the key characteristics of ASSISE and demonstrates its feasibility in crop detection based on previous research. The third section considers the development of ASSISEs in the detection of corps internally and externally (e.g., crop nutrition, heavy metal pollution, soil salinization, N enrichment, and sensor miniaturization, etc.) and discusses the interference of the test environment. The suggestions and conclusions discussed in this paper may provide the foundation for additional research into ion detection for crops.
Collapse
Affiliation(s)
- Jiawei Zhai
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Bin Luo
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Aixue Li
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Hongtu Dong
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Xiaotong Jin
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Xiaodong Wang
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| |
Collapse
|
10
|
Albaqami MD, Medany SS, Nafady A, Ibupoto MH, Willander M, Tahira A, Aftab U, Vigolo B, Ibupoto ZH. The fast nucleation/growth of Co 3O 4 nanowires on cotton silk: the facile development of a potentiometric uric acid biosensor. RSC Adv 2022; 12:18321-18332. [PMID: 35799920 PMCID: PMC9215123 DOI: 10.1039/d2ra03149c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 01/21/2023] Open
Abstract
In this study, we have used cotton silk as a source of abundant hydroxyl groups for the fast nucleation/growth of cobalt oxide (Co3O4) nanowires via a hydrothermal method. The crystal planes of the Co3O4 nanowires well matched the cubic phase. The as-synthesized Co3O4 nanowires mainly contained cobalt and oxygen elements and were found to be highly sensitive towards uric acid in 0.01 M phosphate buffer solution at pH 7.4. Importantly, the Co3O4 nanowires exhibited a large surface area, which was heavily utilized during the immobilization of the enzyme uricase via a physical adsorption method. The potentiometric response of the uricase-immobilizing Co3O4 nanowires was measured in the presence of uric acid (UA) against a silver/silver chloride (Ag/AgCl) reference electrode. The newly fabricated uric acid biosensor possessed a low limit of detection of 1.0 ± 0.2 nM with a wide linear range of 5 nM to 10 mM and sensitivity of 30.6 mV dec-1. Additionally, several related parameters of the developed uric acid biosensor were investigated, such as the repeatability, reproducibility, storage stability, selectivity, and dynamic response time, and these were found to be satisfactory. The good performance of the Co3O4 nanowires was verified based on the fast charge-transfer kinetics, as confirmed via electrochemical impedance spectroscopy. The successful practical use of the uric acid biosensor was demonstrated based on the recovery method. The observed performance of the uricase-immobilizing Co3O4 nanowires revealed that they could be considered as a promising and alternative tool for the detection of uric acid under both in vitro and in vivo conditions. Also, the use of cotton silk as a source of abundant hydroxyl groups may be considered for the remarkably fast nucleation/growth of other metal-oxide nanostructures, thereby facilitating the fabrication of functional electrochemical devices, such as batteries, water-splitting devices, and supercapacitors.
Collapse
Affiliation(s)
- Munirah D Albaqami
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Shymaa S Medany
- Department of Chemistry, Faculty of Science, Cairo University Cairo Egypt
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | | | - Magnus Willander
- Department of Science and Technology, Campus Norrköping, Linköping University SE-60174 Norrköping Sweden
| | - Aneela Tahira
- Dr. M.A Kazi Institute of Chemistry, University of Sindh Jamshoro 76080 Sindh Pakistan
| | - Umair Aftab
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology 76080 Jamshoro Sindh Pakistan
| | | | - Zafar Hussain Ibupoto
- Dr. M.A Kazi Institute of Chemistry, University of Sindh Jamshoro 76080 Sindh Pakistan
| |
Collapse
|
11
|
González-Quintela M, Viltres-Portales M, Díaz-García AM, Bustamante-Sánchez M, Sánchez-Díaz G, Lazo-Fraga AR, Estévez-Hernández O. On the analytical response of lead(II) selective electrodes using 1-aroyl-3,3-dimethylthioureas as ionophores: membrane analysis and quantum chemical calculations. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2085270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- M. González-Quintela
- Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, La Habana, Cuba
| | - M. Viltres-Portales
- Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, La Habana, Cuba
| | | | - M. Bustamante-Sánchez
- Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, La Habana, Cuba
| | - G. Sánchez-Díaz
- Faculty of Science, Department of Chemistry & Chemical Biology, MacMaster University, Hamilton, Canada
| | - A. R. Lazo-Fraga
- Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, La Habana, Cuba
| | - O. Estévez-Hernández
- Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, La Habana, Cuba
| |
Collapse
|
12
|
Perchlorate Solid-Contact Ion-Selective Electrode Based on Dodecabenzylbambus[6]uril. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030115] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dodecabenzylbambus[6]uril (Bn12BU[6]) is an anion receptor that binds the perchlorate ion the most tightly (stability constant ~1010 M−1) of all anions due to the excellent match between the ion size in relation to the receptor cavity. This new bambusuril compound was used as an ionophore in the ion-selective membrane (ISM) to develop ion selective electrodes (ISEs) for determination of perchlorate concentration utilizing the poly(3,4-ethylenedioxythiophene) (PEDOT) polymer film as a solid-contact material. Variation of the content of Bn12BU[6] and tridodecylmethylammonium chloride (TDMACl) in the plasticized poly(vinyl chloride)-based ISM was also tested. All the prepared solid-contact ISEs and their analytical performance were characterized by potentiometry, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronopotentiometry. The ISEs showed rapid response and a sub-Nernstian slope (~57 mV/decade) during potentiometric measurements in perchlorate solutions in the concentration range from 10−1 to 10−6 M simultaneously with their high stability and sufficient selectivity to other common inorganic anions like bromide, chloride, nitrate and sulphate. The function of the ISE was further verified by analysis of real water samples (lake, sea, and mineral water), which gave accurate and precise results.
Collapse
|
13
|
Kałuża D, Michalska A, Maksymiuk K. Solid‐Contact Ion‐Selective Electrodes Paving the Way for Improved Non‐Zero Current Sensors: A Minireview. ChemElectroChem 2021. [DOI: 10.1002/celc.202100892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dawid Kałuża
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Agata Michalska
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | | |
Collapse
|
14
|
Dragan AM, Parrilla M, Feier B, Oprean R, Cristea C, De Wael K. Analytical techniques for the detection of amphetamine-type substances in different matrices: A comprehensive review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Lisak G. Reliable environmental trace heavy metal analysis with potentiometric ion sensors - reality or a distant dream. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117882. [PMID: 34364114 DOI: 10.1016/j.envpol.2021.117882] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/13/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Over two decades have passed since polymeric membrane ion-selective electrodes were found to exhibit sufficiently lower detection limits. This in turn brought a great promise to measure trace level concentrations of heavy metals using potentiometric ion sensors at environmental conditions. Despite great efforts, trace analysis of heavy metals using ion-selective electrodes at environmental conditions is still not commercially available. This work will predominantly concentrate on summarizing and evaluating prospects of using potentiometric ion sensors in view of environmental determination of heavy metals in on-site and on-line analysis modes. Challenges associated with development of reliable potentiometric sensors to be operational in environmental conditions will be discussed and reasoning behind unsuccessful efforts to develop potentiometric on-site and on-line environmental ion sensors will be explored. In short, it is now clear that solely lowering the detection limit of the ion-selective electrodes does not guarantee development of successful sensors that would meet the requirement of environmental matrices over long term usage. More pressing challenges of the properties and the performance of the potentiometric sensors must be addressed first before considering extending their sensitivity to low analyte concentrations. These are, in order of importance, selectivity of the ion-selective membrane to main ion followed by the membrane resistance to parallel processes, such as water ingress to the ISM, light sensitivity, change in temperature, presence of gasses in solution and pH and finally resistance of the ion-selective membrane to fouling. In the future, targeted on-site and on-line environmental sensors should be developed, addressing specific environmental conditions. Thus, ion-selective electrodes should be developed with the intention to be suitable to the operational environmental conditions, rather than looking at universal sensor design validated in the idealized and simple sample matrices.
Collapse
Affiliation(s)
- Grzegorz Lisak
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore.
| |
Collapse
|
16
|
Kalisz J, Węgrzyn K, Maksymiuk K, Michalska A. Fluorimetric Readout of Ion Selective Electrode Signals Operating under Chronopotentiometric Conditions. ChemElectroChem 2021. [DOI: 10.1002/celc.202100884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Justyna Kalisz
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Katarzyna Węgrzyn
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | | | - Agata Michalska
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| |
Collapse
|
17
|
Mohamad Nor N, Ramli NH, Poobalan H, Qi Tan K, Abdul Razak K. Recent Advancement in Disposable Electrode Modified with Nanomaterials for Electrochemical Heavy Metal Sensors. Crit Rev Anal Chem 2021; 53:253-288. [PMID: 34565248 DOI: 10.1080/10408347.2021.1950521] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heavy metal pollution has gained global attention due to its high toxicity and non-biodegradability, even at a low level of exposure. Therefore, the development of a disposable electrode that is sensitive, simple, portable, rapid, and cost-effective as the sensor platform in electrochemical heavy metal detection is vital. Disposable electrodes have been modified with nanomaterials so that excellent electrochemical properties can be obtained. This review highlights the recent progress in the development of numerous types of disposable electrodes modified with nanomaterials for electrochemical heavy metal detection. The disposable electrodes made from carbon-based, glass-based, and paper-based electrodes are reviewed. In particular, the analytical performance, fabrication technique, and integration design of disposable electrodes modified with metal (such as gold, tin and bismuth), carbon (such as carbon nanotube and graphene), and metal oxide (such as iron oxide and zinc oxide) nanomaterials are summarized. In addition, the role of the nanomaterials in improving the electrochemical performance of the modified disposable electrodes is discussed. Finally, the current challenges and future prospect of the disposable electrode modified with nanomaterials are summarized.
Collapse
Affiliation(s)
- Noorhashimah Mohamad Nor
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Nurul Hidayah Ramli
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Hemalatha Poobalan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Kai Qi Tan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Khairunisak Abdul Razak
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia.,NanoBiotechnology Research & Innovation (NanoBRI), Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| |
Collapse
|
18
|
Miras M, García MS, Martínez V, Ortuño JÁ. Inexpensive ion-selective electrodes for the simultaneous monitoring of potassium and nitrate concentrations in nutrient solutions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3511-3520. [PMID: 34269358 DOI: 10.1039/d1ay00956g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A fast, simple and inexpensive potentiometric method has been developed for the determination of the major ions potassium and nitrate in nutrient solutions, by means of ion-selective electrodes (ISEs) based on plasticized polyvinyl membranes containing an ion-exchanger. Tridodecylmethylammonium chloride (TDMACl) and potassium tetrakis(4-chlorophenyl)borate (KTClPB) were used as ion-exchangers for the nitrate and potassium electrodes, respectively. Electrode membranes built with different plasticizers, bis-[2-ethylhexyl]-sebacate (DOS), tricresyl phosphate (TCP) and 2-nitrophenyloctyl ether (NPOE), were tested, and NPOE was selected. The electrodes were calibrated over both wide and narrow concentration ranges and residual analysis was made. Based on the results of these calibrations, the method of standard addition was developed and found to be suitable for the simultaneous determination of potassium and nitrate in nutrient solutions. A large group of samples taken from different stages of hydroponic crops was analysed. Several approaches recommended for statistical comparisons of the results obtained by potentiometric and by reference methods were tested, obtaining satisfactory results. The potentiometric methodology developed is promising for monitoring the concentration of these essential nutrients in nutrient solutions.
Collapse
Affiliation(s)
- Marina Miras
- Department of Analytical Chemistry, University of Murcia, Faculty of Chemistry, Spain.
| | - María Soledad García
- Department of Analytical Chemistry, University of Murcia, Faculty of Chemistry, Spain.
| | - Vicente Martínez
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Espinardo, Murcia 30100, Spain
| | - Joaquín Ángel Ortuño
- Department of Analytical Chemistry, University of Murcia, Faculty of Chemistry, Spain.
| |
Collapse
|
19
|
Węgrzyn K, Kalisz J, Stelmach E, Maksymiuk K, Michalska A. Emission Intensity Readout of Ion-Selective Electrodes Operating under an Electrochemical Trigger. Anal Chem 2021; 93:10084-10089. [PMID: 34264066 PMCID: PMC8382224 DOI: 10.1021/acs.analchem.1c00857] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report for the first time on in situ transduction of electrochemical responses of ion-selective electrodes, operating under non-zero-current conditions, to emission change signals. The proposed novel-type PVC-based membrane comprises a dispersed redox and emission active ion-to-electron transducer. The electrochemical trigger applied induces a redox process of the transducer, inducing ion exchange between the membrane and the solution, resulting also in change of its emission spectrum. It is shown that electrochemical signals recorded for ion-selective electrodes operating under voltammetric/coulometric conditions correlate with emission intensity changes recorded in the same experiments. Moreover, the proposed optical readout offers extended linear response range compared to electrical signals recorded in voltammetric or coulometric mode.
Collapse
Affiliation(s)
- Katarzyna Węgrzyn
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Justyna Kalisz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Emilia Stelmach
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Krzysztof Maksymiuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Agata Michalska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| |
Collapse
|
20
|
Fayed AS, Ayish NS, El-Zeany BA, Marzouk HM. Novel dalfampridine-selective green potentiometric membrane sensors for in-line dissolution profiling of its extended release tablets. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Electrochemical impedimetric biosensors, featuring the use of Room Temperature Ionic Liquids (RTILs): Special focus on non-faradaic sensing. Biosens Bioelectron 2020; 177:112940. [PMID: 33444897 DOI: 10.1016/j.bios.2020.112940] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/25/2020] [Accepted: 12/24/2020] [Indexed: 01/26/2023]
Abstract
Over the last decade, significant advancements have been made in the field of biosensing technology. With the rising demand for personalized healthcare and health management tools, electrochemical sensors are proving to be reliable solutions; specifically, impedimetric sensors are gaining considerable attention primarily due to their ability to perform label-free sensing. The novel approach of using Room Temperature Ionic Liquids (RTILs) to improve the sensitivity and stability of these detection systems makes long-term continuous sensing feasible towards a wide range of sensing applications, predominantly biosensing. Through this review, we aim to provide an update on current scientific progress in using impedimetric biosensing combined with RTILs for the development of sensitive biosensing platforms. This review also summarizes the latest trends in the field of biosensing and provides an update on the current challenges that remain unsolved.
Collapse
|
22
|
Freeman CJ, Ullah B, Islam MS, Collinson MM. Potentiometric Biosensing of Ascorbic Acid, Uric Acid, and Cysteine in Microliter Volumes Using Miniaturized Nanoporous Gold Electrodes. BIOSENSORS-BASEL 2020; 11:bios11010010. [PMID: 33379137 PMCID: PMC7823660 DOI: 10.3390/bios11010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/13/2020] [Accepted: 12/21/2020] [Indexed: 02/04/2023]
Abstract
Potentiometric redox sensing is a relatively inexpensive and passive approach to evaluate the overall redox state of complex biological and environmental solutions. The ability to make such measurements in ultra-small volumes using high surface area, nanoporous electrodes is of particular importance as such electrodes can improve the rates of electron transfer and reduce the effects of biofouling on the electrochemical signal. This work focuses on the fabrication of miniaturized nanoporous gold (NPG) electrodes with a high surface area and a small footprint for the potentiometric redox sensing of three biologically relevant redox molecules (ascorbic acid, uric acid, and cysteine) in microliter volumes. The NPG electrodes were inexpensively made by attaching a nanoporous gold leaf prepared by dealloying 12K gold in nitric acid to a modified glass capillary (1.5 mm id) and establishing an electrode connection with copper tape. The surface area of the electrodes was ~1.5 cm2, providing a roughness factor of ~16 relative to the geometric area of 0.09 cm2. Scanning electron microscopy confirmed the nanoporous framework. A linear dependence between the open-circuit potential (OCP) and the logarithm of concentration (e.g., Nernstian-like behavior) was obtained for all three redox molecules in 100 μL buffered solutions. As a first step towards understanding a real system, the response associated with changing the concentration of one redox species in the presence of the other two was examined. These results show that at NPG, the redox potential of a solution containing biologically relevant concentrations of ascorbic acid, uric acid, and cysteine is strongly influenced by ascorbic acid. Such information is important for the measurement of redox potentials in complex biological solutions.
Collapse
Affiliation(s)
- Christopher J. Freeman
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA;
| | - Borkat Ullah
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.U.); (M.S.I.)
| | - Md. Shafiul Islam
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.U.); (M.S.I.)
| | - Maryanne M. Collinson
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.U.); (M.S.I.)
- Correspondence:
| |
Collapse
|
23
|
Tuan VN, Khattak AM, Zhu H, Gao W, Wang M. Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient Solution. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20185314. [PMID: 32957499 PMCID: PMC7570851 DOI: 10.3390/s20185314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Ion-selective electrodes (ISEs) have recently become the most attractive tools for the development of efficient hydroponic systems. Nevertheless, some inherent shortcomings such as signal drifts, secondary ion interferences, and effected high ionic strength make them difficult to apply in a hydroponic system. To minimize these deficiencies, we combined the multivariate standard addition (MSAM) sampling technique with the deep kernel learning (DKL) model for a six ISEs array to increase the prediction accuracy and precision of eight ions, including NO3-, NH4+, K+, Ca2+, Na+, Cl-, H2PO4-, and Mg2+. The enhanced data feature based on feature enrichment (FE) of the MSAM technique provided more useful information to DKL for improving the prediction reliability of the available ISE ions and enhanced the detection of unavailable ISE ions (phosphate and magnesium). The results showed that the combined MSAM-feature enrichment (FE)-DKL sensing structure for validating ten real hydroponic samples achieved low root mean square errors (RMSE) of 63.8, 8.3, 29.2, 18.5, 11.8, and 8.8 mg·L-1 with below 8% coefficients of variation (CVs) for predicting nitrate, ammonium, potassium, calcium, sodium, and chloride, respectively. Moreover, the prediction of phosphate and magnesium in the ranges of 5-275 mg·L-1 and 10-80 mg·L-1 had RMSEs of 29.6 and 8.7 mg·L-1 respectively. The results prove that the proposed approach can be applied successfully to improve the accuracy and feasibility of ISEs in a closed hydroponic system.
Collapse
Affiliation(s)
- Vu Ngoc Tuan
- Key Laboratory of Agricultural Informatization Standardization, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; (V.N.T.); (W.G.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China;
- Faculty of Electrical and Electronic Engineering, Nam Dinh University of Technology Education, Nam Dinh 420000, Vietnam
| | - Abdul Mateen Khattak
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China;
- Departemnt of Horticulture, The University of Agriculture, Peshawar 25120, Pakistan
| | - Hui Zhu
- Key Laboratory of Liquor Making Biological Technology and Application, Zigong 643000, China;
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Wanlin Gao
- Key Laboratory of Agricultural Informatization Standardization, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; (V.N.T.); (W.G.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China;
| | - Minjuan Wang
- Key Laboratory of Agricultural Informatization Standardization, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; (V.N.T.); (W.G.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China;
| |
Collapse
|
24
|
Lindner E, Guzinski M, Pendley B, Chaum E. Plasticized PVC Membrane Modified Electrodes: Voltammetry of Highly Hydrophobic Compounds. MEMBRANES 2020; 10:E202. [PMID: 32867276 PMCID: PMC7558981 DOI: 10.3390/membranes10090202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/30/2022]
Abstract
In the last 50 years, plasticized polyvinyl chloride (PVC) membranes have gained unique importance in chemical sensor development. Originally, these membranes separated two solutions in conventional ion-selective electrodes. Later, the same membranes were applied over a variety of supporting electrodes and used in both potentiometric and voltammetric measurements of ions and electrically charged molecules. The focus of this paper is to demonstrate the utility of the plasticized PVC membrane modified working electrode for the voltammetric measurement of highly lipophilic molecules. The plasticized PVC membrane prevents electrode fouling, extends the detection limit of the voltammetric methods to sub-micromolar concentrations, and minimizes interference by electrochemically active hydrophilic analytes.
Collapse
Affiliation(s)
- Ernő Lindner
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA;
| | - Marcin Guzinski
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (E.C.)
| | - Bradford Pendley
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA;
| | - Edward Chaum
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (E.C.)
| |
Collapse
|
25
|
Cranz S, Valster S, Vulders R, Dellimore K. Carbon dioxide as a novel indicator for bacterial growth in milk. J Food Saf 2020. [DOI: 10.1111/jfs.12780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Szymanek K, Charmas R, Piasecki W. A study on the mechanism of Ca 2+ adsorption on TiO 2 and Fe 2O 3 with the usage of calcium ion-selective electrode. CHEMOSPHERE 2020; 242:125162. [PMID: 31896189 DOI: 10.1016/j.chemosphere.2019.125162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/17/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
The paper presents the quantitative characterization of the solid/water interface applying both experimental and theoretical approaches for the system of TiO2 (mixture of anatase and rutile) and Fe2O3 (maghemite) with calcium ions in the pH function. The aim of the study was also to find a bonding mechanism between Ca2+ and metal oxides surface based on the calculations from the surface complexation modeling code (GEOSURF by Sahai and Sverjensky, 1998). In order to obtain adsorption edges, a calcium ion-selective electrode (Ca-ISE) was applied for determination of Ca2+ concentration in the suspensions. The results of both the Ca-ISE and parallel spectrophotometric determination were similar. The adsorption data showed that TiO2 exhibited stronger calcium binding than Fe2O3 at pH > 8. Using 2-pK TLM (triple-layer model) it was demonstrated that mechanism of the calcium adsorption onto the metal oxides surface involved different reactions. In the case of TiO2 it involved formation of >SO-_CaOH+ predominately on the β-plane and at pH > 9 also on the 0-plane. In the case of Fe2O3 one could observe the existence of (>SO-)2_Ca2+ on the β-plane in the whole studied pH range. At pH above 7 the tetranuclear complexes (>SOH)2(>SO-)2_Ca(OH)+ were found, and at pH > 9 also >SO-_CaOH+ could be observed. On the other hand, the analysis of the ζ-potential data suggested the absence of the tetra-species on the maghemite surface. The study indicated that the properly validated calcium ion-selective electrode can be an attractive instrument for monitoring Ca2+ adsorption on metal oxides in the environment.
Collapse
Affiliation(s)
- Karolina Szymanek
- Regional Research and Development Center, Józef Piłsudski University of Physical Education in Warsaw, Akademicka, 2, 21-500, Biala Podlaska, Poland.
| | - Robert Charmas
- Faculty of Computer Science and Food Sciences, Łomża State University of Applied Sciences, Akademicka 14, 18-400, Łomża, Poland
| | - Wojciech Piasecki
- Department of Chemistry and Biochemistry, Józef Piłsudski University of Physical Education in Warsaw, Akademicka 2, 21-500, Biala Podlaska, Poland
| |
Collapse
|
27
|
|
28
|
Shao Y, Ying Y, Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev 2020; 49:4405-4465. [DOI: 10.1039/c9cs00587k] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article presents a comprehensive overview of recent progress in the design and applications of solid-contact ion-selective electrodes (SC-ISEs).
Collapse
Affiliation(s)
- Yuzhou Shao
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
29
|
Merey HA, El-Mosallamy SS, Hassan NY, El-Zeany BA. Green monitoring of bromhexine oxidative degradation kinetics. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Legner C, Kalwa U, Patel V, Chesmore A, Pandey S. Sweat sensing in the smart wearables era: Towards integrative, multifunctional and body-compliant perspiration analysis. SENSORS AND ACTUATORS A-PHYSICAL 2019. [DOI: 10.1016/j.sna.2019.07.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
Urbanowicz M, Pijanowska DG, Jasiński A, Bocheńska M. The computational methods in the development of a novel multianalyte calibration technique for potentiometric integrated sensors systems. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04323-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Bell JG, Mousavi MP, Abd El-Rahman MK, Tan EK, Homer-Vanniasinkam S, Whitesides GM. Paper-based potentiometric sensing of free bilirubin in blood serum. Biosens Bioelectron 2019; 126:115-121. [DOI: 10.1016/j.bios.2018.10.055] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/04/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022]
|
33
|
Siwiec K, Górski Ł. The application of germanium(IV)-porphyrins as fluoride-selective ionophores for polymeric membrane electrodes. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
|
35
|
Hasani B, Zamani A, Moftakhar MK, Mostafavi M, Yaftian MR, Ghorbanloo M. Ionophore Properties of Schiff Base Compounds as Ion Sensing Molecules for Fabricating Cu(II) Ion-Selective Electrodes. JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1134/s1061934818010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Mahanty B, Satpati A, Mohapatra P. Development of a potentiometric sensor for europium(III) based on N, N, N′, N′-tetraoctyldiglycolamide (TODGA) as the ionophore. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.11.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Voltammetric Determination of Diffusion Coefficients in Polymer Membranes: Guidelines to Minimize Errors. ELECTROANAL 2017. [DOI: 10.1002/elan.201700695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Pendley BD, Lindner E. Medical Sensors for the Diagnosis and Management of Disease: The Physician Perspective. ACS Sens 2017; 2:1549-1552. [PMID: 29098856 DOI: 10.1021/acssensors.7b00642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The objective of this paper is to assist developers of medical sensors to better formulate the clinically relevant design criteria and required performance characteristics of their novel sensor based on an understanding of how these devices will be used by physicians. Sensor technologies play a central role in medicine, and the most critical aspect of the sensor's clinical utility relates to these design decisions. Clinically, sensors are used by health care providers to make both diagnostic and management decisions, and the sensors that aid in these decisions are evaluated by certain clinical, as well as analytical, criteria. Failure to adequately address these end-user requirements can lead to the development of sensors without clinical utility.
Collapse
Affiliation(s)
- Bradford D. Pendley
- Department of Biomedical Engineering, 330
Engineering Technology, University of Memphis, Memphis, Tennessee 38152, United States
| | - Erno Lindner
- Department of Biomedical Engineering, 330
Engineering Technology, University of Memphis, Memphis, Tennessee 38152, United States
| |
Collapse
|
39
|
Joon NK, He N, Wagner M, Cárdenas M, Bobacka J, Lisak G. Influence of phosphate buffer and proteins on the potentiometric response of a polymeric membrane-based solid-contact Pb(II) ion-selective electrode. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.126] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Yehia AM, Monir HH. An Umeclidinium membrane sensor; Two-step optimization strategy for improved responses. Talanta 2017; 172:61-67. [DOI: 10.1016/j.talanta.2017.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 11/25/2022]
|
41
|
Byun S, Atkinson A, Coronell O. Method for monitoring chloride levels in steam condensate in thermal power plants using reverse osmosis membranes and an ion-selective electrode. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1344248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Seokjong Byun
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ariel Atkinson
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
42
|
Leoterio DM, Paim APS, Belian MF, Galembeck A, Lavorante AF, Pinto E, Amorim CG, Araújo AN, Montenegro MC. Potentiometric perchlorate determination at nanomolar concentrations in vegetables. Food Chem 2017; 227:166-172. [DOI: 10.1016/j.foodchem.2017.01.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 01/16/2017] [Accepted: 01/16/2017] [Indexed: 10/20/2022]
|
43
|
Weber AW, O’Neil GD, Kounaves SP. Solid Contact Ion-Selective Electrodes for in Situ Measurements at High Pressure. Anal Chem 2017; 89:4803-4807. [DOI: 10.1021/acs.analchem.7b00366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew W. Weber
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02115, United States
| | - Glen D. O’Neil
- Department
of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Samuel P. Kounaves
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02115, United States
| |
Collapse
|
44
|
Sheppard JB, Hambly B, Pendley B, Lindner E. Voltammetric determination of diffusion coefficients in polymer membranes. Analyst 2017; 142:930-937. [DOI: 10.1039/c6an02671k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The diffusion-controlled transport of ions and molecules through polymer membranes utilized in chemical and biosensors is often the key factor determining the response characteristics of these sensors. A simple voltammetric method utilizing a planar electrochemical cell allows the rapid determination of diffusion coefficients in resistive polymer membranes.
Collapse
Affiliation(s)
| | - Bradley Hambly
- Department of Biomedical Engineering
- University of Memphis
- Memphis
- USA
| | - Bradford Pendley
- Department of Biomedical Engineering
- University of Memphis
- Memphis
- USA
| | - Erno Lindner
- Department of Biomedical Engineering
- University of Memphis
- Memphis
- USA
| |
Collapse
|
45
|
Shishkanová TV, Řezanková K, Řezanka P. Influence of surface properties on the deposition of a polyaniline film and detection of tumor markers. CHEMICAL PAPERS 2016. [DOI: 10.1007/s11696-016-0067-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Wardak C, Grabarczyk M. Analytical application of solid contact ion-selective electrodes for determination of copper and nitrate in various food products and drinking water. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2016; 51:519-524. [PMID: 27152951 DOI: 10.1080/03601234.2016.1170545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A simple, fast and cheap method for monitoring copper and nitrate in drinking water and food products using newly developed solid contact ion-selective electrodes is proposed. Determination of copper and nitrate was performed by application of multiple standard additions technique. The reliability of the obtained results was assessed by comparing them using the anodic stripping voltammetry or spectrophotometry for the same samples. In each case, satisfactory agreement of the results was obtained, which confirms the analytical usefulness of the constructed electrodes.
Collapse
Affiliation(s)
- Cecylia Wardak
- a Department of Analytical Chemistry and Instrumental Analysis , Chemical Faculty, Maria Curie-Sklodowska University , Lublin , Poland
| | - Malgorzata Grabarczyk
- a Department of Analytical Chemistry and Instrumental Analysis , Chemical Faculty, Maria Curie-Sklodowska University , Lublin , Poland
| |
Collapse
|
47
|
Affiliation(s)
- Eric Bakker
- Department of Inorganic and
Analytical Chemistry, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
48
|
Gil R, Amorim CG, Crombie L, Kong Thoo Lin P, Araújo A, da Conceição Montenegro M. Study of a Novel Bisnaphthalimidopropyl Polyamine as Electroactive Material for Perchlorate-selective Potentiometric Sensors. ELECTROANAL 2015. [DOI: 10.1002/elan.201500275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Solid-Contact Ion-Selective Electrodes (ISEs) based on Ligand Functionalised Gold Nanoparticles. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.01.143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Multicalibrational procedure for more reliable analyses of ions at low analyte concentrations. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.02.091] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|