1
|
Ahmad M, Verma S, Singla N, Singh Bhadwal S, Kaur S, Singh P, Kumar S. A fluorescent probe with serum albumin as a signal amplifier for real-time sensing of HSO 3- in solution, mitochondria of animal cells and rice roots. J Mater Chem B 2024. [PMID: 39431454 DOI: 10.1039/d4tb01275e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Endogenous release of HSO3- during the enzymatic oxidation of sulfur containing amino acids in mitochondria or insufficiency of sulfite oxidase results in the accumulation of sulfite and thiosulfate in biological fluids affecting mitochondrial homeostasis of brain mitochondria associated with serious clinical symptoms related to neurological disorders. The red fluorescent probe MGQ undergoes self-assembly in water and reveals aggregation induced quenching of fluorescence. MGQ reveals 143-fold and 179-fold increases in fluorescence intensity at 645 nm, respectively, in the presence of HSA and BSA and does not significantly differentiate between two albumins. The detailed studies of MGQ have been performed in the presence of BSA. The presence of other enzymes/proteins and amino acids, viz. pepsin, trypsin, lysozyme, Bromelain, lysine, histidine, hemoglobin, etc., does not affect the fluorescence of MGQ or MGQ-BSA solutions and points to high selectivity towards BSA. The limit of detection for BSA is 10 nM. In PBS buffer, MGQ in the absence of BSA does not react with HSO3- and sluggishly in a 1 : 1 ethanol-water mixture. However, in the confined space of BSA/HSA, MGQ displays a signal amplification, undergoes instantaneous Michael type addition of HSO3- and results in a ratiometric change in fluorescence intensity in ≤1.5 min with the decrease of red fluorescence at 645 nm and emergence of green fluorescence at 515 nm. The LOD for the detection of HSO3- is 4 nM.
Collapse
Affiliation(s)
- Manzoor Ahmad
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India.
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| | - Shagun Verma
- Department of Botanical and Environment Sciences, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Nancy Singla
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Siloni Singh Bhadwal
- Department of Botanical and Environment Sciences, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Satwinderjeet Kaur
- Department of Botanical and Environment Sciences, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Prabhpreet Singh
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Subodh Kumar
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
2
|
Zhu C, Chen C, Weaver DE, Lukesh JC. Esterase-Activated Hydrogen Sulfide Donors with Self-Reporting Fluorescence Properties and Highly Tunable Rates of Delivery. ACS Chem Biol 2024; 19:1910-1917. [PMID: 39162330 DOI: 10.1021/acschembio.4c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Hydrogen sulfide (H2S) has emerged as a significant biomolecule with diverse activities, akin to other gaseous signaling molecules such as nitric oxide (NO) and carbon monoxide (CO). In the present study, we report on the development of esterase-activated donors that track their direct cellular donation of H2S by enlisting a cyclization reaction onto a thioamide that forms a fluorogenic byproduct. This simple donor design provides a noninvasive method for monitoring the biological delivery and activity of H2S, along with access to a library of compounds with highly variable rates of H2S delivery. These studies culminated with the identification of a slow-release, yet highly efficient, donor (ZL-DMA-Ph) that was shown to self-report its gradual and continuous cellular donation of H2S for up to 24 h which, in addition to better mimicking the natural biosynthesis of H2S, provided impressive cytoprotection in a cellular cardiotoxicity model, even at submicromolar concentrations. In total, these findings indicate that the esterase-triggered fluorogenic donors identified in this study will offer new opportunities for exploring the chemical biology and therapeutic potential of exogenous H2S supplementation.
Collapse
Affiliation(s)
- Changlei Zhu
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27101, United States
| | - Chen Chen
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27101, United States
| | - Devin E Weaver
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27101, United States
| | - John C Lukesh
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27101, United States
| |
Collapse
|
3
|
Misra R, Bhuyan HJ, Dutta A, Bhabak KP. Recent Developments On Activatable Turn-On Fluorogenic Donors of Hydrogen Sulfide (H 2S). ChemMedChem 2024; 19:e202400251. [PMID: 38746978 DOI: 10.1002/cmdc.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Indexed: 06/28/2024]
Abstract
Hydrogen sulfide (H2S) is considered the third member of the gasotransmitter family, along with nitric oxide (NO) and carbon monoxide (CO). Besides its role in physiological and pathophysiological conditions, the promising therapeutic potential of this small-molecule makes it advantageous for various pharmaceutical applications. The endogenous production of H2S at a lower concentration is crucial in maintaining redox balance and cellular homeostasis, and the dysregulation leads to various disease states. In the event of H2S deficiency, the exogenous donation of H2S could help maintain the optimal cellular concentration of H2S and cellular homeostasis. Over the last several years, researchers have developed numerous small-molecule non-fluorogenic organosulfur compounds as H2S donors and investigated their pharmacological potentials. However, reports on stimuli-responsive turn-on fluorogenic donors of H2S have appeared recently. Interestingly, the fluorogenic H2S donors offer additional advantages with the non-invasive real-time monitoring of the H2S release utilizing the simultaneous turn-on fluorogenic processes. The review summarizes the recent developments in turn-on fluorogenic donors of H2S and the potential biological applications that have developed over the years.
Collapse
Affiliation(s)
- Roopjyoti Misra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Hirak Jyoti Bhuyan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Amlan Dutta
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
4
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
5
|
M R, Kulkarni RM, Sunil D. Small Molecule Optical Probes for Detection of H 2S in Water Samples: A Review. ACS OMEGA 2024; 9:14672-14691. [PMID: 38585100 PMCID: PMC10993273 DOI: 10.1021/acsomega.3c08573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Hydrogen sulfide (H2S) is closely linked to not only environmental hazards, but also it affects human health due to its toxic nature and the exposure risks associated with several occupational settings. Therefore, detection of this pollutant in water sources has garnered immense importance in the analytical research arena. Several research groups have devoted great efforts to explore the selective as well as sensitive methods to detect H2S concentrations in water. Recent studies describe different strategies for sensing this ubiquitous gas in real-life water samples. Though many of the designed and developed H2S detection approaches based on the use of organic small molecules facilitate qualitative/quantitative detection of the toxic contaminant in water, optical detection has been acknowledged as one of the best, attributed to the simple, highly sensitive, selective, and good repeatability features of the technique. Therefore, this review is an attempt to offer a general perspective of easy-to-use and fast response optical detection techniques for H2S, fluorimetry and colorimetry, over a wide variety of other instrumental platforms. The review affords a concise summary of the various design strategies adopted by various researchers in constructing small organic molecules as H2S sensors and offers insight into their mechanistic pathways. Moreover, it collates the salient aspects of optical detection techniques and highlights the future scope for prospective exploration in this field based on the limitations of the existing H2S probes.
Collapse
Affiliation(s)
- Ranjana M
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| | - Rashmi M. Kulkarni
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| |
Collapse
|
6
|
Hu Q, Zhu C, Hankins RA, Murmello AR, Marrs GS, Lukesh JC. An ROS-Responsive Donor That Self-Reports Its H 2S Delivery by Forming a Benzoxazole-Based Fluorophore. J Am Chem Soc 2023; 145:25486-25494. [PMID: 37950698 DOI: 10.1021/jacs.3c10446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
Hydrogen sulfide (H2S), an endogenous signaling molecule, is known to play a pivotal role in neuroprotection, vasodilation, and hormonal regulation. To further explore the biological effects of H2S, refined donors that facilitate its biological delivery, especially under specific (patho) physiological conditions, are needed. In the present study, we demonstrate that ortho-substituted, aryl boronate esters provide two unique and distinct pathways for H2S release from thioamide-based donors: Lewis acid-facilitated hydrolysis and reactive oxygen species (ROS)-induced oxidation/cyclization. Through a detailed structure-activity relationship study, donors that resist hydrolysis and release H2S solely via the latter mechanism were identified, which have the added benefit of providing a potentially useful heterocycle as the lone byproduct of this novel chemistry. To highlight this, we developed an ROS-activated donor (QH642) that simultaneously synthesizes a benzoxazole-based fluorophore en route to its H2S delivery. A distinct advantage of this design over earlier self-reporting donors is that fluorophore formation is possible only if H2S has been discharged from the donor. This key feature eliminates the potential for false positives and provides a more accurate depiction of reaction progress and donor delivery of H2S, including in complex cellular environments.
Collapse
Affiliation(s)
- Qiwei Hu
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Changlei Zhu
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Rynne A Hankins
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Allison R Murmello
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Glen S Marrs
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - John C Lukesh
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| |
Collapse
|
7
|
Ma Y, Wang X, Wang Z, Zhang G, Chen X, Zhang Y, Luo Y, Gao G, Zhou X. A water-soluble NIR fluorescent probe capable of rapid response and selective detection of hydrogen sulfide in food samples and living cells. Talanta 2023; 256:124303. [PMID: 36724692 DOI: 10.1016/j.talanta.2023.124303] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
DDAO (1,3-Dichloro-7-hydroxy-9,9-dimethyl-2(9H)-acridone) is a near-infrared (NIR) fluorophore that has received increasing attention in recent years, exhibiting near-infrared emission at 658 nm, low pKa (∼5.0), good water solubility and high quantum yield (Φ = 0.39). The reported DDAO-based fluorescent probes can be applied to biological imaging ofenzymes and other substances in vivo with high sensitivity and selectivity. Herein, using -OCN as the detection group, a novel NIR H2S fluorescent probe DDAO-CN based on DDAO was designed and synthesized. In PBS buffer (10 mM, pH 7.4), probe DDAO-CN displayed specific selection, short response time (within 10 s) and low detection limit (4.3 nM) towards to H2S under the catalysis of CTAB. At the same time, the probe is able to sense H2S gas produced by food spoilage via the fluorescent test strip loaded with DDAO-CN. Moreover, since the probe has optimal pH range (6.0-9.0), it has been successfully used for bioimaging H2S in the HeLa cells with low cytotoxicity.
Collapse
Affiliation(s)
- Yanhui Ma
- College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China
| | - Xuzhao Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300401, China; Hebei Key Laboratory of Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin, 300401, China
| | - Zhen Wang
- College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China
| | - Guijiang Zhang
- College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China
| | - Xiyu Chen
- College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China
| | - Yibo Zhang
- College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China
| | - Yunfei Luo
- College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China
| | - Gui Gao
- College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China.
| | - Xin Zhou
- College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China.
| |
Collapse
|
8
|
Cha Y, Gopala L, Lee MH. A bio-friendly biotin-coupled and azide-functionalized naphthalimide for real-time endogenous hydrogen sulfide analysis in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122385. [PMID: 36696861 DOI: 10.1016/j.saa.2023.122385] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Hydrogen sulfide (H2S) is involved in various biological processes. Thereby, abnormal levels of H2S are reported to be related to various human diseases including cancer. Currently, many fluorescent probes are pioneered to detect H2S by taking advantages of naphthalimides' unique internal charge transfer (ICT) property. However, most probes often require a high content of organic solvents or surfactants, and are limited to the analysis of exogenous H2S treated externally in live cell studies, and have difficulties in analyzing endogenous H2S, thus limiting their practical use. In this study, we developed a bio-friendly biotin-coupled and azide-functionalized naphthalimide (1) as a fluorescent probe enabling real-time analysis of H2S in living system. Probe was able to provide a fluorescence at 545 nm via H2S-mediated azide reduction selectively without interference by biologically abundant constituents and pH effects. In a biological study using A549 cells, probe readily penetrated living cells without cytotoxicity, and unreacted probes showed almost no fluorescence, enabling real-time detection of H2S in living cells without requiring separate washing process. More importantly, under stimulation with various H2S inducers and inhibitors, probe was able to provide an effective fluorescence response against fluctuations in endogenous H2S, a key requirement for H2S studies. Probe 1 can be applied as a useful chemical tool and enables the analysis of H2S and the study of H2S-related cell functions in a variety of environments.
Collapse
Affiliation(s)
- Yujin Cha
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea
| | - Lavanya Gopala
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea
| | - Min Hee Lee
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea.
| |
Collapse
|
9
|
Wu J, Chan C, Li J, Shi Y, Xue Z, Zhao L. A BODIPY-based fluorescent chemosensor with 2, 6-substitution for visual and highly selective detection of S 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122741. [PMID: 37080049 DOI: 10.1016/j.saa.2023.122741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
BODIPY derivatives have often been employed as fluorescent sensors to probe toxic ions in environment and living systems, such as sulfide ion (S2-). Whilst many structure modifications have been exploited on groups at the 3, 5, 8-positions, there are quite few examples on tailoring the 2,6-substituents for chemosensor investigations. Herein, we design and synthesize a 2,6-substituted BODIPY molecule, LM-BDP, to use as a fluorescent probe for detecting S2- in aqueous media. The electronic and crystal structures of the probe are studied by density functional theory (DFT) calculations and single-crystal X-ray diffraction analysis. Spectroscopy investigations are performed in a variety of conditions, showing that LM-BDP exhibits a noticeable color change from pink to dark red and a fluorescence shift from yellow to pink channel with decreased intensity upon addition of S2-. The selectivity and sensitivity measurements show that LM-BDP can only response to S2- with a detection limit of 0.29 μM in less than 100 s. The remarkable contrast in fluorescence images in test-stripe and RAW 264.7 cell experiments indicates that the probe is a proper candidate for the application in detecting exogenous S2-.
Collapse
Affiliation(s)
- Jianwei Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chenming Chan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jia Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yaqiao Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
10
|
Bryant DL, Kafle A, Handy ST, Farone AL, Miller JM. Aurone-derived 1,2,3-triazoles as potential fluorescence molecules in vitro. RSC Adv 2022; 12:22639-22649. [PMID: 36105995 PMCID: PMC9372874 DOI: 10.1039/d2ra02578g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Aurones are a class of naturally occurring compounds with fluorescent derivatives. Here we show a newly synthesized derivative of aurones containing a 1,2,3-triazole which is fluorescent in aqueous environments and has potential to be used as a probe in vitro.
Collapse
Affiliation(s)
- Daniel L. Bryant
- Department of Biology, Middle Tennessee State University, 1301 E Main St., Murfreesboro 37132, Tennessee, USA
- Department of Chemistry, Middle Tennessee State University, 1301 E Main St., Murfreesboro 37132, Tennessee, USA
| | - Arjun Kafle
- Department of Chemistry, Middle Tennessee State University, 1301 E Main St., Murfreesboro 37132, Tennessee, USA
| | - Scott T. Handy
- Department of Chemistry, Middle Tennessee State University, 1301 E Main St., Murfreesboro 37132, Tennessee, USA
| | - Anthony L. Farone
- Department of Biology, Middle Tennessee State University, 1301 E Main St., Murfreesboro 37132, Tennessee, USA
| | - Justin M. Miller
- Department of Chemistry, Middle Tennessee State University, 1301 E Main St., Murfreesboro 37132, Tennessee, USA
| |
Collapse
|
11
|
Liu X, Qi Y, Pu S, Wang Y, Gao Z. Sensing mechanism of a new fluorescent probe for hydrogen sulfide: photoinduced electron transfer and invalidity of excited-state intramolecular proton transfer. RSC Adv 2021; 11:22214-22220. [PMID: 35480821 PMCID: PMC9034181 DOI: 10.1039/d1ra02511b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022] Open
Abstract
It is of great significance for biological research to develop efficient detection methods of hydrogen sulfide (H2S). When DFAN reacts with H2S, 2,4-dinitrophenyl ether group acting as an electron acceptor generates a hydroxyl-substituted 2,4-dinitrophenyl ether group, resulting in the disappearance of photoinduced electron transfer (PET), and the new formed DFAH can be observed, while being accompanied by a significant fluorescence. In the present study, the PET sensing mechanism of probe DFAN and the excited state intramolecular proton transfer (ESIPT) process of DFAH have been explored in detail based on the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. Our theoretical results show that the fluorescence quenching of DFAN is caused by the PET mechanism, and the result of ESIPT mechanism is not due to the large Stokes shift fluorescence emission of DFAH. We also optimized the geometric structure of the transition state of DFAH. The frontier molecular orbitals and potential barrier show that the ESIPT process does not easy occur easily for DFAH. The enol structure of DFAH is more stable than that of the keto structure. The absence of the PET process resulted in the enol structure emitting strong fluorescence, which is consistent with the single fluorescence in the experiment. Above all, our calculations are sufficient to verify the sensing mechanism of H2S using DFAN.
Collapse
Affiliation(s)
- Xiumin Liu
- School of Biological Engineering, Dalian Polytechnic University Dalian 116034 P. R. China +86-0411-86323646
| | - Yutai Qi
- Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Shenhan Pu
- HeZe Homemaking Professional College Heze 274300 P. R. China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University Dalian 116034 P. R. China +86-0411-86323646
| | - Ziqing Gao
- School of Biological Engineering, Dalian Polytechnic University Dalian 116034 P. R. China +86-0411-86323646
| |
Collapse
|
12
|
Zhang C, Zhang Y, Wang H, Zhao H, Shang M, Zhang L, Li X, Wang Y. Synthesis and Application of Triazolothiadiazole-Coumarin Based Ratiometric Fluorescent Probes for Highly Selective Detection of H 2S. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202012024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Kafle A, Bhattarai S, Miller JM, Handy ST. Hydrogen sulfide sensing using an aurone-based fluorescent probe. RSC Adv 2020; 10:45180-45188. [PMID: 35516280 PMCID: PMC9058623 DOI: 10.1039/d0ra08802a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
Hydrogen sulfide detection and sensing is an area of interest from both an environmental and a biological perspective. While many methods are currently available, the most sensitive and biologically applicable ones are fluorescence based. In general, these fluorescent probes are based upon large, high-molecular weight, well-characterized fluorescent scaffolds that are synthetically demanding to prepare and difficult to tune and modify. In this study, we have reported a new reduction-based, rationally designed and synthesized turn-on fluorescent probe (Z)-2-(4′-azidobenzylidene)-5-fluorobenzofuran-3(2H)-one (6g) utilizing a low molecular weight aurone fluorophore. During these studies, the modular nature of the synthesis was used to quickly overcome problems with solubility, overlap of excitation of the probe and reduced product, and rate of reaction, resulting in a final compound that is efficient and sensitive for the detection of hydrogen sulfide. The limitation of slow reaction and the reduced fluorescence in a biologically relevent medium was solved by employing cationic surfactant cetyltrimethyl ammonium bromide (CTAB). The probe features a high fluorescence enhancement, fast response (10–30 min), and good sensitivity (1 μm) and selectivity for hydrogen sulfide. Hydrogen sulfide detection and sensing is an area of interest from both an environmental and a biological perspective.![]()
Collapse
Affiliation(s)
- Arjun Kafle
- Molecular Bioscience Program, Middle Tennessee State University Murfreesboro TN 37132 USA
| | - Shrijana Bhattarai
- Molecular Bioscience Program, Middle Tennessee State University Murfreesboro TN 37132 USA
| | - Justin M Miller
- Molecular Bioscience Program, Middle Tennessee State University Murfreesboro TN 37132 USA .,Department of Chemistry, Middle Tennessee State University Murfreesboro TN 37132 USA
| | - Scott T Handy
- Molecular Bioscience Program, Middle Tennessee State University Murfreesboro TN 37132 USA .,Department of Chemistry, Middle Tennessee State University Murfreesboro TN 37132 USA
| |
Collapse
|
14
|
Saju A, Mondal A, Chattopadhyay T, Kolliyedath G, Kundu S. H2S Generation from CS2 Hydrolysis at a Dinuclear Zinc(II) Site. Inorg Chem 2020; 59:16154-16159. [DOI: 10.1021/acs.inorgchem.0c01194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ananya Saju
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram 695551, India
| | - Aditesh Mondal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram 695551, India
| | - Taraknath Chattopadhyay
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram 695551, India
| | - Gayathri Kolliyedath
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram 695551, India
| | - Subrata Kundu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram 695551, India
| |
Collapse
|
15
|
Wang R, Gu X, Li Q, Gao J, Shi B, Xu G, Zhu T, Tian H, Zhao C. Aggregation Enhanced Responsiveness of Rationally Designed Probes to Hydrogen Sulfide for Targeted Cancer Imaging. J Am Chem Soc 2020; 142:15084-15090. [PMID: 32786798 DOI: 10.1021/jacs.0c06533] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activatable molecular probes hold great promise for targeted cancer imaging. However, the hydrophobic nature of most conventional probes makes them generate precipitated agglomerate in aqueous media, thereby annihilating their responsiveness to analytes and precluding their practical applications for bioimaging. This study reports the development of two small molecular probes with unprecedented aggregation enhanced responsiveness to H2S for in vivo imaging of H2S-rich cancers. The subtle modulation of the equilibrium between hydrophilicity and lipophilicity by N-methylpyridinium endows these designed probes with the capability of spontaneously self-assembling into nanoprobes under physiological conditions. Such probes in an aggregated state, rather than a molecular dissolved state, show NIR fluorescence light up and photoacoustic signals turn on upon H2S specific activation, allowing in vivo visualization and differentiation of cancers based on differences in H2S content. Thus, our study presents an effective design strategy which should pave the way to molecular design of optimized probes for precision cancer diagnostics.
Collapse
Affiliation(s)
- Rongchen Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Qizhao Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jie Gao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Ben Shi
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ge Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Tianli Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
16
|
Lan LA, Wu SY, Meng XG, Jiang JJ, Zheng MY, Fan GR. A simple liquid chromatography tandem mass spectrometric method for fast detection of hydrogen sulfide based on thiolysis of 7-nitro-2, 1, 3-benzoxadiazole ether. J Chromatogr A 2020; 1625:461243. [DOI: 10.1016/j.chroma.2020.461243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023]
|
17
|
Liu Z, Wang Q, Wang H, Lan Y, Dong S. A quaternary ammonium modified fluorescent probe for hydrogen sulfide detection in living cells. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Uchiyama S, Yano K, Fukatsu E, de Silva AP. Precise Proton Mapping near Ionic Micellar Membranes with Fluorescent Photoinduced‐Electron‐Transfer Sensors. Chemistry 2019; 25:8522-8527. [DOI: 10.1002/chem.201806270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/01/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Seiichi Uchiyama
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| | - Kayo Yano
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| | - Eiko Fukatsu
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| | - A. Prasanna de Silva
- School of Chemistry and Chemical EngineeringQueen's University Belfast BT9 5AG Northern Ireland
| |
Collapse
|
19
|
Jin Y, Liu R, Zhan Z, Lv Y. Fast response near-infrared fluorescent probe for hydrogen sulfide in natural waters. Talanta 2019; 202:159-164. [PMID: 31171164 DOI: 10.1016/j.talanta.2019.04.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 11/16/2022]
Abstract
Rapid and sensitive detection of hydrogen sulfide (H2S) is of great importance for the environmental monitoring. Near-infrared fluorescent probes are recently developed for the sensitive H2S detection thanks to their low background interference, while often hampered by relatively long response time (around 30 min). In this work, we reported a fast response (within 5 min), highly sensitive near-infrared (NIR) fluorescent probe (DCM-OCN) for H2S. The rapid nucleophilic reaction between cyanate moiety and H2S endowed fast response of the NIR probe. The influence of experimental parameters (including CTAB concentration, reaction time, pH value etc.), interference study, and possible mechanism were investigated in detail. The fluorescence increment was linear with H2S concentration in 1-10 μM with a detection limit of 0.28 μM (3σ). The probe was successfully applied to environmental water samples including river water, tap water, lake water, mineral water and artificial wastewater.
Collapse
Affiliation(s)
- Yonglei Jin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zixuan Zhan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China; Analytical & Testing Center, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
20
|
Jiang G, Li M, Wen Y, Zeng W, Zhao Q, Chen C, Yuan H, Liu C, Liu C. Visualization of Sulfane Sulfur in Plants with a Near-Infrared Fluorescent Probe. ACS Sens 2019; 4:434-440. [PMID: 30680991 DOI: 10.1021/acssensors.8b01423] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sulfane sulfur species are an important type of reactive sulfur species. These compounds have unique reactivity to attach reversibly to other sulfur atoms and exhibit regulatory effects in diverse biological systems. Recent studies have suggested that sulfane sulfurs are involved in signal transduction processes of hydrogen sulfide (H2S). The development of probes for selective, rapid, and sensitive detection of sulfane sulfur is of great significance for studying their physiological and pathological roles in biological systems, especially in plant systems for which physiological research has lagged behind. However, so far there is still a lack of sufficient chemical tools for directly tracking and measuring sulfane sulfur in biological systems, and in particular, the detection of sulfane sulfur in living plant tissues is still challenging. Herein, we report a near-infrared fluorescent probe, SSNIP, for the selective imaging of sulfane sulfur. SSNIP is capable of detecting sulfane sulfur at physiological concentrations in both aqueous buffer and living human cells. Then, with SSNIP, we demonstrate the fluorescent monitoring of endogenous sulfane sulfur in plant tissues such as Arabidopsis thaliana roots for the first time. Furthermore, the application of SSNIP in evaluating the level of sulfane sulfur in Arabidopsis thaliana roots at different growth stages is performed. The results show that the level of sulfane sulfur in Arabidopsis thaliana roots correlates well with their growth stages, which suggests that sulfane sulfurs might act as actual signaling molecules to promote plant growth and root elongation. In addition, it reveals potential applications for the biological and pathological studies of sulfane sulfur, especially in plant physiology.
Collapse
Affiliation(s)
- Gangwei Jiang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, No. 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Man Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, No. 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Yueyan Wen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, No. 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Weili Zeng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, No. 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Qing Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Hong Yuan
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, No. 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Chunrong Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, No. 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Changlin Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, No. 152 Luoyu Road, Wuhan 430079, P. R. China
| |
Collapse
|
21
|
Fan J, Ding L, Fang Y. Surfactant Aggregates Encapsulating and Modulating: An Effective Way to Generate Selective and Discriminative Fluorescent Sensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:326-341. [PMID: 30063363 DOI: 10.1021/acs.langmuir.8b02111] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The heterogeneous structure and dynamic balancing nature of surfactant aggregates make them attractive in developing fluorescent sensors. They can provide a number of advantages, e.g., enhanced fluorescence stability and quantum yield, detection capability in aqueous solutions, and easy operation. Thus, various strategies have been used to construct surfactant aggregate-based fluorescent sensors. Surfactant aggregates play various roles in different strategies and realize multiple sensing behaviors. Many new functions have been discovered for surfactant aggregates in constructing fluorescent sensors. In this feature article, we briefly summarize the development of surfactant aggregate-based fluorescent sensors and their applications in three different types of sensing: selective sensing, multiple analyte sensing, and cross-reactive sensing. For each type of sensing, the design strategies and the roles of surfactant aggregates are particularly introduced. An understanding of these aspects will help to expand the applications of surfactant assemblies in the sensing field.
Collapse
Affiliation(s)
- Junmei Fan
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| |
Collapse
|
22
|
Yin G, Gan Y, Yu T, Niu T, Yin P, Chen H, Zhang Y, Li H, Yao S. A dual-emission and mitochondria-targeted fluorescent probe for rapid detection of SO2 derivatives and its imaging in living cells. Talanta 2019; 191:428-434. [DOI: 10.1016/j.talanta.2018.08.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/27/2018] [Accepted: 08/24/2018] [Indexed: 12/23/2022]
|
23
|
Design, synthesis, crystal structure and cytotoxicity studies of colorimetric fluorescent “OFF-ON” probes for rapid detection of hydrogen sulfide based on Cu(II) complex. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2018.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Gujar V, Sangale V, Ottoor D. A Selective Turn off Fluorescence Sensor Based on Propranolol-SDS Assemblies for Fe 3+ Detection. J Fluoresc 2018; 29:91-100. [PMID: 30361859 DOI: 10.1007/s10895-018-2313-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/15/2018] [Indexed: 11/24/2022]
Abstract
A fluorophore modulation with sodium dodecyl sulphate (SDS) assemblies for the selective and sensitive sensing of Fe3+ ions in aqueous solution is illustrated in this work. Emission spectral characteristics of fluorescent molecule, propranolol (PPH) was intact in presence of metal ions. While on modulation with SDS assemblies, PPH was transformed into a tuneable sensor for Fe3+ ions. This sensor ensemble was not only highly sensitive towards Fe3+ ions in aqueous solution with detection limits lower than 3 μM but also possess high discriminating efficiency in presence of other metal ions like Cu2+, Pb2+, Zn2+, Ni2+, Fe2+, Cd2+, Co2+, Al3+, Mg2+, Hg2+ and Mn2+. The electrostatic interaction of the anionic group of surfactants with the metal cations significantly increases the communication between metal ions and PPH moiety which results in the quenching of PPH fluorescence. We have employed fluorescence steady state and lifetime studies to understand the metal sensing behaviour of the PPH-SDS sensor system. Principal component analysis (PCA) was used to evaluate the discriminative ability of the developed sensor system towards Fe3+ ions.
Collapse
Affiliation(s)
- Varsha Gujar
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind Road, Pune, 411007, India
| | - Vijay Sangale
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind Road, Pune, 411007, India
| | - Divya Ottoor
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind Road, Pune, 411007, India.
| |
Collapse
|
25
|
Qiao Z, Chen Z, Zhang S, Cui Z, Xu Z, Zhang W, Qian J. Naphthalimide-based fluorescent nanoprobes for the detection of saccharides. NEW J CHEM 2018. [DOI: 10.1039/c8nj03053g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent nano probes with different sizes were synthesized for saccharides. The particle size is a major factor that affects the performance.
Collapse
Affiliation(s)
- Zichun Qiao
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhaoyang Chen
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Shuo Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zepeng Cui
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhuoran Xu
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Junhong Qian
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
26
|
Highly selective fluorescent probe based on new coordinated cationic polyvinylpyrrolidone for hydrogen sulfide sensing in aqueous solution. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Gujar VB, Ottoor D. Medium dependent dual turn on/turn off fluorescence sensing for Cu 2+ ions using AMI/SDS assemblies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:666-674. [PMID: 27776319 DOI: 10.1016/j.saa.2016.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 09/30/2016] [Accepted: 10/16/2016] [Indexed: 06/06/2023]
Abstract
Behavior of Amiloride (AMI) as a metal ion sensor in anionic surfactant assemblies of varying concentrations at different pH is depicted in this work. From a non-sensor fluorophore, AMI has been transformed in to a tunable fluorosensor for Cu2+ ions in various SDS concentrations. At premicellar concentration of SDS, ion-pair complex is expected to be formed between AMI and SDS due to electrostatic interactions between them. However at CMC concentrations of SDS, fluorescence intensity of AMI is greatly enhanced with red shift in emission, due to the incorporation of AMI molecule in the hydrophobic micellar interface. The behavior of metal sensing by AMI-SDS assemblies gives rise to several interesting observations. Micellation of SDS has been greatly enhanced by increasing copper ion concentrations, as these counter ions screens the charge on monomers of SDS which lead to the aggregation at premicellar concentrations only. Concentrations and pH dependent discrete trends of interactions between SDS-AMI and SDS-Cu2+ ions, have given tunable fluorescence responses (fluorescence turn on/turn off) of AMI for added Cu2+ ions. The electrostatic interaction between the metal cations and the anionic surfactants is the driving force for bringing the metal ions near to the vicinity of micelle where AMI resides. Thus, a comprehensive understanding of the mechanism related to the 'turn on-turn off' fluorescence response of AMI with respect to pH and SDS concentration for effective Cu2+ ion sensing is illustrated in this work.
Collapse
Affiliation(s)
- Varsha B Gujar
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, India
| | - Divya Ottoor
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, India.
| |
Collapse
|
28
|
Wu Z, Liang D, Tang X. Visualizing Hydrogen Sulfide in Mitochondria and Lysosome of Living Cells and in Tumors of Living Mice with Positively Charged Fluorescent Chemosensors. Anal Chem 2016; 88:9213-8. [DOI: 10.1021/acs.analchem.6b02459] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zhisheng Wu
- State Key Laboratory of Natural
and Biomimetic Drugs, the School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Duanwei Liang
- State Key Laboratory of Natural
and Biomimetic Drugs, the School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinjing Tang
- State Key Laboratory of Natural
and Biomimetic Drugs, the School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
29
|
Surfactant-modulated discriminative sensing of HNO and H2S with a Cu2+-complex-based fluorescent probe. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.07.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
|
31
|
Karakuş E, Üçüncü M, Emrullahoğlu M. Electrophilic Cyanate As a Recognition Motif for Reactive Sulfur Species: Selective Fluorescence Detection of H2S. Anal Chem 2015; 88:1039-43. [PMID: 26626400 DOI: 10.1021/acs.analchem.5b04163] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An ESIPT-based fluorescent dye, 3-hydroxyflavone, is chemically masked with an electrophilic cyanate motif in order to construct a fluorescent probe for cellular sulfur species. This novel probe structure, displays an extremely fast, highly sensitive and selective "turn-on" type fluorescent response toward H2S. We have also documented its utility for imaging of H2S in the living cells.
Collapse
Affiliation(s)
- Erman Karakuş
- Department of Chemistry, Faculty of Science, İzmir Institute of Technology, Urla , 35430, İzmir, Turkey
| | - Muhammed Üçüncü
- Department of Chemistry, Faculty of Science, İzmir Institute of Technology, Urla , 35430, İzmir, Turkey
| | - Mustafa Emrullahoğlu
- Department of Chemistry, Faculty of Science, İzmir Institute of Technology, Urla , 35430, İzmir, Turkey
| |
Collapse
|
32
|
Uchiyama S, Fukatsu E, McClean GD, de Silva AP. Measurement of Local Sodium Ion Levels near Micelle Surfaces with Fluorescent Photoinduced-Electron-Transfer Sensors. Angew Chem Int Ed Engl 2015; 55:768-71. [DOI: 10.1002/anie.201509096] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Indexed: 11/09/2022]
|
33
|
Uchiyama S, Fukatsu E, McClean GD, de Silva AP. Measurement of Local Sodium Ion Levels near Micelle Surfaces with Fluorescent Photoinduced-Electron-Transfer Sensors. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Fan J, Ding L, Bo Y, Fang Y. Fluorescent Ensemble Based on Bispyrene Fluorophore and Surfactant Assemblies: Sensing and Discriminating Proteins in Aqueous Solution. ACS APPLIED MATERIALS & INTERFACES 2015; 7:22487-22496. [PMID: 26414441 DOI: 10.1021/acsami.5b06604] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A particular bispyrene fluorophore (1) with two pyrene moieties covalently linked via a hydrophilic spacer was synthesized. Fluorescence measurements reveal that the fluorescence emission of 1 could be well modulated by a cationic surfactant, dodecyltrimethylammonium bromide (DTAB). Protein sensing studies illustrate that the selected ensemble based on 1/DTAB assemblies exhibits ratiometric responses to nonmetalloproteins and turn-off responses to metalloproteins, which can be used to differentiate the two types of proteins. Moreover, negatively charged nonmetalloproteins can be discriminated from the positively charged ones according to the difference in ratiometric responses. Fluorescence sensing studies with control bispyrenes indicate that the polarity of the spacer connecting two pyrene moieties plays an important role in locating bispyrene fluorophore in DTAB assemblies, which further influences its sensing behaviors to noncovalent interacting proteins. This study sheds light on the influence of the probe structure on the sensing performance of a fluorescent ensemble based on probe and surfactant assemblies.
Collapse
Affiliation(s)
- Junmei Fan
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, P. R. China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, P. R. China
| | - Yu Bo
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, P. R. China
| |
Collapse
|
35
|
Guo Z, Chen G, Zeng G, Li Z, Chen A, Wang J, Jiang L. Fluorescence chemosensors for hydrogen sulfide detection in biological systems. Analyst 2015; 140:1772-86. [PMID: 25529122 DOI: 10.1039/c4an01909a] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A comprehensive review of the development of H2S fluorescence-sensing strategies, including sensors based on chemical reactions and fluorescence resonance energy transfer (FRET), is presented. The advantages and disadvantages of fluorescence-sensing strategies are compared with those of traditional methods. Fluorescence chemosensors, especially those used in FRET sensing, are highly promising because of their low cost, technical simplicity, and their use in real-time sulfide imaging in living cells. Potential applications based on sulfate reduction to H2S, the relationship between sulfate-reducing bacteria activity and H2S yield, and real-time detection of sulfate-reducing bacteria activity using fluorescence sensors are described. The current challenges, such as low sensitivity and poor stability, are discussed.
Collapse
Affiliation(s)
- Zhi Guo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Micelle-assisted signaling of peracetic acid by the oxidation of pyreneboronic acid via monomer-excimer switching. Talanta 2015; 141:111-5. [PMID: 25966389 DOI: 10.1016/j.talanta.2015.03.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 11/23/2022]
Abstract
A simple fluorescent probe for the industrial oxidant peracetic acid (PAA) was investigated. PAA-assisted oxidative conversion of pyrene-1-boronic acid into 1-hydroxypyrene was used as the signaling tool. Pyreneboronic acid was found to display selective signaling behavior, being more responsive to PAA than to other commonly used practical oxidants such as H2O2 and HOCl. The changes in pyrene monomer fluorescence to excimer were used in the quantitative analysis of PAA. When using the surfactant hexadecyltrimethylammonium bromide as a micellar additive, the signaling of PAA was markedly enhanced. Selective fluorescence signaling of PAA by pyrene-1-boronic acid with a detection limit of 1.5×10(-6)M in aqueous environment was successfully achieved.
Collapse
|
37
|
He Y, Guo Z, Jin P, Jiao C, Tian H, Zhu W. Optimizing the Chemical Recognition Process of a Fluorescent Chemosensor for α-Ketoglutarate. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b00263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ye He
- Key Laboratory for Advanced
Materials and Institute of Fine Chemicals, Shanghai Key Laboratory
of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Zhiqian Guo
- Key Laboratory for Advanced
Materials and Institute of Fine Chemicals, Shanghai Key Laboratory
of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Pengwei Jin
- Key Laboratory for Advanced
Materials and Institute of Fine Chemicals, Shanghai Key Laboratory
of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Changhong Jiao
- Key Laboratory for Advanced
Materials and Institute of Fine Chemicals, Shanghai Key Laboratory
of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - He Tian
- Key Laboratory for Advanced
Materials and Institute of Fine Chemicals, Shanghai Key Laboratory
of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Weihong Zhu
- Key Laboratory for Advanced
Materials and Institute of Fine Chemicals, Shanghai Key Laboratory
of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
38
|
Song L, Tian H, Pei X, Zhang Z, Zhang W, Qian J. Colorimetric and fluorescent detection of GSH with the assistance of CTAB micelles. RSC Adv 2015. [DOI: 10.1039/c5ra07777j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two fluorescent probes STP1–2 for GSH and mercapto-containing proteins were designed. Both probes have potential application in fluorescence imaging of GSH within living cells.
Collapse
Affiliation(s)
- Lun Song
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Haiyu Tian
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Xiaoliang Pei
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Ziyou Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Junhong Qian
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
39
|
Liu S, Bai H, Sun Q, Zhang W, Qian J. Naphthalimide-based fluorescent photoinduced electron transfer sensors for saccharides. RSC Adv 2015. [DOI: 10.1039/c4ra13414a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A fluorescent probe based on PET mechanism exhibited significant fluorescence enhancement toward saccharides and was used to detect fructose in beverages with good recovery.
Collapse
Affiliation(s)
- Shanshan Liu
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Hongyan Bai
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Qian Sun
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Junhong Qian
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
40
|
Dai X, Zhang T, Li Y, Yan T, Wang PC, Miao JY, Zhao BX. An effective fluorescent probe to detect glutathione from other sulfhydryl compounds in aqueous solution and its living cell imaging. RSC Adv 2014. [DOI: 10.1039/c4ra09712b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
41
|
|
42
|
Olson KR, DeLeon ER, Liu F. Controversies and conundrums in hydrogen sulfide biology. Nitric Oxide 2014; 41:11-26. [PMID: 24928561 DOI: 10.1016/j.niox.2014.05.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 01/10/2023]
Abstract
Hydrogen sulfide (H2S) signaling has been implicated in physiological processes in practically all organ systems studied to date. At times the excitement of this new field has outpaced the technical expertise or practical knowledge with which to accurately assess these advancements. Recently, the myriad of proposed H2S actions has spawned interest in using indicators of H2S metabolism, especially plasma H2S concentrations, as a means of identifying a variety of pathophysiological conditions or to predict clinical outcomes. While this is a noteworthy endeavor, there are a number of contraindications to this practice at this time. First, there is little consensus regarding normal, i.e., "physiological" concentrations of H2S in either plasma or tissue. In fact, it has been shown that the methods most often employed for these measurements are associated with substantial artifact. Second, interactions, or presumed lack thereof, of H2S with other biomolecules (e.g., O2, H2O2, pH, etc.) or analytical reagents (e.g., reducing reagents, N-ethylmaleimide, phenylarsine, etc.) are often assumed but not evaluated. Third, the experimental design and/or statistical analyses may not be sufficient to justify using H2S concentration in tissue or blood as a predictive biomarker of pathophysiology. In this study, we first briefly review the problems associated with plasma and tissue H2S measurements and the associated errors and we provide some simple methods to evaluate whether the data obtained is physiologically relevant. Second we provide a brief analysis of H2S interactions with the above biomolecules. Third, we provide a statistical tool with which to determine the clinical applicability of H2S measurements. It is hoped that these points will provide a rational background for future work.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine - South Bend, South Bend, IN 46617, United States.
| | - Eric R DeLeon
- Indiana University School of Medicine - South Bend, South Bend, IN 46617, United States; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Fang Liu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|
43
|
Jin P, Jiao C, Guo Z, He Y, Zhu S, Tian H, Zhu W. Rational design of a turn-on fluorescent sensor for α-ketoglutaric acid in a microfluidic chip. Chem Sci 2014. [DOI: 10.1039/c4sc01378f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A rational design of turn-on fluorescent chemosensors for monitoring α-ketoglutaric acid has been developed with a microfluidic chip, indicative of a potential platform for high-throughput screening and monitoring of kinetics, especially in biological fields.
Collapse
Affiliation(s)
- Pengwei Jin
- Shanghai Key Laboratory of Functional Materials Chemistry
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237, P. R. China
| | - Changhong Jiao
- Shanghai Key Laboratory of Functional Materials Chemistry
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237, P. R. China
| | - Zhiqian Guo
- Shanghai Key Laboratory of Functional Materials Chemistry
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237, P. R. China
| | - Ye He
- Shanghai Key Laboratory of Functional Materials Chemistry
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237, P. R. China
| | - Shiqin Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237, P. R. China
| | - He Tian
- Shanghai Key Laboratory of Functional Materials Chemistry
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237, P. R. China
| | - Weihong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237, P. R. China
| |
Collapse
|
44
|
Fu Y, Feng QC, Jiang XJ, Xu H, Li M, Zang SQ. New fluorescent sensor for Cu2+ and S2− in 100% aqueous solution based on displacement approach. Dalton Trans 2014; 43:5815-22. [DOI: 10.1039/c3dt53281j] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
45
|
Tian H, Qian J, Sun Q, Jiang C, Zhang R, Zhang W. A coumarin-based fluorescent probe for differential identification of sulfide and sulfite in CTAB micelle solution. Analyst 2014; 139:3373-7. [DOI: 10.1039/c4an00478g] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
46
|
Cai Y, Li L, Wang Z, Sun JZ, Qin A, Tang BZ. A sensitivity tuneable tetraphenylethene-based fluorescent probe for directly indicating the concentration of hydrogen sulfide. Chem Commun (Camb) 2014; 50:8892-5. [DOI: 10.1039/c4cc02844a] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A selective tetraphenylethene-based fluorescent H2S probe was designed and synthesized, which exhibits tuneable sensitivity and could directly indicate the concentration of H2S.
Collapse
Affiliation(s)
- Yunbo Cai
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027, China
| | - Lingzhi Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027, China
| | - Zongtan Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027, China
| | - Anjun Qin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027, China
- Guangdong Innovative Research Team
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027, China
- Guangdong Innovative Research Team
| |
Collapse
|
47
|
Zhang J, Guo W. A new fluorescent probe for gasotransmitter H2S: high sensitivity, excellent selectivity, and a significant fluorescence off–on response. Chem Commun (Camb) 2014; 50:4214-7. [DOI: 10.1039/c3cc49605h] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorescentoff–onprobe for H2S was exploited by coupling the azide-based strategy with the excited-state intramolecular proton transfer (ESIPT) sensing mechanism.
Collapse
Affiliation(s)
- Jingyu Zhang
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006, China
| | - Wei Guo
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006, China
| |
Collapse
|
48
|
Zheng F, Wen M, Zeng F, Wu S. A water-soluble, low-cytotoxic and sensitive fluorescent probe based on poly(ethylene glycol) for detecting sulfide anion in aqueous media and imaging inside live cells. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.08.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Tian H, Qian J, Sun Q, Bai H, Zhang W. Colorimetric and ratiometric fluorescent detection of sulfite in water via cationic surfactant-promoted addition of sulfite to α,β-unsaturated ketone. Anal Chim Acta 2013; 788:165-70. [DOI: 10.1016/j.aca.2013.06.020] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/06/2013] [Accepted: 06/14/2013] [Indexed: 10/26/2022]
|
50
|
Pluth MD, Bailey TS, Hammers MD, Montoya LA. Chemical Tools for Studying Biological Hydrogen Sulfide. ACS SYMPOSIUM SERIES 2013. [DOI: 10.1021/bk-2013-1152.ch002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Michael D. Pluth
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253
| | - T. Spencer Bailey
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253
| | - Matthew D. Hammers
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253
| | - Leticia A. Montoya
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253
| |
Collapse
|