1
|
Miri A, Orouji A, Hormozi-Nezhad MR. Etched-suppressed gold nanorods providing highly distinctive plasmonic patterns: Towards multiplex analysis of neuroblastoma biomarkers. Anal Chim Acta 2024; 1325:343119. [PMID: 39244305 DOI: 10.1016/j.aca.2024.343119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/03/2024] [Accepted: 08/15/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND On-site monitoring of vanillylmandelic acid (VMA), homovanillic acid (HVA), and dopamine (DA) as key diagnostic biomarkers for a wide range of neurological disorders holds utmost significance in clinical settings. Numerous colorimetric sensors with mechanistic approaches based on aggregation or silver metallization have been introduced for this purpose. However, these mechanisms have drawbacks, such as sensitivity to environmental factors and probe toxicity. Therefore, there is a great demand for a robust yet non-toxic colorimetric sensor that employs a novel route to monitor these biomarkers effectively. RESULTS Here, we present a single-component multi-colorimetric probe based on the controllable etching suppression of gold nanorods (AuNRs) upon exposure to the mild etchant N-bromosuccinimide (NBS), designed to accurately detect and discriminate VMA, HVA, DA, and their corresponding mixtures, i.e. , VMA HVA, VMA:DA, HVA:DA, and VMA:HVA:DA. To enhance the sensitivity and automation capabilities of the designed multi-colorimetric sensor, two machine learning techniques were employed: linear discriminant analysis (LDA) for the qualitative classification and partial least-squares regression (PLSR) for the quantitative analysis of pure biomarkers and their mixtures. The outcomes revealed a high correlation between measured and predicted values, covering a linear range of 0.8-25, 1.2-25, and 2.7-100 μmol L-1, with remarkably low detection limits of 0.260, 0.397, and 0.913 μmol L-1 for VMA, HVA, and DA, respectively. Lastly, the performance of the probe was validated by successfully detecting the neuroblastoma biomarker VMA:HVA in human urine. SIGNIFICANCE Our designed multi-colorimetric probe introduces a rapid, cost-effective, user-friendly, non-toxic, and non-invasive approach to detecting and discriminating not only the pure biomarkers but also their corresponding binary and ternary mixtures. The distinctive response profiles produced by the probe in the presence of different mixture ratios can indicate various disease states in patients, which is highly crucial in clinical diagnostics.
Collapse
Affiliation(s)
- Amirhosein Miri
- Department of Chemistry, Sharif University of Technology, Tehran, 111559516, Iran
| | - Afsaneh Orouji
- Department of Chemistry, Sharif University of Technology, Tehran, 111559516, Iran
| | - Mohammad Reza Hormozi-Nezhad
- Department of Chemistry, Sharif University of Technology, Tehran, 111559516, Iran; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 11155-9516, Iran.
| |
Collapse
|
2
|
Akhondi G, Orouji A, Hormozi-Nezhad MR. Gold Nanorod Amalgamation: Machine Learning Empowered Discrimination of Biothiol and Thiol Ratios. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52080-52091. [PMID: 39299218 DOI: 10.1021/acsami.4c12126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Biothiols, characterized by thiol groups, exhibit remarkable affinity for certain metals, playing pivotal roles in intracellular and extracellular biological processes. Fluctuations in their levels profoundly impact overall physiological health. Despite the development of various probes for biothiol detection and quantification, their inability to monitor thiol-to-disulfide state transitions persists as a limitation. Given their association with pathologies, early detection remains imperative. Gold nanorod (AuNR)-based colorimetric probes have garnered attention for their utility in visual diagnostic assays. Herein, we present a cost-effective, and sensitive multicolor ratio measuring probe enabling on-site simultaneous identification, discrimination, and quantification of essential biothiols─cysteine (CYS), glutathione (GSH), cystine (CYSS), and glutathione disulfide (GSSG)─while also quantifying thiol-to-disulfide ratios. Our investigation clarifies the probe's functionality, elucidating etching and antietching mechanisms based on sulfhydryl group coordination with Hg2+. This coordination impedes gold amalgam formation, facilitating discriminative detection via AuNR size and aspect ratio modulation, validated by transmission electron microscopy. Notably, distinct rainbow-like fingerprint patterns were discernible both visually and spectroscopically for the aforementioned biothiols and their respective thiol-to-disulfide ratios. Subsequent qualitative and quantitative analyses via linear discriminant analysis (LDA) and partial least squares regression revealed linear correlations over broad concentration ranges (CYS: 1.9-40 μmol L-1, GSH: 3.2-200.0 μmol L-1, CYSS: 2.0-70.0 μmol L-1, GSSG: 3.7-100.0 μmol L-1), with detection limits of 0.66 μmol L-1 (CYS), 1.07 μmol L-1 (GSH), 0.69 μmol L-1 (CYSS), and 1.24 μmol L-1 (GSSG). Moreover, thiol-to-disulfide ratios exhibited linear patterns within 0.2-5 μmol L-1, with detection limits of 0.13 and 0.09 μmol L-1, and exceptional analytical sensitivities of 32.648 and 49.782 for (CYS/CYSS) and (GSH/GSSG), respectively. Lastly, we evaluated the probe's performance in complex matrices relative to aqueous media, both quantitatively and qualitatively.
Collapse
Affiliation(s)
- Golara Akhondi
- Department of Chemistry, Sharif University of Technology, Tehran 111559516, Iran
| | - Afsaneh Orouji
- Department of Chemistry, Sharif University of Technology, Tehran 111559516, Iran
| | | |
Collapse
|
3
|
Koohsar R, Orouji A, Hormozi-Nezhad MR. Multicolorimetric Sensor Array Based on Silver Metallization of Gold Nanorods for Discriminating Dopaminergic Agents. ACS Chem Neurosci 2024; 15:3513-3524. [PMID: 39159056 DOI: 10.1021/acschemneuro.4c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Dopaminergic agents are compounds that modulate dopamine-related activity in the brain and peripheral nerves within the pathways on both sides of the blood-brain barrier. Atypical levels of them can precipitate a multitude of neurological disorders, whose timely diagnosis signifies not only stopping the advancement of the illness but also surmounting it. A silver metallized gold nanorod (AuNRs) conditional sensor array, designed to detect dopaminergic agents for assessing nervous system disorders, yielded significant results in simultaneous detection and discrimination of Benserazide (Benz), Levodopa (L-DOPA), and Carbidopa (Carb). The array was composed of two different concentrations of silver ions as sensor elements (SEs), which generated unique signatures indicative of the presence of reductive target analytes, triggered by the incongruent formation of the Au@Ag core-shell, causing visual and fingerprint colorimetric patterns. Generating diverse responses is the key to the functionality of array-based sensing, which facilitated achieving spectral and color variation originating from the blue shift of AuNRs longitudinal localized surface plasmon resonance (LLSPR) in the extinction spectrum. Also, employing a smartphone camera enables clear visual discrimination across an extensive concentration span. Pattern recognition through linear discriminant analysis (LDA) underscored the robust discrimination accuracies of this sensor, along with quantification by means of partial least-squares regression (PLSR), affirming its potential for practical applications. Notably, the array demonstrated high sensitivity in detecting varied concentrations of target analytes, even in commercial drug samples. The sensor responses exhibited a linear correlation with the concentrations of Benz, L-DOPA, and Carb ranging from 1.59 to 100.0, 5.26 to 100.0, and 5.32 to 100.0 μmol L-1, respectively, and the minimum detectable concentrations for Benz, L-DOPA, and Carb were measured at 0.53, 1.75, and 1.77 μmol L-1, respectively. The implemented machine-learning-empowered array-based sensor represents advancements in dopaminergic agent tracing and naked eye detection.
Collapse
Affiliation(s)
- Reza Koohsar
- Department of Chemistry, Sharif University of Technology, Tehran 111559516, Iran
| | - Afsaneh Orouji
- Department of Chemistry, Sharif University of Technology, Tehran 111559516, Iran
| | | |
Collapse
|
4
|
Miryousefi N, Varmazyad M, Ghasemi F. Synthesis of Au@Ag core-shell nanorods with tunable optical properties. NANOTECHNOLOGY 2024; 35:395605. [PMID: 38865976 DOI: 10.1088/1361-6528/ad572b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
The synthesis of noble metal nanostructures with adjustable optical properties is essential due to their potential applications in various fields such as imaging, (bio) sensors, and catalysis. In this study, Au@Ag core-shell nanorods were synthesized with tunable optical properties. The synthesis process includes a two-stage approach: first, gold nanorods were synthesized through seed-mediated growth, and in the second stage, these gold nanorods were used as seeds to synthesize Au@Ag core-shell nanorods through the silver deposition process. Tunable core-shell nanorods were produced by changing the concentration of silver ions, reducing agent, stabilizing agent, seeds, and buffer as well as pH and the reaction time. Transmission electron microscopy images demonstrated the formation of the Au@Ag core-shell nanorod structure. In addition, UV-visible spectroscopy revealed the peak height and its shift towards shorter wavelengths, demonstrating the tunable optical properties of the synthesized nanorods. Overall, in this study, we demonstrated the synthesis of Au@Ag core-shell nanorods with adjustable plasmonic optical properties that could be changed by precisely controlling the thickness of the silver shell on the surface of the gold core.
Collapse
Affiliation(s)
- Navid Miryousefi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Mahboubeh Varmazyad
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Forough Ghasemi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
5
|
Guo Y, Liu Q, Wei A, Jiang S, Chen F, Huang J, He Y, Huang G, Wu Z. Spectrum and size controllable synthesis of high-quality gold nanorods using 1,7-dihydroxynaphthalene as a reducing agent. Dalton Trans 2023; 52:1052-1061. [PMID: 36602082 DOI: 10.1039/d2dt03646k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The spectrum and size controllable synthesis of gold nanorods is of great value for their widely applicable aspect ratio dependence of anisotropic surface plasmon resonance. Herein, 1,7-dihydroxynaphthalene with a relatively strong reducibility is proposed as a reducing agent for the controllable synthesis of gold nanorods. The result indicated that gold nanorods with high monodispersity, high shape yield, relatively small diameters, and maximum plasmon resonance wavelength of above 1000 nm can be acquired. More importantly, by virtue of the reducing agent used, fine and precise controls over the plasmon wavelength and diameter of the rod can be achieved via changes in experimental conditions. In particular, increases in the concentration of both silver ions and cetyltrimethylammonium bromide (CTAB) can increase the plasmon wavelength from around 600 nm to 1000 nm but respectively show a decreased diameter with the smallest value of around 14.3 nm and a mildly increased diameter from around 9.0 nm to 14.3 nm; moreover, increasing the concentration of reducing agents and gold seeds can simultaneously cause decreases in the plasmon wavelength from around 1000 nm to 800 nm and the diameters from around 14.3 nm to 9.0 and 7.3 nm, respectively. This powerful and efficient method of controllable synthesis of AuNRs could be valuable and attractive for the application of the as-obtained particles.
Collapse
Affiliation(s)
- Yuyang Guo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Qiuyue Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Anhua Wei
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Suju Jiang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Feifei Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Jun Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Yimiao He
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Guobao Huang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Zihua Wu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| |
Collapse
|
6
|
Naseri A, Ghasemi F. Analyte-restrained silver coating of gold nanostructures: an efficient strategy to advance multicolorimetric probes. NANOTECHNOLOGY 2021; 33:075501. [PMID: 34740204 DOI: 10.1088/1361-6528/ac3704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Visual detection based on gold nanorods (AuNRs) has gained tremendous attention in sensing applications owing to the potential for simple, inexpensive, instrument-free, and on-site detection. The proper selection of the mechanism involved in the interaction between the analyte and the nanostructure plays a significant role in designing a selective and multicolorimetric probe for visual purposes. A winning mechanism to develop multicolorimetric probes is the silver metalization of AuNRs. Herein, an unprecedented idea is presented to expand the variety of multicolorimetric sensors relying on the mechanism of silver deposition. We introduce the anti-silver deposition mechanism in which the analyte directly or indirectly restrains the silver coating of AuNRs. To ascertain the anti-silver deposition mechanism, we have exploited the proposed idea for the direct detection of nitrate. The presence of nitrate (as restrainer agent), which was firstly treated with ascorbic acid (as reducing agent), induced a decrease in the spectral blueshift of AuNRs along with diverse sharp color transitions from reddish-orange (blank) to maroon, wine, berry/purple, dark blue, teal, green, seafoam, and mint. The difference in the spectrum area of the probe in the absent (So) and presence (S) of nitrate were linearly proportional to nitrate concentration in the range of 0.5-5.5 mmol l-1and the limit of detection was calculated to be 465μmol l-1. Furthermore, the practicability of the multicolor probe was assessed by the determination of nitrate in complex environmental samples.
Collapse
Affiliation(s)
- Amene Naseri
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, 3135933151, Iran
| | - Forough Ghasemi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, 3135933151, Iran
| |
Collapse
|
7
|
Orouji A, Ghasemi F, Bigdeli A, Hormozi-Nezhad MR. Providing Multicolor Plasmonic Patterns with Au@Ag Core-Shell Nanostructures for Visual Discrimination of Biogenic Amines. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20865-20874. [PMID: 33887901 DOI: 10.1021/acsami.1c03183] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biogenic amines (BAs) are known as substantial indicators of the quality and safety of food. Developing rapid and visual detection methods capable of simultaneously monitoring BAs is highly desired due to their harmful effects on human health. In the present study, we have designed a multicolor sensor array consisting of two types of gold nanostructures (i.e., gold nanorods (AuNRs) and gold nanospheres (AuNSs)) for the discrimination and determination of critical BAs (i.e., spermine (SM), tryptamine (TT), ethylenediamine (EA), tyramine (TR), spermidine (SD), and histamine (HT)). The design principle of the probe was based on the metallization of silver ions on the surface of AuNRs and AuNSs in the presence of BAs, forming Au@Ag core-shell nanoparticles. Changes in the surface composition, size, and aspect ratio of AuNSs and AuNRs induced a blue shift in the plasmonic band, which was accompanied by sharp and rainbowlike color variations in the solution. The collected data were visually assessed and statistically analyzed by various data visualization and pattern recognition methods. Namely, linear discriminant analysis (LDA) and partial least squares (PLS) regression were employed for the qualitative and quantitative determination of BAs. The responses were linearly correlated to the concentrations of BAs in a wide range of 10-800, 20-800, 40-800, 40-800, 60-800, and 80-800 μmol L-1 with the limit of detections of 2.46, 4.79, 8.58, 14.26, 10.03, and 27.29 μmol L-1 for SD, SM, TT, HT, EA, and TR, respectively. Finally, the practical applicability of the sensor array was investigated by the determination of BAs in meat and fish samples by which the potential of the probe for on-site determination of food freshness/spoilage was successfully verified.
Collapse
Affiliation(s)
- Afsaneh Orouji
- Department of Chemistry, Sharif University of Technology, Tehran 111559516, Iran
| | - Forough Ghasemi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj 3135933151, Iran
| | - Arafeh Bigdeli
- Department of Chemistry, Sharif University of Technology, Tehran 111559516, Iran
| | | |
Collapse
|
8
|
Nelis JLD, Salvador JP, Marco MP, Elliott CT, Campbell K. A plasmonic biosensor array exploiting plasmon coupling between gold nanorods and spheres for domoic acid detection via two methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119473. [PMID: 33524817 DOI: 10.1016/j.saa.2021.119473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/08/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
An immunoassay was developed that utilized plasmonic coupling between immobilised gold nanorods and colloid gold nanospheres to detect the marine toxin domoic acid (DA). The aspect ratio of the nanorods was optimised and the effects of variation in acidity, silver to gold ratio, cetyltrimethylammonium bromide (CTAB) concentration and seed addition in the growth solution on the yield, size variance and LSPR peak position was investigated. Excellent nanorods (size variation < 15%; aspect ratio 3.5-5; yield 0.26-0.35 nM mL-1) were obtained for the LSPR range 785-867 nm using strong acidic conditions (12 µl HCl (37%)), silver to gold ratio of 1:5, 0.05-0.1 M CTAB and 20-30 µl seed addition to 10 mL of growth solution. One set of nanorods (54.9 X 15.7 nm; LSPR 785 nm) were immobilised onto a silica support and bio-functionalised with DA hapten. Colloid nanospheres (15 nm; LSPR 519 nm) were bio-functionalised with an anti-domoic-acid monoclonal antibody. The functionalised nanoparticles were used to detect DA by plasmon coupling by quantifying the average LSPR shift of individual plasmon couples with hyperspectral imaging or quantifying the pixels count caused by the particle aggregation visible under darkfield microscopy. The first method led to a LSPR blue-shift of ~55 nm caused by the immunoreaction. The second, simpler method, enabled very clear qualitative detection (p < 0.0005) of domoic acid when 10 µM domoic acid was added. Both methods show potential though the novelty and simplicity of the second platform allowing rapid (~30 min) detection with high-throughput possibilities using a simple set-up is of most interest.
Collapse
Affiliation(s)
- Joost L D Nelis
- Institute for Global Food Security, School of Biological Sciences, Queen's University, 19 Chlorine Gardens, Belfast BT9 5DL, UK.
| | - J Pablo Salvador
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain; Nanobiotechnology for Diagnostics (Nb4D), Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M Pilar Marco
- Nanobiotechnology for Diagnostics (Nb4D), Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen's University, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| |
Collapse
|
9
|
Liao S, Yue W, Cai S, Tang Q, Lu W, Huang L, Qi T, Liao J. Improvement of Gold Nanorods in Photothermal Therapy: Recent Progress and Perspective. Front Pharmacol 2021; 12:664123. [PMID: 33967809 PMCID: PMC8100678 DOI: 10.3389/fphar.2021.664123] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer is a life-threatening disease, and there is a significant need for novel technologies to treat cancer with an effective outcome and low toxicity. Photothermal therapy (PTT) is a noninvasive therapeutic tool that transports nanomaterials into tumors, absorbing light energy and converting it into heat, thus killing tumor cells. Gold nanorods (GNRs) have attracted widespread attention in recent years due to their unique optical and electronic properties and potential applications in biological imaging, molecular detection, and drug delivery, especially in the PTT of cancer and other diseases. This review summarizes the recent progress in the synthesis methods and surface functionalization of GNRs for PTT. The current major synthetic methods of GNRs and recently improved measures to reduce toxicity, increase yield, and control particle size and shape are first introduced, followed by various surface functionalization approaches to construct a controlled drug release system, increase cell uptake, and improve pharmacokinetics and tumor-targeting effect, thus enhancing the photothermal effect of killing the tumor. Finally, a brief outlook for the future development of GNRs modification and functionalization in PTT is proposed.
Collapse
Affiliation(s)
- Shengnan Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wang Yue
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuning Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weitong Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingxiao Huang
- Department of Radiation Biology, Radiation Oncology Key Laboratory of Sichuan Province, Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingting Qi
- Department of Radiation Biology, Radiation Oncology Key Laboratory of Sichuan Province, Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Ostad MA, Heidari T. Determination and evaluation components affecting the characteristics of synthesized of Au nanorods by the UV–vis spectrophotometer, dynamic light scattering, and scanner. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1790002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Maryam Abedi Ostad
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Tahereh Heidari
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
11
|
Pellas V, Hu D, Mazouzi Y, Mimoun Y, Blanchard J, Guibert C, Salmain M, Boujday S. Gold Nanorods for LSPR Biosensing: Synthesis, Coating by Silica, and Bioanalytical Applications. BIOSENSORS 2020; 10:E146. [PMID: 33080925 PMCID: PMC7603250 DOI: 10.3390/bios10100146] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022]
Abstract
Nanoparticles made of coinage metals are well known to display unique optical properties stemming from the localized surface plasmon resonance (LSPR) phenomenon, allowing their use as transducers in various biosensing configurations. While most of the reports initially dealt with spherical gold nanoparticles owing to their ease of synthesis, the interest in gold nanorods (AuNR) as plasmonic biosensors is rising steadily. These anisotropic nanoparticles exhibit, on top of the LSPR band in the blue range common with spherical nanoparticles, a longitudinal LSPR band, in all respects superior, and in particular in terms of sensitivity to the surrounding media and LSPR-biosensing. However, AuNRs synthesis and their further functionalization are less straightforward and require thorough processing. In this paper, we intend to give an up-to-date overview of gold nanorods in LSPR biosensing, starting from a critical review of the recent findings on AuNR synthesis and the main challenges related to it. We further highlight the various strategies set up to coat AuNR with a silica shell of controlled thickness and porosity compatible with LSPR-biosensing. Then, we provide a survey of the methods employed to attach various bioreceptors to AuNR. Finally, the most representative examples of AuNR-based LSPR biosensors are reviewed with a focus put on their analytical performances.
Collapse
Affiliation(s)
- Vincent Pellas
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, 4 Place Jussieu, F-75005 Paris, France
| | - David Hu
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Yacine Mazouzi
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Yoan Mimoun
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Juliette Blanchard
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Clément Guibert
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Michèle Salmain
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, 4 Place Jussieu, F-75005 Paris, France
| | - Souhir Boujday
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| |
Collapse
|
12
|
Shahrajabian M, Hormozi-Nezhad MR. Chemiluminometric fingerprints for identification of plasmonic nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 209:85-94. [PMID: 30359853 DOI: 10.1016/j.saa.2018.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/06/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
Development of a convenient and inexpensive method for identification and detection of nanoparticles (NPs) is of great interest. In this work, we have developed a novel and simple chemiluminescence based sensor array, with its sensing mechanism mimicking that of olfactory and gustatory systems for discriminating a set of NPs. The proposed method is based on the enhancement effect of NPs on luminol-oxidant CL intensity by their catalytic effect. Three kinds of oxidant including H2O2, AgNO3, and K3Fe(CN)6 were used as sensor elements and NPs exhibited diverse enhancing responses to different oxidant-luminol CL systems producing unique response patterns that were identified through heat map and chemometric methods, including linear discriminant analysis (LDA) and hierarchical cluster analysis (HCA). Five NPs have been well distinguished at various concentrations. In addition, this method clearly revealed a linear relationship between CL signal values and the concentrations of NPs for the quantitative detection of NPs. We believe that this type of CL sensor array can open a new way for facile discrimination and detection of different kinds of NPs.
Collapse
Affiliation(s)
- Maryam Shahrajabian
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran
| | - Mohammad Reza Hormozi-Nezhad
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
13
|
Liu X, Yao J, Luo J, Duan X, Yao Y, Liu T. Effect of Growth Temperature on Tailoring the Size and Aspect Ratio of Gold Nanorods. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7479-7485. [PMID: 28696699 DOI: 10.1021/acs.langmuir.7b01635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The influence of temperature on the gold nanorod synthesis process and its effect on tailoring the size and aspect ratio have not been fully investigated and understood. A comprehensive study, involving SEM and TEM microscopy, Vis-NIR spectroscopy, quantitative data analysis and theoretical simulation, is performed to understand the effect of growth temperature on size, aspect ratio, and shape uniformity of gold nanorods that are synthesized by a recently developed binary-surfactant seed-mediated AuNR synthesis method. It has been demonstrated that the temperature can be used as a simple processing parameter to viably tailor the size and aspect ratio of AuNRs as well as the corresponding surface plasmon resonance behavior. The temperature coefficients for length, diameter, and aspect ratio have been, respectively, determined to be 3.5 nm/°C, 3.9 nm/°C, and -0.18/°C. With a combination of controlling temperature and formulation, the binary surfactant seed-mediated AuNR synthesis method expects to be a convenient way for producing gold nanorods with a large range of size and aspect ratio suitable for different applications.
Collapse
Affiliation(s)
- Xiaowei Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Soochow, People's Republic of China
| | - Jingwen Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Soochow, People's Republic of China
| | - Jiangjiang Luo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Soochow, People's Republic of China
| | - Xiaoshuang Duan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Soochow, People's Republic of China
| | - Yanbo Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Soochow, People's Republic of China
| | - Tao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Soochow, People's Republic of China
| |
Collapse
|
14
|
Khafaji M, Vossoughi M, Hormozi-Nezhad MR, Dinarvand R, Börrnert F, Irajizad A. A new bifunctional hybrid nanostructure as an active platform for photothermal therapy and MR imaging. Sci Rep 2016; 6:27847. [PMID: 27297588 PMCID: PMC4906516 DOI: 10.1038/srep27847] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/09/2016] [Indexed: 11/30/2022] Open
Abstract
As a bi-functional cancer treatment agent, a new hybrid nanostructure is presented which can be used for photothermal therapy by exposure to one order of magnitude lower laser powers compared to similar nanostructures in addition to substantial enhancment in magnetic resonance imaging (MRI) contrast. This gold-iron oxide hybrid nanostructure (GIHN) is synthesized by a cost-effective and high yield water-based approach. The GIHN is sheilded by PEG. Therefore, it shows high hemo and biocompatibility and more than six month stability. Alongside earlier nanostructures, the heat generation rate of GIHN is compareable with surfactnat-capped gold nanorods (GNRs). Two reasons are behind this enhancement: Firstly the distance between GNRs and SPIONs is adjusted in a way that the surface plasmon resonance of the new nanostructure is similar to bare GNRs and secondly the fraction of GNRs is raised in the hybrid nanostructure. GIHN is then applied as a photothermal agent using laser irradiation with power as low as 0.5 W.cm(-2) and only 32% of human breast adenocarcinoma cells could survive. The GIHN also acts as a dose-dependent transvers relaxation time (T2) MRI contrast agent. The results show that the GINH can be considered as a good candidate for multimodal photothermal therapy and MRI.
Collapse
Affiliation(s)
- Mona Khafaji
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588, Iran
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
- Institute for Biotechnology and Environment (IBE), Sharif University of Technology, Tehran, Iran
| | | | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Felix Börrnert
- IFW Dresden, PF 270116, 01171 Dresden, Germany
- Speziallabor Triebenberg, TU Dresden, 01062 Dresden, Germany
| | - Azam Irajizad
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588, Iran
- Department of Physics, Sharif University of Technology, Tehran 14588, Iran
| |
Collapse
|
15
|
Silver deposition directed by self-assembled gold nanorods for amplified electrochemical immunoassay. Anal Chim Acta 2016; 902:82-88. [DOI: 10.1016/j.aca.2015.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/13/2022]
|
16
|
Weremfo A, Lu X, Carter P, Hibbert DB, Zhao C. Modelling an electrochemically roughened porous platinum electrode for water oxidation. Chem Commun (Camb) 2016; 52:4068-71. [DOI: 10.1039/c5cc09947a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The use of a central composite design to model the roughness of an electrochemically roughened Pt electrode and the surface with a well-defined nanostructure exhibits greatly improved catalytic activity towards oxygen evolution reaction.
Collapse
Affiliation(s)
| | - Xunyu Lu
- School of Chemistry
- UNSW Australia
- Sydney
- Australia
| | - Paul Carter
- Cochlear Ltd, 1 University Avenue
- Macquarie University
- Australia
| | | | - Chuan Zhao
- School of Chemistry
- UNSW Australia
- Sydney
- Australia
| |
Collapse
|
17
|
A colorimetric sensor array for detection and discrimination of biothiols based on aggregation of gold nanoparticles. Anal Chim Acta 2015; 882:58-67. [PMID: 26043092 DOI: 10.1016/j.aca.2015.04.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/31/2015] [Accepted: 04/05/2015] [Indexed: 11/22/2022]
Abstract
Developments of sensitive, rapid, and cheap systems for identification of a wide range of biomolecules have been recognized as a critical need in the biology field. Here, we introduce a simple colorimetric sensor array for detection of biological thiols, based on aggregation of three types of surface engineered gold nanoparticles (AuNPs). The low-molecular-weight biological thiols show high affinity to the surface of AuNPs; this causes replacement of AuNPs' shells with thiol containing target molecules leading to the aggregation of the AuNPs through intermolecular electrostatic interaction or hydrogen-bonding. As a result of the predetermined aggregation, color and UV-vis spectra of AuNPs are changed. We employed the digital mapping approach to analyze the spectral variations with statistical and chemometric methods, including hierarchical cluster analysis (HCA) and principal component analysis (PCA). The proposed array could successfully differentiate biological molecules (e.g., cysteine, glutathione and glutathione disulfide) from other potential interferences such as amino acids in the concentration range of 10-800 μmol L(-1).
Collapse
|
18
|
Fahimi-Kashani N, Shadabipour P, Hormozi-Nezhad MR. Colorimetric detection of glutathione based on transverse overgrowth of high aspect ratio gold nanorods investigated by MCR-ALS. RSC Adv 2015. [DOI: 10.1039/c5ra14784k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this paper, we present a simple platform for colorimetric detection of glutathione using gold nanorods (AR ∼ 6.5 ± 0.2) as a plasmonic sensor.
Collapse
Affiliation(s)
| | - Parisa Shadabipour
- Department of Chemistry
- Sharif University of Technology
- Tehran 11155-9516
- Iran
| | - M. Reza Hormozi-Nezhad
- Department of Chemistry
- Sharif University of Technology
- Tehran 11155-9516
- Iran
- Institute of Nanoscience and Nanotechnology
| |
Collapse
|
19
|
Bigdeli A, Hormozi-Nezhad MR, Jalali-Heravi M, Abedini MR, Sharif-Bakhtiar F. Towards defining new nano-descriptors: extracting morphological features from transmission electron microscopy images. RSC Adv 2014. [DOI: 10.1039/c4ra10375k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Ortega M, Hanrahan G, Arceo M, Gomez FA. Application of a computational neural network to optimize the fluorescence signal from a receptor-ligand interaction on a microfluidic chip. Electrophoresis 2014; 36:393-7. [DOI: 10.1002/elps.201400288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Maria Ortega
- Department of Chemistry and Biochemistry; California State University; Los Angeles CA USA
| | - Grady Hanrahan
- Department of Chemistry; California Lutheran University; Thousand Oaks CA USA
- Hugh and Hazel Darling Center for Applied Scientific Computing; California Lutheran University; Thousand Oaks CA USA
| | - Marilyn Arceo
- Department of Chemistry; California Lutheran University; Thousand Oaks CA USA
| | - Frank A. Gomez
- Department of Chemistry and Biochemistry; California State University; Los Angeles CA USA
| |
Collapse
|