• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4679296)   Today's Articles (2860)
For: Pramanik S, Bhalla V, Kumar M. Mercury assisted fluorescent supramolecular assembly of hexaphenylbenzene derivative for femtogram detection of picric acid. Anal Chim Acta 2013;793:99-106. [DOI: 10.1016/j.aca.2013.07.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/04/2013] [Accepted: 07/07/2013] [Indexed: 11/22/2022]
Number Cited by Other Article(s)
1
Asthana S, Mouli MSSV, Tamrakar A, Wani MA, Mishra AK, Pandey R, Pandey MD. Recent advances in AIEgen-based chemosensors for small molecule detection, with a focus on ion sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024;16:4431-4484. [PMID: 38913433 DOI: 10.1039/d4ay00618f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
2
Debsharma K, Dey S, Sinha C, Prasad E. A Gelation-Induced Enhanced Emission Active Stimuli Responsive and Superhydrophobic Organogelator: "Turn-On" Fluorogenic Detection of Cyanide and Dual-Channel Sensing of Nitroexplosives on Multiple Platforms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023;39:4739-4755. [PMID: 36940390 DOI: 10.1021/acs.langmuir.3c00144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
3
Debsharma K, Dey S, Prasad E, Sinha C. Designing of naphthalene based acylhydrazone derivative as a selective fluorogenic sensor for strong volatile acids based on aggregation-induced emission. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
4
Devibala P, Balambiga B, Noureen S, Nagarajan S. Hexaarylbenzene based high-performance p-channel molecules for electronic applications. RSC Adv 2021;11:11672-11701. [PMID: 35423632 PMCID: PMC8696071 DOI: 10.1039/d1ra00217a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/10/2021] [Indexed: 01/20/2023]  Open
5
Wang Z, Si S, Luo Z, Qin T, Xu Z, Liu B. An AIE-based Fluorescent Probe for Detection of Picric Acid in Water. CHEM LETT 2021. [DOI: 10.1246/cl.200618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
6
Kaur M, Kaur H, Kumar M, Bhalla V. 'Light-Up' AIE-Active Materials: Self-Assembly, Molecular Recognition and Catalytic Applications. CHEM REC 2020;21:240-256. [PMID: 33241911 DOI: 10.1002/tcr.202000117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 11/07/2022]
7
Mondal T, Mondal I, Biswas S, Mane MV, Panja SS. Mechanistic Insight into Selective Sensing of Hazardous Hg 2+ and Explosive Picric Acid by Using a Pyrene‐Azine‐Hydroxyquinoline Framework in Differential Media. ChemistrySelect 2020. [DOI: 10.1002/slct.202001798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
8
Nitrogen/sulfur-co-doped carbon quantum dots: a biocompatible material for the selective detection of picric acid in aqueous solution and living cells. Anal Bioanal Chem 2020;412:3753-3763. [PMID: 32300842 DOI: 10.1007/s00216-020-02629-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
9
Saravana Kumar S, Selva Kumar R, Ashok Kumar S. An “Off-On-Off” type fluorescent chemosensor for the relay detection of Zn2+ and H2PO4− in aqueous environment. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
10
Gupta M, Lee HI. Recyclable Polymeric Thin Films for the Selective Detection and Separation of Picric Acid. ACS APPLIED MATERIALS & INTERFACES 2018;10:41717-41723. [PMID: 30398831 DOI: 10.1021/acsami.8b15369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
11
Babu SS, Shanmugam S. Metal-Free γ,δ -Unsaturated β -Ketothiolester: Solvatochromism, AIEE and Detection of Picric Acid. ChemistrySelect 2018. [DOI: 10.1002/slct.201702805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
12
Pandith A, Kim HS. Selective Detection of 2,4,6-Trinitrophenol Based on In Situ -generated Fluorescent Zn2+ -Anthracene Ensembles in 80% Aqueous Dimethyl Sulfoxide. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
13
Shyamal M, Maity S, Mazumdar P, Sahoo GP, Maity R, Misra A. Synthesis of an efficient Pyrene based AIE active functional material for selective sensing of 2,4,6-trinitrophenol. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.03.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
14
Li Y, Liu Y, Zhou H, Chen W, Mei J, Su J. Ratiometric Hg2+ /Ag+ Probes with Orange Red-White-Blue Fluorescence Response Constructed by Integrating Vibration-Induced Emission with an Aggregation-Induced Emission Motif. Chemistry 2017;23:9280-9287. [DOI: 10.1002/chem.201700945] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Indexed: 11/06/2022]
15
Yao Z, Qiao Y, Liang H, Ge W, Zhang L, Cao Z, Wu HC. Approach Based on Polyelectrolyte-Induced Nanoassemblies for Enhancing Sensitivity of Pyrenyl Probes. Anal Chem 2016;88:10605-10610. [PMID: 27701867 DOI: 10.1021/acs.analchem.6b02809] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
16
Vij V, Bhalla V, Kumar M. Hexaarylbenzene: Evolution of Properties and Applications of Multitalented Scaffold. Chem Rev 2016;116:9565-627. [DOI: 10.1021/acs.chemrev.6b00144] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
17
Mahendran V, Pasumpon K, Thimmarayaperumal S, Thilagar P, Shanmugam S. Tetraphenylethene–2-Pyrone Conjugate: Aggregation-Induced Emission Study and Explosives Sensor. J Org Chem 2016;81:3597-602. [DOI: 10.1021/acs.joc.6b00267] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
18
Arora H, Pramanik S, Kumar M, Bhalla V. “Not quenched” aggregates of a triphenylene derivative for the sensitive detection of trinitrotoluene in aqueous medium. NEW J CHEM 2016. [DOI: 10.1039/c5nj03093e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
19
Zhang JR, Yue YY, Luo HQ, Li NB. Supersensitive and selective detection of picric acid explosive by fluorescent Ag nanoclusters. Analyst 2016;141:1091-7. [DOI: 10.1039/c5an02251g] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
20
Pandith A, Kumar A, Lee JY, Kim HS. 9-Anthracenecarboxamide fluorescent probes for selective discrimination of picric acid from mono- and di-nitrophenols in ethanol. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
21
Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem Rev 2015;115:11718-940. [DOI: 10.1021/acs.chemrev.5b00263] [Citation(s) in RCA: 5139] [Impact Index Per Article: 513.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
22
Chowdhury A, Mukherjee PS. Electron-Rich Triphenylamine-Based Sensors for Picric Acid Detection. J Org Chem 2015;80:4064-75. [DOI: 10.1021/acs.joc.5b00348] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
23
Mahendran V, Shanmugam S. Aggregates of a hydrazono-sulfonamide adduct as picric acid sensors. RSC Adv 2015. [DOI: 10.1039/c5ra17359k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
24
Parthiban C, Manivannan R, Elango KP. Highly selective colorimetric sensing of Hg(ii) ions in aqueous medium and in the solid state via formation of a novel M–C bond. Dalton Trans 2015;44:3259-64. [DOI: 10.1039/c4dt03289f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
25
Xiong JF, Li JX, Mo GZ, Huo JP, Liu JY, Chen XY, Wang ZY. Benzimidazole Derivatives: Selective Fluorescent Chemosensors for the Picogram Detection of Picric Acid. J Org Chem 2014;79:11619-30. [DOI: 10.1021/jo502281b] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
26
Nagarajan V, Bag B. pKaModulation in rhodamine based probes for colorimetric detection of picric acid. Org Biomol Chem 2014;12:9510-3. [DOI: 10.1039/c4ob02001d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
27
Deng X, Wu D. Highly sensitive photoluminescence energy transfer detection for 2,4,6-trinitrophenol using photoluminescent carbon nanodots. RSC Adv 2014. [DOI: 10.1039/c4ra06683a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]  Open
28
Ding L, Bai Y, Cao Y, Ren G, Blanchard GJ, Fang Y. Micelle-induced versatile sensing behavior of bispyrene-based fluorescent molecular sensor for picric acid and PYX explosives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014;30:7645-7653. [PMID: 24922083 DOI: 10.1021/la5011264] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
29
Pramanik S, Bhalla V, Kumar M. Hexaphenylbenzene-based fluorescent aggregates for ratiometric detection of cyanide ions at nanomolar level: set-reset memorized sequential logic device. ACS APPLIED MATERIALS & INTERFACES 2014;6:5930-9. [PMID: 24684247 DOI: 10.1021/am500903d] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
30
Liu B, Tong C, Feng L, Wang C, He Y, Lü C. Water-Soluble Polymer Functionalized CdTe/ZnS Quantum Dots: A Facile Ratiometric Fluorescent Probe for Sensitive and Selective Detection of Nitroaromatic Explosives. Chemistry 2014;20:2132-7. [DOI: 10.1002/chem.201304390] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Indexed: 12/25/2022]
31
Prasad KD, Guru Row TN. N-Alkyl derivative of 1,9-pyrazoloanthrone as a sensor for picric acid. RSC Adv 2014. [DOI: 10.1039/c4ra06286h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]  Open
32
Sivaraman G, Vidya B, Chellappa D. Rhodamine based selective turn-on sensing of picric acid. RSC Adv 2014. [DOI: 10.1039/c4ra02931c] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA