1
|
Webber KGI, Huang S, Truong T, Heninger JL, Gregus M, Ivanov AR, Kelly RT. Open-tubular trap columns: towards simple and robust liquid chromatography separations for single-cell proteomics. Mol Omics 2024; 20:184-191. [PMID: 38353725 PMCID: PMC10963139 DOI: 10.1039/d3mo00249g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Nanoflow liquid chromatography-mass spectrometry is key to enabling in-depth proteome profiling of trace samples, including single cells, but these separations can lack robustness due to the use of narrow-bore columns that are susceptible to clogging. In the case of single-cell proteomics, offline cleanup steps are generally omitted to avoid losses to additional surfaces, and online solid-phase extraction/trap columns frequently provide the only opportunity to remove salts and insoluble debris before the sample is introduced to the analytical column. Trap columns are traditionally short, packed columns used to load and concentrate analytes at flow rates greater than those employed in analytical columns, and since these first encounter the uncleaned sample mixture, trap columns are also susceptible to clogging. We hypothesized that clogging could be avoided by using large-bore porous layer open tubular trap columns (PLOTrap). The low back pressure ensured that the PLOTraps could also serve as the sample loop, thus allowing sample cleanup and injection with a single 6-port valve. We found that PLOTraps could effectively remove debris to avoid column clogging. We also evaluated multiple stationary phases and PLOTrap diameters to optimize performance in terms of peak widths and sample loading capacities. Optimized PLOTraps were compared to conventional packed trap columns operated in forward and backflush modes, and were found to have similar chromatographic performance of backflushed traps while providing improved debris removal for robust analysis of trace samples.
Collapse
Affiliation(s)
- Kei G I Webber
- Brigham Young University, Department of Chemistry and Biochemistry, Provo, Utah, 84602, USA.
| | - Siqi Huang
- Brigham Young University, Department of Chemistry and Biochemistry, Provo, Utah, 84602, USA.
| | - Thy Truong
- Brigham Young University, Department of Chemistry and Biochemistry, Provo, Utah, 84602, USA.
| | - Jacob L Heninger
- Brigham Young University, Department of Chemistry and Biochemistry, Provo, Utah, 84602, USA.
| | - Michal Gregus
- Northeastern University, Barnett Institute of Biological and Chemical Analysis, Department of Chemistry and Chemical Biology, College of Science, Boston, MA 02115, USA
| | - Alexander R Ivanov
- Northeastern University, Barnett Institute of Biological and Chemical Analysis, Department of Chemistry and Chemical Biology, College of Science, Boston, MA 02115, USA
| | - Ryan T Kelly
- Brigham Young University, Department of Chemistry and Biochemistry, Provo, Utah, 84602, USA.
| |
Collapse
|
2
|
Cerrato A, Aita SE, Cavaliere C, Laganà A, Montone CM, Piovesana S, Taglioni E, Capriotti AL. Preparation of Monolith for Online Extraction and LC-MS Analysis of β-Estradiol in Serum Via a Simple Multicomponent Reaction. Anal Chem 2024; 96:4639-4646. [PMID: 38501258 DOI: 10.1021/acs.analchem.3c05706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Multicomponent reactions offer efficient and environmentally friendly strategies for preparing monoliths suitable for applications in analytical chemistry. In the described study, a multicomponent reaction was utilized for the one-pot miniaturized preparation of a poly(propargyl amine) polymer inside commercial silica-lined PEEK tubing. The reaction involved only small amounts of reagents and was characterized by atom economy. The resulting monolithic column was incorporated into an autosampler system for the online extraction and cleanup of β-estradiol from human serum. Sample pretreatment was simplified to a simple dilution with methanol and centrifugation to remove proteins. The resulting platform included LC-MS analysis in multiple reaction monitoring for quantitative analysis of β-estradiol. The method was validated in serum, demonstrating practical applicability for the monitoring of fertile women. Recoveries were above 94%, and LOD and LOQ values at 0.008 and 0.18 ng mL-1, respectively. The developed platform proved to be competitive with previous methods for solid-phase microextraction of β-estradiol in serum, with comparable recovery and sensitivity but with the advantage of nearly complete automation. The environmental impact of the process was evaluated as acceptable due to the miniaturization of the monolith synthesis and the automation of extraction. The drawback associated with the LC-MS technique can be reduced by the inclusion of additional analytes in a single investigation. The work demonstrates that multicomponent reactions are versatile, economical, and possibly a green methodology for producing reversed-phase and mixed-mode sorbents, enabling miniaturization of the entire analytical procedure from the preparation of extraction sorbents to analysis.
Collapse
Affiliation(s)
- Andrea Cerrato
- Department of Chemistry, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sara Elsa Aita
- Department of Chemistry, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Aldo Laganà
- Department of Chemistry, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Susy Piovesana
- Department of Chemistry, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Enrico Taglioni
- Department of Chemistry, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
3
|
Ahmed MA, Ghiasvand A, Quirino JP. Dynamic in situ growth of bonded-phase silica nanospheres on silica capillary inner walls for open-tubular liquid chromatography. Anal Bioanal Chem 2023; 415:4923-4934. [PMID: 37351669 PMCID: PMC10386930 DOI: 10.1007/s00216-023-04798-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Silica nanospheres (SNS) were grown on the inner walls of silica capillaries through a dynamic in situ nucleation process to prepare a highly porous and large accessible surface area substrate. The SNS were then functionalized with octadecyl (C18), 3-aminopropyltriethoxysilane (APTES), beta-cyclodextrin (β-CD), and amino groups to develop robust and efficient chromatographic stationary phases. The modified silica capillaries were exploited for open-tubular liquid chromatography (OT-LC) and open-tubular capillary electrochromatography (OT-CEC) applications. The prepared stationary phases were compared to conventional capillaries in terms of separation performance. The synthesis process was optimized, and the bonded-phase stationary phases were characterized by the electron microscopy technique. The effects of different solvents, additives, and functional groups on the geometry and chromatographic resolving power of the SNS were envisaged. The capillaries modified with octadecyl groups were evaluated for the separation of non-steroidal anti-inflammatory drugs, phenones, alkenylbenzenes, and enantiomers of chlorophenoxy herbicides. As an application instance, an SNS-C18-coated capillary was utilized for the separation of alkenylbenzenes from clove extract and protein digest medium, through OT-LC and OT-CEC techniques, respectively. The β-CD functionalized capillary was applied for the OT-CEC separation of a dichlorprop racemic mixture.
Collapse
Affiliation(s)
- Mohamed Adel Ahmed
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Alireza Ghiasvand
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia.
- Department of Analytical Chemistry, Lorestan University, Khoramabad, Iran.
| | - Joselito P Quirino
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia.
| |
Collapse
|
4
|
Tůma P. Progress in on-line, at-line, and in-line coupling of sample treatment with capillary and microchip electrophoresis over the past 10 years: A review. Anal Chim Acta 2023; 1261:341249. [PMID: 37147053 DOI: 10.1016/j.aca.2023.341249] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
The review presents an evaluation of the development of on-line, at-line and in-line sample treatment coupled with capillary and microchip electrophoresis over the last 10 years. In the first part, it describes different types of flow-gating interfaces (FGI) such as cross-FGI, coaxial-FGI, sheet-flow-FGI, and air-assisted-FGI and their fabrication using molding into polydimethylsiloxane and commercially available fittings. The second part deals with the coupling of capillary and microchip electrophoresis with microdialysis, solid-phase, liquid-phase, and membrane based extraction techniques. It mainly focuses on modern techniques such as extraction across supported liquid membrane, electroextraction, single drop microextraction, head space microextraction, and microdialysis with high spatial and temporal resolution. Finally, the design of sequential electrophoretic analysers and fabrication of SPE microcartridges with monolithic and molecularly imprinted polymeric sorbents are discussed. Applications include the monitoring of metabolites, neurotransmitters, peptides and proteins in body fluids and tissues to study processes in living organisms, as well as the monitoring of nutrients, minerals and waste compounds in food, natural and wastewater.
Collapse
Affiliation(s)
- Petr Tůma
- Department of Hygiene, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic.
| |
Collapse
|
5
|
Kuzyk VO, Somsen GW, Haselberg R. CE-MS for Proteomics and Intact Protein Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:51-86. [PMID: 34628627 DOI: 10.1007/978-3-030-77252-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This chapter aims to explore various parameters involved in achieving high-end capillary electrophoresis hyphenated to mass spectrometry (CE-MS) analysis of proteins, peptides, and their posttranslational modifications. The structure of the topics discussed in this book chapter is conveniently mapped on the scheme of the CE-MS system itself, starting from sample preconcentration and injection techniques and finishing with mass analyzer considerations. After going through the technical considerations, a variety of relevant applications for this analytical approach are presented, including posttranslational modifications analysis, clinical biomarker discovery, and its growing use in the biotechnological industry.
Collapse
Affiliation(s)
- Valeriia O Kuzyk
- Division of Bioanalytical Chemistry, AIMMS: Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Govert W Somsen
- Division of Bioanalytical Chemistry, AIMMS: Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rob Haselberg
- Division of Bioanalytical Chemistry, AIMMS: Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Charoensuk J, Thonglao J, Wichaiyo B, Mukdasai K, Santaladchaiyakit Y, Srijaranai S, Mukdasai S. A simple and sensitive colorimetric sensor for cadmium (II) detection based on self-assembled trimethyl tetradecyl ammonium bromide and murexide on colloidal silica. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Pont L, Marin G, Vergara-Barberán M, Gagliardi LG, Sanz-Nebot V, Herrero-Martínez JM, Benavente F. Polymeric monolithic microcartridges with gold nanoparticles for the analysis of protein biomarkers by on-line solid-phase extraction capillary electrophoresis-mass spectrometry. J Chromatogr A 2020; 1622:461097. [PMID: 32381302 DOI: 10.1016/j.chroma.2020.461097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023]
Abstract
In this study, polymeric monoliths with gold nanoparticles (AuNP@monolith) were investigated as microcartridges for the analysis of protein biomarkers by on-line solid-phase extraction capillary electrophoresis-mass spectrometry (SPE-CE-MS). "Plug-and-play" microcartridges (7 mm) were prepared from a glycidyl methacrylate (GMA)-based monolithic capillary column (5 cm x 250 µm i.d.), which was modified with ammonia and subsequently functionalized with gold nanoparticles (AuNPs). The performance of these novel microcartridges was evaluated with human transthyretin (TTR), which is a protein related to different types of familial amyloidotic polyneuropathies (FAP). Protein retention depended on the isoelectric point of the protein (TTR pI~5.4) and elution was achieved with a basic phosphate solution. Under the optimized conditions, limits of detection (LODs) for TTR by AuNP@monolith-SPE-CE-MS were 50 times lower than by CE-MS (5 vs 250 mg•L-1, with an ion trap (IT) mass spectrometer). The sensitivity enhancement was similar compared to SPE-CE-MS using immunoaffinity (IA) microcartridges with intact antibodies against TTR. Linearity, repeatability in migration times and peak areas, reusability, reproducibility and application to serum samples were also evaluated.
Collapse
Affiliation(s)
- Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Gemma Marin
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - María Vergara-Barberán
- Department of Analytical Chemistry, University of Valencia, C/Doctor Moliner 50, 46100 Burjassot, Spain
| | - Leonardo G Gagliardi
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CIC-PBA CONICET, C/ 47 esq. 115, B1900AJL La Plata, Argentina
| | - Victoria Sanz-Nebot
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - José M Herrero-Martínez
- Department of Analytical Chemistry, University of Valencia, C/Doctor Moliner 50, 46100 Burjassot, Spain.
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
8
|
Lin L, Zheng J, Zheng F, Cai Z, Yu Q. Advancing serum peptidomic profiling by data-independent acquisition for clear-cell renal cell carcinoma detection and biomarker discovery. J Proteomics 2020; 215:103671. [DOI: 10.1016/j.jprot.2020.103671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/28/2019] [Accepted: 01/26/2020] [Indexed: 12/20/2022]
|
9
|
A critical retrospective and prospective review of designs and materials in in-line solid-phase extraction capillary electrophoresis. Anal Chim Acta 2019; 1079:1-19. [PMID: 31387699 DOI: 10.1016/j.aca.2019.05.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 11/20/2022]
Abstract
Several strategies have been developed to decrease the concentration limits of detection (LODs) in capillary electrophoresis (CE). Nowadays, chromatographic-based preconcentration using a microcartridge integrated in the separation capillary for in-line solid-phase extraction capillary electrophoresis (SPE-CE) is one of the best alternatives for high throughput and reproducible sample clean-up and analyte preconcentration. This review covers different designs (geometrical configurations, with frits or fritless, capillary types, compatibility with commercial instrumentation, etc.) and materials (sorbents, supports, affinity ligands, etc.) applied for almost 30 years to prepare in-line SPE-CE microcartridges (i.e. analyte concentrators), with emphasis on the conventional unidirectional configuration in capillary format. Advantages, disadvantages and future perspectives are analyzed in detail to provide the reader a wide overview about the great potential of this technique to enhance sensitivity and address trace analysis.
Collapse
|
10
|
Pero-Gascon R, Pont L, Sanz-Nebot V, Benavente F. On-Line Immunoaffinity Solid-Phase Extraction Capillary Electrophoresis-Mass Spectrometry for the Analysis of Serum Transthyretin. Methods Mol Biol 2019; 1972:57-76. [PMID: 30847784 DOI: 10.1007/978-1-4939-9213-3_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The analysis of low abundant proteins in biological fluids by capillary electrophoresis (CE) is particularly problematic due to the typically poor concentration limits of detection of microscale separation techniques. Another important issue is sample matrix complexity that requires an appropriate cleanup. Here, we describe an on-line immunoaffinity solid-phase extraction capillary electrophoresis-mass spectrometry (IA-SPE-CE-MS) method for the immunoextraction, preconcentration, separation, detection, and characterization of serum transthyretin (TTR). TTR is a protein biomarker related to diverse types of amyloidosis, such as familial amyloidotic polyneuropathy type I (FAP-I), which is the most common hereditary systemic amyloidosis.
Collapse
Affiliation(s)
- Roger Pero-Gascon
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
| | - Victoria Sanz-Nebot
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain.
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Liu X, Sun S, Nie R, Ma J, Qu Q, Yang L. Highly uniform porous silica layer open-tubular capillary columns produced via in-situ biphasic sol–Gel processing for open-tubular capillary electrochromatography. J Chromatogr A 2018; 1538:86-93. [DOI: 10.1016/j.chroma.2018.01.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 12/23/2022]
|
12
|
Metarwiwinit S, Mukdasai S, Poonsawat C, Srijaranai S. A simple dispersive-micro-solid phase extraction based on a colloidal silica sorbent for the spectrophotometric determination of Fe(ii) in the presence of tetrabutylammonium bromide. NEW J CHEM 2018. [DOI: 10.1039/c7nj04172a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study demonstrates a simplified dispersive micro-solid phase extraction (d-μ-SPE) using silica sol as the sorbent for the preconcentration of ferrous ions.
Collapse
Affiliation(s)
- S. Metarwiwinit
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen
- Thailand
| | - S. Mukdasai
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen
- Thailand
| | - C. Poonsawat
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen
- Thailand
| | - S. Srijaranai
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen
- Thailand
| |
Collapse
|
13
|
Sivrikaya S, Imamoglu M. Online Solid-Phase Extraction of Cd(II), Cu(II), and Co(II) Using Covalently Attached Bis(salicylaldimine) to Silica Gel for Determination in Food and Water by Flame Atomic Absorption Spectrometry. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1360897] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sezen Sivrikaya
- Chemistry Department, Sciences and Arts Faculty, Sakarya University, Sakarya, Turkey
- Polymer Engineering Department, Technology Faculty, Düzce University, Düzce, Turkey
| | - Mustafa Imamoglu
- Chemistry Department, Sciences and Arts Faculty, Sakarya University, Sakarya, Turkey
| |
Collapse
|
14
|
Jiang Y, He MY, Zhang WJ, Luo P, Guo D, Fang X, Xu W. Recent advances of capillary electrophoresis-mass spectrometry instrumentation and methodology. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Vehus T, Roberg-Larsen H, Waaler J, Aslaksen S, Krauss S, Wilson SR, Lundanes E. Versatile, sensitive liquid chromatography mass spectrometry - Implementation of 10 μm OT columns suitable for small molecules, peptides and proteins. Sci Rep 2016; 6:37507. [PMID: 27897190 PMCID: PMC5126632 DOI: 10.1038/srep37507] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/28/2016] [Indexed: 12/14/2022] Open
Abstract
We have designed a versatile and sensitive liquid chromatographic (LC) system, featuring a monolithic trap column and a very narrow (10 μm ID) fused silica open tubular liquid chromatography (OTLC) separation column functionalized with C18-groups, for separating a wide range of molecules (from small metabolites to intact proteins). Compared to today's capillary/nanoLC approaches, our system provides significantly enhanced sensitivity (up to several orders) with matching or improved separation efficiency, and highly repeatable chromatographic performance. The chemical properties of the trap column and the analytical column were fine-tuned to obtain practical sample loading capacities (above 2 μg), an earlier bottleneck of OTLC. Using the OTLC system (combined with Orbitrap mass spectrometry), we could perform targeted metabolomics of sub-μg amounts of exosomes with 25 attogram detection limit of a breast cancer-related hydroxylated cholesterol. With the same set-up, sensitive bottom-up proteomics (targeted and untargeted) was possible, and high-resolving intact protein analysis. In contrast to state-of-the-art packed columns, our platform performs chromatography with very little dilution and is "fit-for-all", well suited for comprehensive analysis of limited samples, and has potential as a tool for challenges in diagnostics.
Collapse
Affiliation(s)
- T. Vehus
- Department of Chemistry, University of Oslo, Post Box 1033 Blindern, NO-0315 Oslo, Norway
- Department of Engineering Sciences, University of Agder, Jon Lilletunsvei 9, NO-4891 Grimstad, Norway
| | - H. Roberg-Larsen
- Department of Chemistry, University of Oslo, Post Box 1033 Blindern, NO-0315 Oslo, Norway
| | - J. Waaler
- Unit for Cell Signaling, SFI-CAST Biomedical Innovation Center, Oslo University Hospital, Rikshospitalet, NO-0027 Oslo, Norway
| | - S. Aslaksen
- Unit for Cell Signaling, SFI-CAST Biomedical Innovation Center, Oslo University Hospital, Rikshospitalet, NO-0027 Oslo, Norway
| | - S. Krauss
- Unit for Cell Signaling, SFI-CAST Biomedical Innovation Center, Oslo University Hospital, Rikshospitalet, NO-0027 Oslo, Norway
| | - S. R. Wilson
- Department of Chemistry, University of Oslo, Post Box 1033 Blindern, NO-0315 Oslo, Norway
| | - E. Lundanes
- Department of Chemistry, University of Oslo, Post Box 1033 Blindern, NO-0315 Oslo, Norway
| |
Collapse
|
16
|
Guzman NA, Guzman DE. An emerging micro-scale immuno-analytical diagnostic tool to see the unseen. Holding promise for precision medicine and P4 medicine. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1021:14-29. [DOI: 10.1016/j.jchromb.2015.11.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/15/2015] [Accepted: 11/17/2015] [Indexed: 01/10/2023]
|
17
|
Barreiro JC, Luiz AL, Maciel SCF, Maciel EVS, Lanças FM. Recent approaches for on-line analysis of residues and contaminants in food matrices: A review. J Sep Sci 2016; 38:1721-32. [PMID: 25773972 DOI: 10.1002/jssc.201401285] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/22/2015] [Accepted: 02/15/2015] [Indexed: 11/12/2022]
Abstract
This review highlights recent developments for on-line determination of residues and contaminants in complex matrices such as food samples. This involves the on-line coupling of a sample preparation technique (as the first "dimension") with a chromatographic system (second "dimension"), usually followed by mass spectrometry. Although frequently treated as quite distinct techniques, the role of all devices utilized as the first dimension in this approach aims to decrease the sample complexity while eliminating as much as possible the matrix contaminants to facilitate the qualitative and quantitative determination of the compounds of interest. This review will focus on the following techniques as the first dimension: (i) on-line solid-phase extraction; (ii) in-tube solid-phase microextraction; (iii) matrix solid-phase dispersion; and (iv) turbulent flow chromatography. The second dimension is usually performed using a chromatographic column to isolate the analyte(s) of interest for further mass spectrometry determination. A description of the basis of this on-line approach and its distinct set up possibilities is presented, which is followed by a critical review of the literature covering this subject in the last ten years (focusing on the last five years) with emphasis on the analysis of residue and contaminants in food samples.
Collapse
Affiliation(s)
| | - Anderson Luigi Luiz
- Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, SP, Brazil
| | | | | | - Fernando Mauro Lanças
- Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
18
|
Pont L, Benavente F, Jaumot J, Tauler R, Alberch J, Ginés S, Barbosa J, Sanz-Nebot V. Metabolic profiling for the identification of Huntington biomarkers by on-line solid-phase extraction capillary electrophoresis mass spectrometry combined with advanced data analysis tools. Electrophoresis 2016; 37:795-808. [DOI: 10.1002/elps.201500378] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/10/2015] [Accepted: 12/07/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Laura Pont
- Departament de Química Analítica, Facultat de Química; Universitat de Barcelona; Barcelona Spain
| | - Fernando Benavente
- Departament de Química Analítica, Facultat de Química; Universitat de Barcelona; Barcelona Spain
| | - Joaquim Jaumot
- Department of Environmental Chemistry; IDAEA-CSIC; Barcelona Spain
| | - Romà Tauler
- Department of Environmental Chemistry; IDAEA-CSIC; Barcelona Spain
| | - Jordi Alberch
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina; Universitat de Barcelona; Barcelona Spain
- Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Silvia Ginés
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina; Universitat de Barcelona; Barcelona Spain
- Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - José Barbosa
- Departament de Química Analítica, Facultat de Química; Universitat de Barcelona; Barcelona Spain
| | - Victoria Sanz-Nebot
- Departament de Química Analítica, Facultat de Química; Universitat de Barcelona; Barcelona Spain
| |
Collapse
|
19
|
Benavente F, Medina-Casanellas S, Giménez E, Sanz-Nebot V. On-Line Solid-Phase Extraction Capillary Electrophoresis Mass Spectrometry for Preconcentration and Clean-Up of Peptides and Proteins. Methods Mol Biol 2016; 1466:67-84. [PMID: 27473482 DOI: 10.1007/978-1-4939-4014-1_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One of the major drawbacks of capillary electrophoresis (CE) and other microscale separation techniques, for the analysis of low abundant peptides and proteins in complex samples, are the poor concentration limits of detection. Several strategies have been developed to improve CE sensitivity. Here, we describe an on-line solid-phase extraction capillary electrophoresis mass spectrometry method with a commercial C18 sorbent for clean-up and preconcentration of neuropeptides from highly diluted biological samples.
Collapse
Affiliation(s)
- Fernando Benavente
- Department of Analytical Chemistry, University of Barcelona, Av. Diagonal 647, Barcelona, 08028, Spain.
| | - Silvia Medina-Casanellas
- Department of Analytical Chemistry, University of Barcelona, Av. Diagonal 647, Barcelona, 08028, Spain
| | - Estela Giménez
- Department of Analytical Chemistry, University of Barcelona, Av. Diagonal 647, Barcelona, 08028, Spain
| | - Victoria Sanz-Nebot
- Department of Analytical Chemistry, University of Barcelona, Av. Diagonal 647, Barcelona, 08028, Spain
| |
Collapse
|
20
|
Affiliation(s)
- Rachel K Harstad
- University of Minnesota , Department of Chemistry, 207 Pleasant Street South East, Minneapolis, Minnesota 55455, United States
| | - Alexander C Johnson
- University of Minnesota , Department of Chemistry, 207 Pleasant Street South East, Minneapolis, Minnesota 55455, United States
| | - Megan M Weisenberger
- University of Minnesota , Department of Chemistry, 207 Pleasant Street South East, Minneapolis, Minnesota 55455, United States
| | - Michael T Bowser
- University of Minnesota , Department of Chemistry, 207 Pleasant Street South East, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2013-middle 2015). Electrophoresis 2015; 37:162-88. [DOI: 10.1002/elps.201500329] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, v.v.i; The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
22
|
Ramautar R, Somsen GW, de Jong GJ. Developments in coupled solid-phase extraction-capillary electrophoresis 2013-2015. Electrophoresis 2015; 37:35-44. [DOI: 10.1002/elps.201500401] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/05/2015] [Accepted: 10/05/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Rawi Ramautar
- Leiden Academic Center for Drug Research; Leiden University; Leiden The Netherlands
| | - Govert W. Somsen
- AIMMS Division of BioAnalytical Chemistry; VU University Amsterdam; Amsterdam The Netherlands
| | | |
Collapse
|
23
|
Mahboob S, Mohamedali A, Ahn SB, Schulz-Knappe P, Nice E, Baker MS. Is isolation of comprehensive human plasma peptidomes an achievable quest? J Proteomics 2015; 127:300-9. [PMID: 25979773 DOI: 10.1016/j.jprot.2015.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/06/2015] [Accepted: 05/09/2015] [Indexed: 01/12/2023]
Abstract
The low molecular weight (LMW; <10kDa)* plasma peptidome has been considered a source of useful diagnostic biomarkers and potentially therapeutic molecules, as it contains many cytokines, peptide hormones, endogenous peptide products and potentially bioactive fragments derived from the parent proteome. The small size of the peptides allows them almost unrestricted vascular and interstitial access, and hence distribution across blood-brain barriers, tumour and other vascular permeability barriers. Therefore, the peptidome may carry specific signatures or fingerprints of an individual's health, wellbeing or disease status. This occurs primarily because of the advantage the peptidome has in being readily accessible in human blood and/or other biofluids. However, the co-expression of highly abundant proteins (>10kDa) and other factors present inherently in human plasma make direct analysis of the blood peptidome one of the most challenging tasks faced in contemporary analytical biochemistry. A comprehensive compendium of extraction and fractionation tools has been collected concerning the isolation and micromanipulation of peptides. However, the search for a reliable, accurate and reproducible single or combinatorial separation process for capturing and analysing the plasma peptidome remains a challenge. This review outlines current techniques used for the separation and detection of plasma peptides and suggests potential avenues for future investigation. This article is part of a Special Issue entitled: HUPO 2014.
Collapse
Affiliation(s)
- S Mahboob
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - A Mohamedali
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, NSW 2109, Australia
| | - S B Ahn
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | | | - E Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - M S Baker
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
24
|
Domingues DS, Souza IDD, Queiroz MEC. Analysis of drugs in plasma samples from schizophrenic patients by column-switching liquid chromatography-tandem mass spectrometry with organic-inorganic hybrid cyanopropyl monolithic column. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 993-994:26-35. [PMID: 25984963 DOI: 10.1016/j.jchromb.2015.04.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/24/2015] [Accepted: 04/26/2015] [Indexed: 10/23/2022]
Abstract
This study reports on the development of a rapid, selective, and sensitive column-switching liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to analyze sixteen drugs (antidepressants, anticonvulsants, anxiolytics, and antipsychotics) in plasma samples from schizophrenic patients. The developed organic-inorganic hybrid monolithic column with cyanopropyl groups was used for the first dimension of the column-switching arrangement. This arrangement enabled online pre-concentration of the drugs (monolithic column) and their subsequent analytical separation on an XSelect SCH C18 column. The drugs were detected on a triple quadrupole tandem mass spectrometer (multiple reactions monitoring mode) with an electrospray ionization source in the positive ion mode. The developed method afforded adequate linearity for the sixteen target drugs; the coefficients of determination (R(2)) lay above 0.9932, the interassay precision had coefficients of variation lower than 6.5%, and the relative standard error values of the accuracy ranged from -14.0 to 11.8%. The lower limits of quantification in plasma samples ranged from 63 to 1250pgmL(-1). The developed method successfully analyzed the target drugs in plasma samples from schizophrenic patients for therapeutic drug monitoring (TDM).
Collapse
Affiliation(s)
- Diego Soares Domingues
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Israel Donizeti de Souza
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Maria Eugênia Costa Queiroz
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Brazil.
| |
Collapse
|