1
|
Menegaki S, Kelepertzis E, Kypritidou Z, Lampropoulou A, Chrastný V, Aidona E, Bourliva A, Komárek M. Characterization of the inhalable fraction (< 10 μm) of soil from highly urbanized and industrial environments: magnetic measurements, bioaccessibility, Pb isotopes and health risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:230. [PMID: 38849623 PMCID: PMC11161548 DOI: 10.1007/s10653-024-02009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/22/2024] [Indexed: 06/09/2024]
Abstract
Soil in urban and industrial areas is one of the main sinks of pollutants. It is well known that there is a strong link between metal(loid)s bioaccessibility by inhalation pathway and human health. The critical size fraction is < 10 μm (inhalable fraction) since these particles can approach to the tracheobronchial region. Here, soil samples (< 10 μm) from a highly urbanized area and an industrialized city were characterized by combining magnetic measurements, bioaccessibility of metal(loids) and Pb isotope analyses. Thermomagnetic analysis indicated that the main magnetic mineral is impure magnetite. In vitro inhalation analysis showed that Cd, Mn, Pb and Zn were the elements with the highest bioaccessibility rates (%) for both settings. Anthropogenic sources that are responsible for Pb accumulation in < 10 μm fraction are traffic emissions for the highly urbanized environment, and Pb related to steel emissions and coal combustion in cement plant for the industrial setting. We did not establish differences in the Pb isotope composition between pseudo-total and bioaccessible Pb. The health risk assessment via the inhalation pathway showed limited non-carcinogenic risks for adults and children. The calculated risks based on pseudo-total and lung bioaccessible concentrations were identical for the two areas of contrasting anthropogenic pressures. Carcinogenic risks were under the threshold levels (CR < 10-4), with Ni being the dominant contributor to risk. This research contributes valuable insights into the lung bioaccessibility of metal(loids) in urban and industrial soils, incorporating advanced analytical techniques and health risk assessments for a comprehensive understanding.
Collapse
Affiliation(s)
- Stavroula Menegaki
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784, Panepistimiopolis, ZographouAthens, Greece
| | - Efstratios Kelepertzis
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784, Panepistimiopolis, ZographouAthens, Greece.
| | - Zacharenia Kypritidou
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784, Panepistimiopolis, ZographouAthens, Greece
| | - Anastasia Lampropoulou
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784, Panepistimiopolis, ZographouAthens, Greece
| | - Vladislav Chrastný
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague-Suchdol, Czech Republic
| | - Elina Aidona
- Department of Geophysics, Faculty of Geology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anna Bourliva
- Directorate of Secondary Education of Western Thessaloniki, 56430, Thessaloniki, Greece
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague-Suchdol, Czech Republic
| |
Collapse
|
2
|
Islam MR, Sanderson P, Naidu R, Payne TE, Johansen MP, Bari ASMF, Rahman MM. Beryllium in contaminated soils: Implication of beryllium bioaccessibility by different exposure pathways. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126757. [PMID: 34352522 DOI: 10.1016/j.jhazmat.2021.126757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 05/14/2023]
Abstract
Inhalation exposure and beryllium (Be) toxicity are well-known, but research on bioaccessibility from soils via different exposure pathways is limited. This study examined soils from a legacy radioactive waste disposal site using in vitro ingestion (Solubility Bioaccessibility Research Consortium [SBRC], physiologically based extraction test [PBET], in vitro gastrointestinal [IVG]), inhalation (simulated epithelial lung fluid [SELF]) and dynamic two-stage bioaccessibility (TBAc) methods, as well as 0.43 M HNO3 extraction. The results showed, 70 ± 4.8%, 56 ± 16.8% and 58 ± 5.7% of total Be were extracted (gastric phase [GP] + intestinal phase [IP]) in the SBRC, PBET, and IVG methods, respectively. Similar bioaccessibility of Be (~18%) in PBET-IP and SELF was due to chelating agents in the extractant. Moreover, TBAc-IP showed higher extraction (20.8 ± 2.0%) in comparison with the single-phase (SBRC-IP) result (4.8 ± 0.23%), suggesting increased Be bioaccessibility and toxicity in the gastrointestinal tract when the contamination derives from the inhalation route. The results suggested Be bioaccessibility depends on solution pH; time of extraction; soil reactive fractions (organic-inorganic); particle size, and the presence of chelating agents in the fluid. This study has significance for understanding Be bioaccessibility via different exposure routes and the application of risk-based management of Be-contaminated sites.
Collapse
Affiliation(s)
- Md Rashidul Islam
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia
| | - Peter Sanderson
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia.
| | - Ravi Naidu
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia
| | - Timothy E Payne
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Mathew P Johansen
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - A S M Fazle Bari
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia
| |
Collapse
|
3
|
Khademi H, Gabarrón M, Abbaspour A, Martínez-Martínez S, Faz A, Acosta JA. Distribution of metal(loid)s in particle size fraction in urban soil and street dust: influence of population density. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:4341-4354. [PMID: 31955288 DOI: 10.1007/s10653-020-00515-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Assessment of street dust is an invaluable approach for monitoring atmospheric pollution. Little information is available on the size distribution of contaminants in street dusts and urban soils, and it is not known how the population density would influence them. This research was carried out to assess the size distribution of trace metal(loid)s in street dust and urban soil, and to understand how population density might influence the size-resolved concentration of metal(loid)s. Three urban areas with a high, medium and low population density and a natural area were selected and urban soil and street dust sampled. They were fractionated into 8 size fractions: 2000-850, 850-180, 180-106, 106-50, 50-20, 20-10, 10-2, and < 2 µm. The concentration of Pb, Zn, Cu, Cd, Cr, Ni, As, and Fe was determined, and enrichment factor and grain size fraction loadings were computed. The results indicated that the concentration of Pb, Zn, Cu, Cd, and Cr was highly size dependent, particularly for particles < 100 µm, especially for street dust. Low concentrations of Ni and As in street dust and urban soil were size and population density independent. Higher size dependency of the metals concentration and the higher degree of elemental enrichment in the street dust fractions than the urban soils indicate higher contribution of human-induced pollution to the dust. Findings also confirm the inevitability of size fractionation when soils or dusts are environmentally assessed, particularly in moderately to highly polluted areas. Otherwise, higher concentrations of certain pollutants in fine-sized particles might be overlooked leading to inappropriate decisions for environmental remediation.
Collapse
Affiliation(s)
- H Khademi
- Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - M Gabarrón
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203, Cartagena, Murcia, Spain
| | - A Abbaspour
- Department of Soil and Water Science, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - S Martínez-Martínez
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203, Cartagena, Murcia, Spain
| | - A Faz
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203, Cartagena, Murcia, Spain
| | - J A Acosta
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203, Cartagena, Murcia, Spain.
| |
Collapse
|
4
|
Brown AD, Barrett JES, Bennett M, Potgieter-Vermaak S. An investigation into the use of < 38 µm fraction as a proxy for < 10 µm road dust particles. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1117-1126. [PMID: 31197551 PMCID: PMC7225179 DOI: 10.1007/s10653-019-00350-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
It is well documented that a large portion of urban particulate matters is derived from road dust. Isolating particles of RD which are small enough to be inhaled, however, is a difficult process. In this study, it is shown for the first time that the < 38 µm fraction of road dust particles can be used as a proxy for road dust particles < 10 µm in bioaccessibility studies. This study probed similarities between the < 10 and < 38µm fractions of urban road dust to show that the larger of the two can be used for analysis for which larger sample masses are required, as is the case with in vitro analysis. Road dust, initially segregated to size < 38 µm using sieves, was again size segregated to < 10 µm using water deposition. Both the original < 38 µm and the separated < 10 µm fractions were then subject to single particle analysis by SEM-EDX and bulk analysis by ICP-OES for its elemental composition. Dissolution tests in artificial lysosomal fluid, representative of lung fluid, were carried out on both samples to determine % bioaccessibility of selected potentially harmful elements and thus probe similarities/differences in in vitro behaviour between the two fractions. The separation technique achieved 94.3% of particles < 10 µm in terms of number of particles (the original sample contained 90.4% as determined by SEM-EDX). Acid-soluble metal concentration results indicated differences between the samples. However, when manipulated to negate the input of Si, SEM-EDX data showed general similarities in metal concentrations. Dissolution testing results indicated similar behaviour between the two samples in a simulated biological fluid.
Collapse
Affiliation(s)
- Andrew D Brown
- School of Science and the Environment, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Judith E S Barrett
- School of Science and the Environment, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Michael Bennett
- School of Science and the Environment, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Sanja Potgieter-Vermaak
- School of Science and the Environment, Manchester Metropolitan University, Manchester, M1 5GD, UK.
- Molecular Science Institute, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
5
|
Khademi H, Gabarrón M, Abbaspour A, Martínez-Martínez S, Faz A, Acosta JA. Environmental impact assessment of industrial activities on heavy metals distribution in street dust and soil. CHEMOSPHERE 2019; 217:695-705. [PMID: 30448749 DOI: 10.1016/j.chemosphere.2018.11.045] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Street dust and soil are important materials for evaluating the contaminants level in industrial areas. Detailed size-resolved distribution of metal(loid)s in street dusts and soils influenced by industrial activities has rarely been investigated. This study was carried out to understand how industrialization might affect the size distribution of metal(loid)s concentration and contamination level in the street dust and soil from Murcia, southern Spain. An industrial and a natural areas were selected and surface soil and street dust samples were taken. They were fractionated into eleven size classes and total concentrations of Pb, Zn, Cu, Cd, Cr, Ni, As and Fe were determined in both the bulk samples and their fractions. Enrichment factor, geoaccumulation index, and mass loading of different heavy metal(loids) were calculated. The results indicated that the street dust from natural and industrial areas had almost the same particle size distribution, both containing higher percentage of coarse-sized particles than the soil. Industrialization seems to have only slightly affected the concentration of most elements studied in the soil. In contrast, the concentrations of the heavy elements in bulk industrial dust samples and all their size fractions were extremely higher than those from the natural area. This means that the industrial activities only affected the size dependency of the concentration (contamination level) of certain elements (Pb, Zn, Cu, Cd, and Cr) in the street dust, but not in the soil.
Collapse
Affiliation(s)
- Hossein Khademi
- Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - María Gabarrón
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politecnica de Cartagena, Paseo Alfonso XIII, 48, 30203, Cartagena, Murcia, Spain
| | - Ali Abbaspour
- Department of Soil and Water Science, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Silvia Martínez-Martínez
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politecnica de Cartagena, Paseo Alfonso XIII, 48, 30203, Cartagena, Murcia, Spain
| | - Angel Faz
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politecnica de Cartagena, Paseo Alfonso XIII, 48, 30203, Cartagena, Murcia, Spain
| | - Jose A Acosta
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politecnica de Cartagena, Paseo Alfonso XIII, 48, 30203, Cartagena, Murcia, Spain.
| |
Collapse
|
6
|
Gabarrón M, Babur O, Soriano-Disla JM, Faz A, Acosta JA. Composition and risk assessment of roasted pyrite ash from fertiliser production. CHEMOSPHERE 2018; 209:277-285. [PMID: 29933164 DOI: 10.1016/j.chemosphere.2018.06.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Pyrite ash is a residue from the roasting of pyrite ores to obtain sulphuric acid used in the fertiliser industry and its production is widely extended worldwide. The mismanagement of this waste may result in environmental and health damages due to its physico-chemical characteristics. The main objective of this study was to examine the physico-chemical and mineralogical composition of roasted pyrite ash from an abandoned fertiliser company, and to evaluate the environmental risk caused by the wind and water dispersion of metals posed by this waste. In order to achieve these objectives, a sequential extraction procedure and a physical fractionation into six size fractions: >100, 100-50, 50-20, 20-10, 10-2.5 and < 2.5 μm were applied. Results showed that pyrite ash is composed mainly of iron-oxides such as hematite (46%) and secondary minerals as anglesite and shows high concentrations of Pb (7464 mg kg-1), Zn (2663 mg kg-1) and Cu (585 mg kg-1). The highest Risk Assessment Code (RAC) values were found for Cd, Pb and Zn, bound to the more labile fractions. Conversely, Pb showed the lowest water solubility due to the covering effect provided by a coating of anglesite in the pyrite ash surface. Most of the metals were associated to both the coarsest (>100 μm) and the finest (2.5-10 μm) fractions, although none represented an environmental risk according to the ecological risk index results. However, 30% of the metals were bound to the respirable fraction (≤100 μm) posing a potential risk for human health and a high potential dispersion by wind to the surrounding areas.
Collapse
Affiliation(s)
- M Gabarrón
- Sustainable Use, Management, and Reclamation of Soil and Water Research Group, Technical University of Cartagena, Paseo Alfonso XIII, 48, 30203, Cartagena, Murcia, Spain.
| | - O Babur
- Internationale Umwelttechnik, Hochschule Bremen, Neustadtswall 30, 28199 Bremen, Germany
| | - J M Soriano-Disla
- Sustainable Use, Management, and Reclamation of Soil and Water Research Group, Technical University of Cartagena, Paseo Alfonso XIII, 48, 30203, Cartagena, Murcia, Spain
| | - A Faz
- Sustainable Use, Management, and Reclamation of Soil and Water Research Group, Technical University of Cartagena, Paseo Alfonso XIII, 48, 30203, Cartagena, Murcia, Spain
| | - J A Acosta
- Sustainable Use, Management, and Reclamation of Soil and Water Research Group, Technical University of Cartagena, Paseo Alfonso XIII, 48, 30203, Cartagena, Murcia, Spain
| |
Collapse
|
7
|
Martin R, Dowling K, Nankervis S, Pearce D, Florentine S, McKnight S. In vitro assessment of arsenic mobility in historical mine waste dust using simulated lung fluid. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:1037-1049. [PMID: 28497229 DOI: 10.1007/s10653-017-9974-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Exposure studies have linked arsenic (As) ingestion with disease in mining-affected populations; however, inhalation of mine waste dust as a pathway for pulmonary toxicity and systemic absorption has received limited attention. A biologically relevant extractant was used to assess the 24-h lung bioaccessibility of As in dust isolated from four distinct types of historical gold mine wastes common to regional Victoria, Australia. Mine waste particles less than 20 µm in size (PM20) were incubated in a simulated lung fluid containing a major surface-active component found in mammalian lungs, dipalmitoylphosphatidylcholine. The supernatants were extracted, and their As contents measured after 1, 2, 4, 8 and 24 h. The resultant As solubility profiles show rapid dissolution followed by a more modest increasing trend, with between 75 and 82% of the total 24-h bioaccessible As released within the first 8 h. These profiles are consistent with the solubility profile of scorodite, a secondary As-bearing phase detected by X-ray diffraction in one of the investigated waste materials. Compared with similar studies, the cumulative As concentrations released at the 24-h time point were extremely low (range 297 ± 6-3983 ± 396 µg L-1), representing between 0.020 ± 0.002 and 0.036 ± 0.003% of the total As in the PM20.
Collapse
Affiliation(s)
- Rachael Martin
- Faculty of Science and Technology, Federation University Australia, Mount Helen, VIC, Australia.
| | - Kim Dowling
- Faculty of Science and Technology, Federation University Australia, Mount Helen, VIC, Australia
| | - Scott Nankervis
- Faculty of Science and Technology, Federation University Australia, Mount Helen, VIC, Australia
| | - Dora Pearce
- Faculty of Science and Technology, Federation University Australia, Mount Helen, VIC, Australia
- Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Singarayer Florentine
- Faculty of Science and Technology, Federation University Australia, Mount Helen, VIC, Australia
| | - Stafford McKnight
- Faculty of Science and Technology, Federation University Australia, Mount Helen, VIC, Australia
| |
Collapse
|
8
|
Gabarrón M, Faz A, Acosta JA. Soil or Dust for Health Risk Assessment Studies in Urban Environment. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 73:442-455. [PMID: 28528420 DOI: 10.1007/s00244-017-0413-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
To identify the best material (soil or dust) to be selected for health-risk assessment studies, road dust and urban soil from three cities with different population densities were collected, and size fractions were analysed for metal content (Pb, Zn, Cu, Cd, Cr, Co, and Ni). Results showed similar distribution of the size particles among cities, predominating fractions between 75 and 2000 μm in road dust and particles below 75 μm in soil. Metals were mainly bound to PM10 in both soil and road dust increasing the risk of adverse health effects, overall through inhalation exposure. The risk assessment showed that the most hazardous exposure pathway was the ingestion via, followed by dermal absorption and inhalation route. Values of hazard quotient showed that the risk for children due to the ingestion and dermal absorption was higher than adults, and slightly larger at PM10 comparing to <75-μm fraction for the inhalation route. Higher risk values were found for road dust, although any hazard index or cancer risk index value did not overreach the safe value of 10-6.
Collapse
Affiliation(s)
- M Gabarrón
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, ETSIA, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 52, 30230, Cartagena, Spain
| | - A Faz
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, ETSIA, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 52, 30230, Cartagena, Spain
| | - J A Acosta
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, ETSIA, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 52, 30230, Cartagena, Spain.
| |
Collapse
|
9
|
Martin R, Dowling K, Pearce DC, Florentine S, McKnight S, Stelcer E, Cohen DD, Stopic A, Bennett JW. Trace metal content in inhalable particulate matter (PM 2.5-10 and PM 2.5) collected from historical mine waste deposits using a laboratory-based approach. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2017; 39:549-563. [PMID: 27146864 DOI: 10.1007/s10653-016-9833-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/26/2016] [Indexed: 06/05/2023]
Abstract
Mine wastes and tailings are considered hazardous to human health because of their potential to generate large quantities of highly toxic emissions of particulate matter (PM). Human exposure to As and other trace metals in PM may occur via inhalation of airborne particulates or through ingestion of contaminated dust. This study describes a laboratory-based method for extracting PM2.5-10 (coarse) and PM2.5 (fine) particles from As-rich mine waste samples collected from an historical gold mining region in regional, Victoria, Australia. We also report on the trace metal and metalloid content of the coarse and fine fraction, with an emphasis on As as an element of potential concern. Laser diffraction analysis showed that the proportions of coarse and fine particles in the bulk samples ranged between 3.4-26.6 and 0.6-7.6 %, respectively. Arsenic concentrations were greater in the fine fraction (1680-26,100 mg kg-1) compared with the coarse fraction (1210-22,000 mg kg-1), and Co, Fe, Mn, Ni, Sb and Zn were found to be present in the fine fraction at levels around twice those occurring in the coarse. These results are of particular concern given that fine particles can accumulate in the human respiratory system. Our study demonstrates that mine wastes may be an important source of metal-enriched PM for mining communities.
Collapse
Affiliation(s)
- Rachael Martin
- Faculty of Science and Technology, Federation University Australia, Mount Helen, VIC, Australia.
| | - Kim Dowling
- Faculty of Science and Technology, Federation University Australia, Mount Helen, VIC, Australia
| | - Dora C Pearce
- Faculty of Science and Technology, Federation University Australia, Mount Helen, VIC, Australia
- Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Singarayer Florentine
- Faculty of Science and Technology, Federation University Australia, Mount Helen, VIC, Australia
| | - Stafford McKnight
- Faculty of Science and Technology, Federation University Australia, Mount Helen, VIC, Australia
| | - Eduard Stelcer
- Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - David D Cohen
- Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Attila Stopic
- Neutron Activation Group, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - John W Bennett
- Neutron Activation Group, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| |
Collapse
|
10
|
Priftis A, Papikinos K, Koukoulanaki M, Kerasioti E, Stagos D, Konstantinopoulos K, Spandidos DA, Kermenidou M, Karakitsios S, Sarigiannis D, Tsatsakis AM, Kouretas D. Development of an assay to assess genotoxicity by particulate matter extract. Mol Med Rep 2017; 15:1738-1746. [PMID: 28260086 PMCID: PMC5365018 DOI: 10.3892/mmr.2017.6171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/30/2017] [Indexed: 01/11/2023] Open
Abstract
The current study describes a method for assessing the oxidative potential of common environmental stressors (ambient air particulate matter), using a plasmid relaxation assay where the extract caused single-strand breaks, easily visualised through electrophoresis. This assay utilises a miniscule amount (11 µg) of particulate matter (PM) extract compared to other, cell-based methods (~3,000 µg). The negative impact of air pollution on human health has been extensively recognised. Among the air pollutants, PM plays an eminent role, as reflected in the broad scientific interest. PM toxicity highly depends on its composition (metals and organic compounds), which in turn has been linked to multiple health effects (such as cardiorespiratory diseases and cancer) through multiple toxicity mechanisms; the induction of oxidative stress is considered a major mechanism among these. In this study, the PM levels, oxidative potential, cytotoxicity and genotoxicity of PM in the region of Larissa, Greece were examined using the plasmid relaxation assay. Finally, coffee extracts from different varieties, derived from both green and roasted seeds, were examined for their ability to inhibit PM-induced DNA damage. These extracts also exerted an inhibitory effect on xanthine oxidase and catalase, but had no effect against superoxide dismutase. Overall, this study highlights the importance of assays for assessing the oxidative potential of widespread environmental stressors (PM), as well as the antioxidant capacity of beverages and food items, with the highlight being the development of a plasmid relaxation assay to assess the genotoxicity caused by PM using only a miniscule amount.
Collapse
Affiliation(s)
- Alexandros Priftis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Konstantinos Papikinos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Marina Koukoulanaki
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Efthalia Kerasioti
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | | | - Demetrios A Spandidos
- Laboratory of Clinical Virology, University of Crete, Medical School, Heraklion 71409, Greece
| | - Marianthi Kermenidou
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, Thessaloniki 54124, Greece
| | - Spyros Karakitsios
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, Thessaloniki 54124, Greece
| | - Dimosthenis Sarigiannis
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, Thessaloniki 54124, Greece
| | - Aristides M Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| |
Collapse
|
11
|
Pasquet C, Gunkel-Grillon P, Laporte-Magoni C, Serres A, Quiniou T, Rocca F, Monna F, Losno R, van Oort F, Chateau C. Alternative dry separation of PM 10 from soils for characterization by kinetic extraction: example of new Caledonian mining soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:25105-25113. [PMID: 27677999 DOI: 10.1007/s11356-016-7617-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
A simple new device for dry separation of fine particulate matter from bulk soil samples is presented here. It consists of a stainless steel tube along which a nitrogen flow is imposed, resulting in the displacement of particles. Taking into account particle transport, fluid mechanics, and soil sample composition, a tube 6-m long, with a 0.04-m diameter, was found best adapted for PM10 separation. The device rapidly produced several milligrams of particulate matter, on which chemical extractions with EDTA were subsequently performed to study the kinetic parameters of extractable metals. New Caledonian mining soils were chosen here, as a case-study. Although the easily extracted metal pool represents only 0.5-6.4 % of the total metal content for the elements studied (Ni, Co, Mn), the total concentrations are extremely high. This pool is therefore far from negligible, and can be troublesome in the environment. This dry technique for fine particle separation from bulk parent soil eliminates the metal-leaching risks inherent in wet filtration and should therefore ensure safe assessment of environmental quality in fine-textured, metal-contaminated soils.
Collapse
Affiliation(s)
- Camille Pasquet
- PPME, Université de la Nouvelle-Calédonie, BP R4, 98851, Nouméa Cedex, Nouvelle-Calédonie, France.
| | - Peggy Gunkel-Grillon
- PPME, Université de la Nouvelle-Calédonie, BP R4, 98851, Nouméa Cedex, Nouvelle-Calédonie, France
| | - Christine Laporte-Magoni
- PPME, Université de la Nouvelle-Calédonie, BP R4, 98851, Nouméa Cedex, Nouvelle-Calédonie, France
| | - Arnaud Serres
- PPME, Université de la Nouvelle-Calédonie, BP R4, 98851, Nouméa Cedex, Nouvelle-Calédonie, France
| | - Thomas Quiniou
- PPME, Université de la Nouvelle-Calédonie, BP R4, 98851, Nouméa Cedex, Nouvelle-Calédonie, France
| | - François Rocca
- PPME, Université de la Nouvelle-Calédonie, BP R4, 98851, Nouméa Cedex, Nouvelle-Calédonie, France
| | - Fabrice Monna
- UMR 6298, ArTeHis, Université de Bourgogne - Franche Comté - CNRS-Culture, 6 bd Gabriel, Bat. Gabriel, 21000, Dijon, France
| | - Remi Losno
- Institut de Physique du Globe de Paris (IPGP), Sorbonne Paris Cité, UMR CNRS 7154, Université Paris Diderot, 1 rue Jussieu, 75013, Paris, France
| | - Folkert van Oort
- UMR 1402 Ecosys, INRA-AgroParisTech, pôle Ecotoxicologie, Centre de Versailles-Grignon, RD 10, 78026, Versailles Cedex, France
| | - Carmela Chateau
- Université de Bourgogne-Franche Comté, UFR SVTE, 6 bd Gabriel, Bat. Gabriel, 21000, Dijon, France
| |
Collapse
|