1
|
Navaser M, Shokrollahi A, Zarghampour F, Saeidi F. Enhancing gel electromembrane extraction using glycine-doped agarose to mitigate electroendosmosis flow: application to tramadol extraction from biological specimens. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 40013410 DOI: 10.1039/d4ay01939c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
This study involves incorporating glycine into agarose to effectively eliminate electroendosmosis (EEO) effects in gel electromembrane extraction (G-EME) of tramadol (TMD) from biological samples. The development of a glycine-modified agarose membrane for EEO-free tramadol extraction represents a significant advancement in analytical chemistry with far-reaching societal implications. By eliminating the confounding effects of electroendosmosis and eschewing the use of harmful organic solvents typically employed in electromembrane procedures, this environmentally friendly method enhances the accuracy and precision of tramadol quantification in biological matrices. The operational procedure consists of the extraction tramadol, from 10 mL aqueous sample solution (pH 6.0), as the donor phase (DP), transferring it into membrane (pH 5.0); as the final step, it enters into an acceptor phase (AP, 700 μL, pH 4.0). The optimization of critical parameters, including the (w/v) percentage of agarose and glycine, the gel thickness, and the pH levels of the acceptor phase, gel, and donor phase, was conducted utilizing the one-factor-at-a-time methodology, while voltage, time, and stirring rate were optimized employing the design of experiment approach. Remarkably, under the optimized conditions, a satisfactory linear relationship was established within the range of 0.05-6 μg mL-1 (R2 = 0.9925), accompanied by a commendable limit of detection (LOD) amounting to 0.015 μg mL-1, with an extraction recovery rate of 94%. Finally, the proposed method was successfully applied to the determination of TMD in urine, plasma, and tablet samples.
Collapse
Affiliation(s)
- Mehdi Navaser
- Department of Chemistry, Yasouj University, 75918-74831, Yasouj, Iran.
| | | | - Fereshteh Zarghampour
- Kohgiluyeh and Boyerahmad Standards Administration, Iranian National Standardization Organization (INSO), Yasouj, 75916-53631, Iran
| | - Fatemeh Saeidi
- Department of Chemistry, Yasouj University, 75918-74831, Yasouj, Iran.
| |
Collapse
|
2
|
Liu J, Pan W, Pei T, Wang F, Zhao W, Wang E, Li L, Jing X. High-throughput semi-automated emulsive liquid-liquid microextraction for detecting SDHI fungicides in water, juice, and alcoholic beverage samples via UHPLC-MS/MS. Talanta 2024; 274:126038. [PMID: 38579419 DOI: 10.1016/j.talanta.2024.126038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Herein, a High-Throughput Semi-automated Emulsive Liquid-Liquid Microextraction (HTSA-ELLME) method was developed to detect Succinate Dehydrogenase Inhibitor (SDHI) fungicides in food samples via UHPLC-MS/MS. The Oil-in-Water (O/W) emulsion comprising a hydrophobic extractant and water was dilutable with the aqueous sample solution. Upon injecting the primary emulsion into the sample solution, a secondary O/W emulsion was formed, allowing SDHI fungicides to be extracted. Subsequently, a NaCl-saturated solution was injected in the secondary O/W emulsion as a demulsifier to rapidly separate the extractant, eliminating the need for centrifugation. A 12-channel electronic micropipette was used to achieve a high-throughput semi-automation of the novel sample pretreatment. The linear range was 0.003-0.3 μg L-1 with R2 > 0.998. The limit of detection was 0.001 μg L-1. The HTSA-ELLME method successfully detected SDHI fungicides in water, juice, and alcoholic beverage samples, with recoveries and relative standard deviations of 82.6-106.9% and 0.8-5.8%, respectively. Unlike previously reported liquid-liquid microextraction approaches, the HTSA-ELLME method is the first to be both high-throughput and semi-automated and may aid in designing pesticide pretreatment processes in food samples.
Collapse
Affiliation(s)
- Jin Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
| | - Wei Pan
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
| | - Tao Pei
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
| | - Fuyun Wang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
| | - Wenting Zhao
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, 102206, China.
| | - Enhua Wang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
| | - Li Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
3
|
Krekhova F, Meshcheva D, Shishov A, Bulatov A. In situ formation of natural deep eutectic solvent on membrane after fat hydrolysis for lindane isomers determination in peanut paste. Talanta 2024; 271:125737. [PMID: 38309113 DOI: 10.1016/j.talanta.2024.125737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
In this work a sample pretreatment approach assumed liquid-liquid microextraction based on the in situ formation of a hydrophobic natural deep eutectic solvent on a hydrophobic membrane impregnated with natural terpenoid was developed. The procedure included alkaline hydrolysis of a food sample containing fat to form fatty acids, which acted as precursors for the in situ formation of the deep eutectic solvent with natural terpenoid. Two processes were observed on the membrane surface: in situ formation of the hydrophobic deep eutectic solvent and liquid-liquid microextraction of the target analytes. After microextraction, the membrane containing the analytes was easily removed from the sample solution. The developed approach was applied to the separation and preconcentration of hydrophobic organochlorine pesticides (ɑ-hexachlorocyclohexane and γ-hexachlorocyclohexane) from a hydrophobic sample matrix (peanut paste), followed by their determination by gas chromatography with electron capture detection. Under optimal conditions, the limits of detection and quantification for both analytes were 0.3 and 1.0 μg kg-1, respectively. The procedure allowed the separation of fat-soluble analytes from a complex sample matrix with a high content of fat. The extraction recoveries were in the range of 93-95 %.
Collapse
Affiliation(s)
- Firuza Krekhova
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia.
| | - Daria Meshcheva
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Andrey Shishov
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Andrey Bulatov
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
4
|
Zhang H, Zhang S, Li Y, Li L, Hou X. Biochar/sodium alginate mixed matrix membrane as adsorbent for in-syringe solid-phase extraction towards trace nitroimidazoles in water samples prior to ultra-high-performance liquid chromatography-tandem mass spectrometry analysis. J Sep Sci 2023; 46:e2300316. [PMID: 37688330 DOI: 10.1002/jssc.202300316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
In the present work, the herb (Poria cocos (Schw.) Wolf) residue, as an environmentally friendly and renewable biomass source, was converted into novel biochar. Biochar/sodium alginate mixed matrix membrane was fabricated. On this basis, a biochar/sodium alginate mixed matrix membrane-based in-syringe solid-phase extraction was developed combined with ultra-high performance liquid chromatography-tandem mass spectrometry to determine nitroimidazoles in water samples. The factors including times of exaction, type, and volume of elution solvent, and sample solution pH were thoroughly optimized. Then the correlation coefficient was 0.9995-0.9997. The limit of detection of four analytes was between 0.006 and 0.014 ng/mL, and the recovery was between 79.02% and 99.1%. Consequently, the established method would provide a new perspective on monitoring nitroimidazoles in water samples.
Collapse
Affiliation(s)
- Hongyu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Sijia Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Yingying Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Lin Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
| |
Collapse
|
5
|
Tintrop LK, Salemi A, Jochmann MA, Engewald WR, Schmidt TC. Improving greenness and sustainability of standard analytical methods by microextraction techniques: A critical review. Anal Chim Acta 2023; 1271:341468. [PMID: 37328248 DOI: 10.1016/j.aca.2023.341468] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
Since environmental awareness has increased in analytical chemistry, the demand for green sample preparation methods continues to grow. Microextractions such as solid-phase microextraction (SPME) and liquid-phase microextraction (LPME) miniaturize the pre-concentration step and are a more sustainable alternative to conventional large-scale extractions. However, the integration of microextractions in standard and routine analysis methods is rare, although these applications are used most frequently and have a role model function. Therefore, it is important to highlight that microextractions are capable to replace large-scale extractions in standard and routine methods. This review discusses the greenness, benefits, and drawbacks of the most common LPME and SPME variants compatible with gas chromatography based on the following key evaluation principles: Automation, solvent consumption, hazards, reusability, energy consumption, time efficiency, and handling. Furthermore, the need to integrate microextractions into standard and routine analytical methods is presented by using method greenness evaluation metrics AGREE, AGREEprep, and GAPI applied to USEPA methods and their replacements.
Collapse
Affiliation(s)
- Lucie K Tintrop
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Amir Salemi
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Maik A Jochmann
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany.
| | - Werner R Engewald
- Institute for Analytical Chemistry, Faculty of Chemistry, University of Leipzig, Linnestraße 3, 04103, Leipzig, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany; IWW Water Centre, Moritzstraße 26, 45476, Mülheim an der Ruhr, Germany
| |
Collapse
|
6
|
Martins RO, de Araújo GL, Simas RC, Chaves AR. ELECTROMEMBRANE EXTRACTION (EME): FUNDAMENTALS AND APPLICATIONS. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
7
|
Parvizi F, Parvareh A, Heydari R. Fabrication of a hydrophobic surface as a new supported liquid membrane for microfluidic based liquid phase microextraction device using modified boehmite nanoparticles (AlOO-NSPO). Microchem J 2023. [DOI: 10.1016/j.microc.2023.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
8
|
Moema D, Makwakwa T, Gebreyohannes B, Dube S, Nindi M. Hollow fiber liquid phase microextraction of fluoroquinolones in chicken livers followed by high pressure liquid chromatography: Greenness assessment using National Environmental Methods Index Label (NEMI), green analytical procedure index (GAPI), Analytical GREEnness metric (AGREE), and Eco Scale. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Li YS, Tseng WL, Lu CY. Determination of formaldehyde in the daily living environment using membrane-enhanced water plug coupled extraction following peptide-based greener reaction derivatization. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Jalili V, Ghanbari Kakavandi M, Ghiasvand A, Barkhordari A. Microextraction techniques for sampling and determination of polychlorinated biphenyls: A comprehensive review. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Amico D, Tassone A, Pirrone N, Sprovieri F, Naccarato A. Recent applications and novel strategies for mercury determination in environmental samples using microextraction-based approaches: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128823. [PMID: 35405590 DOI: 10.1016/j.jhazmat.2022.128823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
The growing need to monitor Hg levels in the environment to control its emissions and evaluate the effectiveness of reduction policies is driving the scientific community to focus efforts on creating analytical methods that are simpler, lower cost, more performing, and environmentally sustainable. In this context, an important contribution is provided by microextraction techniques, which have long proven to be simple, reliable, and to ensure an environmentally responsible sample preparation. This manuscript reviews the recent progress in the determination of environmental Hg using microextraction techniques. The considered studies involve all environmental compartments (i.e., air, water, soil, and biota) and have been discussed by grouping them according to the employed technique while pointing out the main advances achieved and the most important limitations. The ultimate goal is to provide an up-to-date overview of the analytical potential of microextraction techniques that can be exploited in various investigation fields and to highlight the most important knowledge gaps that should be addressed in the coming years, such as in-situ sampling, the use of natural materials, and the value of metrological support to obtain data SI-traceable and comparable.
Collapse
Affiliation(s)
- Domenico Amico
- CNR-Institute of Atmospheric Pollution Research, Rende, Italy
| | | | - Nicola Pirrone
- CNR-Institute of Atmospheric Pollution Research, Rende, Italy
| | | | - Attilio Naccarato
- CNR-Institute of Atmospheric Pollution Research, Rende, Italy; Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Rende, Italy.
| |
Collapse
|
12
|
Chen M, Shang Y, Bai H, Ma Q. Electromembrane Extraction and Dual-Channel Nanoelectrospray Ionization Coupled with a Miniature Mass Spectrometer: Incorporation of a Dicationic Ionic Liquid-Induced Charge Inversion Strategy. Anal Chem 2022; 94:9472-9480. [PMID: 35737371 DOI: 10.1021/acs.analchem.2c01921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Green analytical chemistry aims at developing analytical methods with minimum use and generation of hazardous substances for the protection of human health and the environment. To address this need, a green analytical protocol has been developed for the analysis of anionic compounds integrating electromembrane extraction (EME), dual-channel nanoelectrospray ionization (nanoESI), and a miniature mass spectrometer. Haloacetic acids (HAAs) have attracted considerable public concern due to their adverse effects on human health and were selected as model analytes for method development. A flat membrane EME device was developed and assembled in-house. Optimization of fundamental operational parameters was performed using single-factor test and response surface methodology. Both the EME acceptor phase and an imidazolium-based dicationic ionic liquid (DIL), 1,1-bis(3-methylimidazolium-1-yl) butylene difluoride (C4(MIM)2F2), were subjected to dual-channel nanoESI and miniature mass spectrometry analysis based on a charge inversion strategy, where positively charged complexes were formed. Enhancement in signal intensity by as much as 2 magnitudes was achieved in the positive-ion mode compared to the negative-ion mode in the absence of the dicationic ion-pairing agent. The developed protocol was validated, obtaining good recoveries ranging from 82.7 to 109.9% and satisfactory sensitivity with limits of detection (LODs) and quantitation (LOQs) in the ranges of 1-5 and 2-10 μg/L, respectively. The greenness of the analytical procedure was assessed with a calculated score of 0.71, indicating a high degree of greenness. The developed method was applied to the analysis of real environmental or municipal water samples (n = 16), exhibiting appealing potential for outside-the-laboratory applications.
Collapse
Affiliation(s)
- Meng Chen
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Yuhan Shang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Hua Bai
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Qiang Ma
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| |
Collapse
|
13
|
Pierri ME, Morés L, Bernardi G, Carasek E. Multiclass determination of endocrine disruptors in urine by hollow fiber microporous membrane and liquid chromatography. Anal Biochem 2022; 652:114725. [PMID: 35597269 DOI: 10.1016/j.ab.2022.114725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Abstract
A simple and rapid methodology was developed using hollow fiber membrane microporous and a 96-well plate system for a high throughput multiclass determination of endocrine disruptors in human urine (diclofenac, diazepam, carbamazepine, ibuprofen, naproxen, carbofuran, methyl parathion, 17-α-ethynyl estradiol, bisphenol A and benzophenone). The quantification and detection of the chemicals were carried out by an HPLC-diode array detector. The fixed conditions for carrying out the method optimization were 1.5 mL of sample and 300 μL of solvent desorption. Multivariate and univariate models were applied to optimize the parameters of the method, achieving the following conditions: 20% diluted urine, 1-octanol of extraction solvent impregnated in the microporous membrane, 70 min extraction in pH 3.0 and 30 min with a mixture of 75% methanol and 25% acetonitrile (v/v) for the desorption. The R2 were ≤ 0.9973 for ibuprofen. The LOD ranged from 3.3 to 16.7 ng mL-1 and the LOQ from 10 to 50 ng mL-1. Relative recoveries ranged from 71% to 126%. The repeatability (n = 3) ranged from 0.22% to 12.01%, and the intermediate precision (n = 9) ranged from 0.13% to 17.76%. The method presents a good alternative for the determination of different classes of compounds in human urine.
Collapse
Affiliation(s)
- Maria Eduarda Pierri
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, 88040900, SC, Brazil
| | - Lucas Morés
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, 88040900, SC, Brazil
| | - Gabrieli Bernardi
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, 88040900, SC, Brazil
| | - Eduardo Carasek
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, 88040900, SC, Brazil.
| |
Collapse
|
14
|
Merlo F, Profumo A, Fontàs C, Anticó E. Preparation of new polymeric phases for thin-film liquid phase microextraction (TF-LPME) of selected organic pollutants. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Bayatloo MR, Tabani H, Nojavan S, Alexovič M, Ozkan SA. Liquid-Phase Microextraction Approaches for Preconcentration and Analysis of Chiral Compounds: A Review on Current Advances. Crit Rev Anal Chem 2022; 53:1623-1637. [PMID: 35175878 DOI: 10.1080/10408347.2022.2038072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Chirality is a critical issue in pharmaceutics, forensic chemistry, therapeutic drug monitoring, doping control, toxicology, or environmental investigations as enantiomers of a chiral compound can exhibit different activities, i.e., one enantiomer can have the desired effect while the other one can be inactive or even toxic. To monitor enantioselective metabolism or toxicokinetic/toxicodynamic mechanisms in extremely low content in biological or environmental matrices, sample preparation is vital. The present review describes current status of development of liquid-phase microextraction approaches such as hollow fiber liquid-phase microextraction (HF-LPME), electromembrane extraction (EME), dispersive liquid-liquid microextraction (DLLME), and supramolecular solvent-based microextraction (SSME), used for sample preparation of enantiomers/chiral compounds. The advantages and limitations of the above techniques are discussed. Attention is also focused on chiral separation approaches commonly applied to study the stereo-selective metabolism or toxicokinetic/toxicodynamic mechanisms of enantiomers in the biological and environmental samples.
Collapse
Affiliation(s)
- Mohammad Reza Bayatloo
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, G. C., Evin, Tehran, Iran
| | - Hadi Tabani
- Department of Environmental Geology, Research Institute of Applied Sciences (ACECR), Shahid Beheshti University, Tehran, Iran
| | - Saeed Nojavan
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, G. C., Evin, Tehran, Iran
| | - Michal Alexovič
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, Košice, Slovakia
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
16
|
Chen L, Wang J, Xu T, Feng X, Huang C, Shen X. Recent sample pretreatment methods for determination of selective serotonin reuptake inhibitors (SSRIs) in biological samples. J Pharm Biomed Anal 2021; 206:114364. [PMID: 34543943 DOI: 10.1016/j.jpba.2021.114364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine (FLU), sertraline (SER), paroxetine (PAR), fluvoxamine (FLV) and citalopram (CIT) have been the first treatment drugs for pregnant and breastfeeding women. Quantitative analysis of SSRIs in biological samples is extremely needed in public health and clinical practice. During the analysis, sample pretreatment is an important step that can obtain an accurate quantitative analysis of SSRIs in the complex samples. The present paper discussed the recent development of sample preparation methods for SSRI analysis. Traditional sample preparation techniques such as liquid liquid extraction (LLE) and solid phase extraction (SPE), which have been widely used in the separation of SSRIs in biological samples, were extensively presented. Moreover, the new sample preparation techniques including liquid phase microextraction (LPME), solid phase microextraction (SPME), electromembrane extraction (EME) and other miniaturized extraction techniques, which are becoming highly popular in SSRI analysis, were also critically reviewed. In this review, both the advantages and disadvantages of these sample pretreatment methods were addressed. As a summary, we prospected the challenges and promising directions for the future of sample pretreatment methods in SSRI analysis.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Jincheng Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Tyllis Xu
- Shanghai American School, 258 Jinfeng Road, Minhang District, Shanghai 201107, China; Wuhan Egaotech Company Lmt., 9F, Building 3, Science and Technolge new energy Base, East Lake High-Tech District, Wuhan 430075, China
| | - Xinrui Feng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Xiantao Shen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| |
Collapse
|
17
|
Alves MS, Neto LCF, Scheid C, Merib J. An overview of magnetic ionic liquids: From synthetic strategies to applications in microextraction techniques. J Sep Sci 2021; 45:258-281. [PMID: 34726337 DOI: 10.1002/jssc.202100599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 11/06/2022]
Abstract
Remarkable progress has been achieved in the application of magnetic ionic liquids in microextraction-based procedures. These materials exhibit unique physicochemical properties of ionic liquids featuring additional responses to magnetic fields by incorporating a paramagnetic component within the chemical structure. This intriguing property can open new horizons in analytical extractions because the solvent manipulation is facilitated. Moreover, the tunable chemical structures of magnetic ionic liquids also allow for task-specific extractions that can significantly increase the method selectivity. This review aimed at providing an up-to-date overview of articles involving synthesis, physicochemical properties, and applications of magnetic ionic liquids highlighting recent developments and configurations. Moreover, a section containing critical evaluation and future trends in magnetic ionic liquid-based extractions is included.
Collapse
Affiliation(s)
- Mônica Silva Alves
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Luiz Carlos Ferreira Neto
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Camila Scheid
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Josias Merib
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
18
|
Alidoust M, Baharfar M, Manouchehri M, Yamini Y, Tajik M, Seidi S. Emergence of microfluidic devices in sample extraction; an overview of diverse methodologies, principals, and recent advancements. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
A Rapid Analytical Approach for Monitoring Pharmaceuticals in Hospital Wastewater—A DPX-Based Procedure with Environmentally-Friendly Extraction Phase Coupled to High Performance Liquid Chromatography–Diode Array/Fluorescence Detectors. SEPARATIONS 2021. [DOI: 10.3390/separations8080109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study, a novel analytical methodology based on disposable pipette extraction (DPX) was developed using an alternative extraction phase for the extraction/determination of six pharmaceutical compounds, including carbamazepine, diclofenac, naproxen, fluoxetine, losartan and 17α-ethinylestradiol, in samples of hospital wastewater by high-performance liquid chromatography coupled to diode array and fluorescence detectors. The performance of three extraction phases was examined, including 3-n-propyl (3-methylpyridinium) silsesquioxane chloride (Si3Py+Cl−), the conductive polymer polypyrrole (PPy), and polypyrrole modified with cetyltrimethylammonium bromide (PPy.CTAB). The optimization of the experimental parameters was performed through univariate and multivariate approaches. The optimized condition was obtained with the use of 20 mg of Si3Py+Cl− as extraction phase; six extraction cycles with 700 μL of sample in each cycle and 15 s of extraction time; three desorption cycles with 100 μL of ACN (same aliquot) and 15 s of desorption time; and sample pH adjusted at 3.5 and addition of 15% (w/v) of NaCl in the sample. The methodology proposed exhibited environmentally-friendly aspects with a significantly reduced volume of organic solvent (only 100 µL) and a small amount of extraction phase (20 mg). In addition, the extraction phase employed exhibits a simple synthetic procedure, low cost, and high stability in organic solvent. Moreover, the method developed exhibits high throughput (extraction time of 6.5 min per sample), and robustness. The analytical figures of merit were obtained using hospital wastewater, and the values were very satisfactory. The correlation coefficients were higher than 0.9710. LODs and LOQs ranged from 0.030 µg L−1 to 1.510 µg L−1 and 0.10 µg L−1 to 5.00 µg L−1, respectively. Relative recoveries varied from 80 to 127%, and intra-day (n = 3) and inter-day (n = 9) precision was lower than 19%.
Collapse
|
20
|
Stir flat sheet membrane liquid phase microextraction for the selective chemiluminescence determination of ofloxacin and fleroxacin in human urine. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
21
|
A computational simulation of electromembrane extraction based on Poisson - Nernst - Planck equations. Anal Chim Acta 2021; 1158:338414. [PMID: 33863419 DOI: 10.1016/j.aca.2021.338414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 01/01/2023]
Abstract
Electromembrane extraction (EME) has attracted a great deal of interest in researchers because of its advantages. For analysis, design and optimization purposes, understanding the ion transport mechanisms in the organic supported liquid membrane (SLM) is of prominent importance, where the interplay between the passive diffusion and electric-driven mass transport across SLM affects the mass transfer. In present work, a 2D numerical simulation is developed to examine the mass transfer behavior and the analyte recovery in EME devices. The presented model is capable of describing the effect of different parameters on the recovery of the EME setup. Initial analyte concentration in the sample solution, SLM thickness, applied potential, permittivity, diffusion coefficient, and the reservoir pH within both the sample and acceptor, can be considered as process variables. Predicted results revealed that the most important factors playing key role in EME, are the analyte diffusivity, distribution coefficient of the analyte as well as the level of protonation in both the donor and acceptor solutions. The proposed model is helpful in predicting the mass transfer behavior of the EME process in practical applications.
Collapse
|
22
|
Olasupo A, Suah FBM. Recent advances in the removal of pharmaceuticals and endocrine-disrupting compounds in the aquatic system: A case of polymer inclusion membranes. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124317. [PMID: 33307454 DOI: 10.1016/j.jhazmat.2020.124317] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 05/26/2023]
Abstract
The presence of pharmaceuticals and endocrine-disrupting compounds in aquatic systems is a matter of great concern. The occurrence, fate, and potential toxicity of these compounds have triggered the interest of the scientific community. As a result of their high solubility and low volatility, they are common in aquatic systems, and wastewater treatment plants (WWTP) are the main reservoir for these contaminants. Conventional WWTPs have demonstrated an inability to remove these contaminants completely; hence, different advanced treatment processes have been explored to compensate for the lapses of the conventional system. The outcome of this study revealed the significant improvements made using advanced treatment processes to diminish the number of contaminants; however, some contaminants have proven to be refractory. Thus, there is a need to modify various advanced treatment processes or employ additional treatment processes. Polymer inclusion membranes (PIMs) are a liquid membrane technology that is highly efficient at removing contaminants from water. They have been widely studied for the removal of heavy metals and nutrients from aquatic systems; however, only a few studies have investigated the use of PIMs to remove pharmaceutically active compounds from aquatic systems. This research aims to raise awareness on the application of PIMs as a promising water treatment technology which has a great potential for the remediation of pharmaceuticals and endocrine disruptors in the aquatic system, due to its versatility, ease/low cost of preparation and high contaminant selectivity.
Collapse
Affiliation(s)
- Ayo Olasupo
- Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Faiz Bukhari Mohd Suah
- Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| |
Collapse
|
23
|
An overview on the recent applications of agarose as a green biopolymer in micro-extraction-based sample preparation techniques. Talanta 2021; 224:121892. [DOI: 10.1016/j.talanta.2020.121892] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022]
|
24
|
Pasupuleti RR, Tsai PC, Ponnusamy VK. Low-cost disposable Poly(ethyleneimine)-Functionalized Carbon Nanofibers Coated Cellulose Paper as efficient solid phase extraction sorbent material for the extraction of Parahydroxybenzoates from environmental waters. CHEMOSPHERE 2021; 267:129274. [PMID: 33338718 DOI: 10.1016/j.chemosphere.2020.129274] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 05/24/2023]
Abstract
Parahydroxybenzoates (parabens) are considered as emerging environmental contaminants because of their extensive usage in our daily life products, causing parabens contamination into environmental water systems and lead to toxic effects on environmental health. This study describes a greener extraction method using a new cationic polymer poly (ethyleneimine) functionalized acid-treated carbon nanofibers (PEI-CNFs) coated cellulose paper (CP) as solid-phase extraction (SPE) sorbent material for the extraction of parabens from environmental water samples. The fabrication of PEI-CNFs modified CP was confirmed using field-emission scanning electron microscope, transmission electron microscopy, and fourier-transformer infrared spectroscopy techniques. Various factors affecting the adsorption and desorption of parabens on PEI-CNFs@CP and its extraction efficiencies were studied using HPLC-UV analysis. Under the optimal experimental conditions, maximum extraction efficiencies were achieved for four target parabens, and PEI-CNFs@CP/HPLC-UV method exhibited excellent linearities ranged from 0.5-50 ng mL-1 with regression coefficient values were between 0.9952-0.9970. The presented method showed good sensitivity with quantification limits between 0.5-0.75 ng mL-1 and detection limits between 0.1-0.25 ng mL-1. The developed technique was applied for the real sample analysis (river, lake, domestic sewage water, and drinking tap water). The spiked recovery revealed good recoveries between 86.8-116.0% with RSD less than 8.8% for all the water samples. These results proved that it a simple, fast, efficient, low-cost, and eco-friendly method for the extraction and determination of parabens in environmental water samples and can be applied as a routine analytical tool in environmental monitoring and quality control laboratories.
Collapse
Affiliation(s)
- Raghavendra Rao Pasupuleti
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, 807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City, 807, Taiwan.
| |
Collapse
|
25
|
Simultaneous separation and quantification of acidic and basic dye specimens via a dual gel electro-membrane extraction from real environmental samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02167-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Sheikh M, Hadjmohammadi MR, Fatemi MH. Simultaneous extraction and analysis of clozapine and lorazepam from human plasma using dual solvent-stir bar microextraction with different acceptor phases followed by high-performance liquid chromatography ultra-violet detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:110-116. [PMID: 33315030 DOI: 10.1039/d0ay01431a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new design of dual solvent stir bar microextraction (DSSBME) was developed and combined with HPLC-UV for the simultaneous extraction of clozapine (CLZ) and lorazepam (LRP) from human plasma with different acceptor phases. Two short hollow fibers immobilized with an organic extraction solvent were used as the solvent bars for microextraction of CLZ and LRP from the sample solution. The solvent bars were fixed with a staple pin which served as the stirrer. The target analytes were simultaneously and selectively extracted from the sample solution into their corresponding solvent bar. Extraction parameters such as organic solvent type, pH of the sample solution, the acceptor phase concentration, salt incorporation into the solution, stirring rate, and extraction time were optimized to achieve the best extraction results. Under the optimum conditions (1-undecanol as extraction solvent, pH of sample solution = 9.0, 10% w/v NaCl, concentration of HCl = 10 mM, concentration of NaOH = 100 mM, stirring rate of 1400 rpm and extraction time of 30 min at ambient temperature) the limit of detection for CLZ was 0.4 ng mL-1 and for LRP it was 1.1 ng mL-1. The linear range for CLZ was 1.3-1000.0 ng mL-1 (R2 = 0.9991) and for LRP it was 3.6-800.0 ng mL-1 (R2 = 0.9993). Extraction recovery and the enrichment factor for CLZ were 95.4% and 343 and for LRP they were 74.3% and 263, respectively. Finally, the method developed was successfully applied for the simultaneous determination of CLZ and LRP in human plasma samples.
Collapse
Affiliation(s)
- Mahsa Sheikh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, NirooHavayii Boulevard, 47416-95447 Babolsar, Iran.
| | | | | |
Collapse
|
27
|
Insights into coacervative and dispersive liquid-phase microextraction strategies with hydrophilic media – A review. Anal Chim Acta 2021; 1143:225-249. [DOI: 10.1016/j.aca.2020.08.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022]
|
28
|
Silveira GDO, Lourenço FR, Bruno V, Yonamine M. Fast Hollow Fiber Liquid-Phase Microextraction as a Greener Alternative for the Determination of N,N-Dimethyltryptamine and Harmala Alkaloids in Human Urine. Front Chem 2020; 8:558501. [PMID: 33134270 PMCID: PMC7575737 DOI: 10.3389/fchem.2020.558501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/08/2020] [Indexed: 01/16/2023] Open
Abstract
Ayahuasca tea is an entheogen hallucinogenic beverage used for shamanic and spiritual purposes, prepared by the decoction of different Amazonian plants containing N,N-dimethyltryptamine (DMT) and harmala alkaloids. Since the therapeutic potential of this tea has been broadly studied in recent years, mainly for the treatment of psychiatric disorders, the determination of the ayahuasca tea components in human and animal matrices is of utmost importance. In order to avoid the use of large amounts of toxic solvents, typically employed in traditional sample preparation methods, hollow fiber liquid-phase microextraction (HF-LPME) presents a greener and time-saving alternative. The present study aims to fully develop and apply an HF-LPME method for the determination of DMT, harmine (HRM), harmaline (HRL), and tetrahydroharmine (THH) in human urine samples using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Fractional factorial and Box–Behnken designs were used to identify and optimize significant method variables. Once optimized, validation has shown a limit of detection (LoD) of 1.0 ng/ml for DMT and 2.0 ng/ml for the harmala alkaloid. The limit of quantification (LoQ) was of 5.0 ng/ml for all analytes. The method has shown to be linear over a concentration range of 5–200 ng/ml (r2 ≥ 0.99). Intra/inter-day precision and accuracy met the acceptance criteria at the three quality control (QC) levels studied (15.0, 90.0, and 170.0 ng/ml, n = 6, each). Matrix effect evaluation showed predominant ion enhancement and recovery values were above 80%. Dilution factors of 10- and 20-fold have shown acceptable values of accuracy. Selectivity studies showed no interferences. Analysis of eight authentic samples collected from four subjects proved method feasibility. A simple, time-saving and green alternative for the analysis of DMT and harmala alkaloids in human urine samples was developed, optimized using design of experiments, fully validated and applied to authentic samples.
Collapse
Affiliation(s)
- Gabriela de Oliveira Silveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Felipe Rebello Lourenço
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vitor Bruno
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mauricio Yonamine
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Use of a Polymer Inclusion Membrane and a Chelating Resin for the Flow-Based Sequential Determination of Copper(II) and Zinc(II) in Natural Waters and Soil Leachates. Molecules 2020; 25:molecules25215062. [PMID: 33142737 PMCID: PMC7662993 DOI: 10.3390/molecules25215062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 11/21/2022] Open
Abstract
A bi-parametric sequential injection method for the determination of copper(II) and zinc(II) when present together in aqueous samples was developed. This was achieved by using a non-specific colorimetric reagent (4-(2-pyridylazo)resorcinol, PAR) together with two ion-exchange polymeric materials to discriminate between the two metal ions. A polymer inclusion membrane (PIM) and a chelating resin (Chelex 100) were the chosen materials to retain zinc(II) and copper(II), respectively. The influence of the flow system parameters, such as composition of the reagent solutions, flow rates and standard/sample volume, on the method sensitivity were studied. The interference of several common metal ions was assessed, and no significant interferences were observed (<10% signal deviation). The limits of detection were 3.1 and 5.6 µg L−1 for copper(II) and zinc(II), respectively; the dynamic working range was from 10 to 40 µg L−1 for both analytes. The newly developed sequential injection analysis (SIA) system was applied to natural waters and soil leachates, and the results were in agreement with those obtained with the reference procedure.
Collapse
|
30
|
Application of Hollow Fibre-Liquid Phase Microextraction Technique for Isolation and Pre-Concentration of Pharmaceuticals in Water. MEMBRANES 2020; 10:membranes10110311. [PMID: 33137884 PMCID: PMC7693864 DOI: 10.3390/membranes10110311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Abstract
In this article, a comprehensive review of applications of the hollow fibre-liquid phase microextraction (HF-LPME) for the isolation and pre-concentration of pharmaceuticals in water samples is presented. HF-LPME is simple, affordable, selective, and sensitive with high enrichment factors of up to 27,000-fold reported for pharmaceutical analysis. Both configurations (two- and three-phase extraction systems) of HF-LPME have been applied in the extraction of pharmaceuticals from water, with the three-phase system being more prominent. When compared to most common sample preparation techniques such as solid phase extraction, HF-LPME is a greener analytical chemistry process due to reduced solvent consumption, miniaturization, and the ability to automate. However, the automation comes at an added cost related to instrumental set-up, but a reduced cost is associated with lower reagent consumption as well as shortened overall workload and time. Currently, many researchers are investigating ionic liquids and deep eutectic solvents as environmentally friendly chemicals that could lead to full classification of HF-LPME as a green analytical procedure.
Collapse
|
31
|
Dominguez-Tello A, Dominguez-Alfaro A, Gómez-Ariza JL, Arias-Borrego A, García-Barrera T. Effervescence-assisted spiral hollow-fibre liquid-phase microextraction of trihalomethanes, halonitromethanes, haloacetonitriles, and haloketones in drinking water. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122790. [PMID: 32388100 DOI: 10.1016/j.jhazmat.2020.122790] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
A new analytical method was optimized to determine 18 disinfection by-products (DBPs) in drinking water, including four different chemical groups. For this purpose, spiral-shaped hollow-fibre liquid phase microextraction with 1-octanol as the acceptor solvent assisted by effervescence was applied using a homemade supporting device that was specifically designed for this application. The device was printed in a 3D printer and allows for an increased fibre surface even with a low sample volume, which significantly facilitates the extraction. The samples were analysed by gas chromatography coupled to both an electron capture detector and a mass spectrometer for the quantification and unequivocal identification of the analytes, respectively. Effervescence was generated using citric acid and bicarbonate at a molar ratio 1:2, which significantly improves the extraction efficiency and reduces mechanical operations, since stirring and modifiers are not required. The results showed enrichment factors ranging from 13.1 to 140.1. Satisfactory recoveries (80-113 %) were obtained, with relative standard deviations from 3 to 15 % and good linearity. The detection limits (ng L-1) ranged from 10 to 35 (trihalomethanes), 12 to 220 (halonitromethanes), 17 to 79 (haloacetonitriles) and 10 to 16 (haloketones). The applicability of the method was assessed in 6 local water distribution systems.
Collapse
Affiliation(s)
- A Dominguez-Tello
- GIAHSA - Water Management Public Company of Huelva. Carretera A-492 Km.4, 21110 Aljaraque, Huelva, Spain
| | - A Dominguez-Alfaro
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Av. Fuerzas Armadas, 21007, Huelva, Spain
| | - J L Gómez-Ariza
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Av. Fuerzas Armadas, 21007, Huelva, Spain; ceiA3 - Agrifood Campus of International Excellence, University of Huelva, Spain; Research Centre for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Av. Fuerzas Armadas, 21007, Huelva, Spain
| | - A Arias-Borrego
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Av. Fuerzas Armadas, 21007, Huelva, Spain; ceiA3 - Agrifood Campus of International Excellence, University of Huelva, Spain; Research Centre for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Av. Fuerzas Armadas, 21007, Huelva, Spain.
| | - T García-Barrera
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Av. Fuerzas Armadas, 21007, Huelva, Spain; ceiA3 - Agrifood Campus of International Excellence, University of Huelva, Spain; Research Centre for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Av. Fuerzas Armadas, 21007, Huelva, Spain.
| |
Collapse
|
32
|
Jalili V, Barkhordari A, Ghiasvand A. Solid-phase microextraction technique for sampling and preconcentration of polycyclic aromatic hydrocarbons: A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104967] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Impedance model for voltage optimization of parabens extraction in an electromembrane millifluidic device. J Chromatogr A 2020; 1625:461270. [DOI: 10.1016/j.chroma.2020.461270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/10/2020] [Accepted: 05/21/2020] [Indexed: 12/16/2022]
|
34
|
González-Albarrán R, de Gyves J, Rodríguez de San Miguel E. Determination of Cadmium (II) in Aqueous Solutions by In Situ MID-FTIR-PLS Analysis Using a Polymer Inclusion Membrane-Based Sensor: First Considerations. Molecules 2020; 25:E3436. [PMID: 32751053 PMCID: PMC7436151 DOI: 10.3390/molecules25153436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 11/16/2022] Open
Abstract
Environmental monitoring is one of the most dynamically developing branches of chemical analysis. In this area, the use of multidimensional techniques and methods is encouraged to allow reliable determinations of metal ions with portable equipment for in-field applications. In this regard, this study presents, for the first time, the capabilities of a polymer inclusion membrane (PIM) sensor to perform cadmium (II) determination in aqueous solutions by in situ visible (VIS) and Mid- Fourier transform infrared spectroscopy (MID-FTIR) analyses of the polymeric films, using a partial least squares (PLS) chemometric approach. The influence of pH and metal content on cadmium (II) extraction, the characterization of its extraction in terms of the adsorption isotherm, enrichment factor and extraction equilibrium were studied. The PLS chemometric algorithm was applied to the spectral data to establish the relationship between cadmium (II) content in the membrane and the absorption spectra. Furthermore, the developed MID-FTIR method was validated through the determination of the figures of merit (accuracy, linearity, sensitivity, analytical sensitivity, minimum discernible concentration difference, mean selectivity, and limits of detection and quantitation). Results showed reliable calibration curves denoting systems' potentiality. Comparable results were obtained in the analysis of real samples (tap, bottle, and pier water) between the new MID-FTIR-PLS PIM based-sensor and F-AAS.
Collapse
Affiliation(s)
| | | | - Eduardo Rodríguez de San Miguel
- Departamento de Química Analítica, Facultad de Química, UNAM, Ciudad Universitaria, 04510 Cd. Mx., Mexico; (R.G.-A.); (J.d.G.)
| |
Collapse
|
35
|
Valderrama L, Merib J, Março PH, Valderrama P, Carasek E. Emerging micropollutants determination by NIR spectroscopy using pseudo-univariate calibration and TF-SPME coupled with 96-well plate system. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
36
|
Shishov A, Gagarionova S, Bulatov A. Deep eutectic mixture membrane-based microextraction: HPLC-FLD determination of phenols in smoked food samples. Food Chem 2020; 314:126097. [DOI: 10.1016/j.foodchem.2019.126097] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/14/2019] [Accepted: 12/22/2019] [Indexed: 11/27/2022]
|
37
|
Application of bar adsorptive microextraction (BAµE) for the determination of pesticides and emerging contaminants in water used for rice cultivation in southern Brazil. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2779-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
38
|
Gionfriddo E. Green analytical solutions for sample preparation: solid phase microextraction and related techniques. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2020-0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
For at least three decades, the analytical chemistry community is striving to apply the principles of Green Chemistry to the development of analytical methods. Many efforts have been made to outline the concept of Green Analytical Chemistry, which helped to redefine analytical procedures and drastically changed the philosophy of analytical method development. This book chapter describes the 12 principles of Green Analytical Chemistry and various methodologies for the assessment of the greenness of analytical methods. The three main steps in the analytical method development – sample preparation, separation and detection- are described in a “green perspective”. Special emphasis is given to the description of green sample preparation procedures, in particular to Solid Phase Microextraction, that, since its introduction in 1989 by Janusz Pawliszyn, has drastically revolutionized the methodology of sample preparation, providing a convenient and green alternative to already existing methods.
Collapse
Affiliation(s)
- Emanuela Gionfriddo
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics , The University of Toledo , 2801 Bancroft St, Mail stop 602 , Toledo , OH 43606 , USA
- School of Green Chemistry and Engineering , The University of Toledo , 2801 Bancroft St, Mail stop 602 , Toledo , OH 43606 , USA
- Dr Nina McClelland Laboratory for Water Chemistry and Environmental Analysis , The University of Toledo , 2801 Bancroft St, Mail stop 602 , Toledo , OH 43606 , USA
| |
Collapse
|
39
|
Jalili V, Barkhordari A, Ghiasvand A. Bioanalytical Applications of Microextraction Techniques: A Review of Reviews. Chromatographia 2020. [DOI: 10.1007/s10337-020-03884-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Fashi A, Cheraghi M, Badiee H, Zamani A. An analytical strategy based on the combination of ultrasound assisted flat membrane liquid phase microextraction and a smartphone reader for trace determination of malondialdehyde. Talanta 2020; 209:120618. [DOI: 10.1016/j.talanta.2019.120618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
|
41
|
Rahimi A, Nojavan S, Tabani H. Inside gel electromembrane extraction: A novel green methodology for the extraction of morphine and codeine from human biological fluids. J Pharm Biomed Anal 2020; 184:113175. [PMID: 32097772 DOI: 10.1016/j.jpba.2020.113175] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
In this work, a new mode of gel-electromembrane extraction (G-EME), called "inside" gel-EME (IG-EME) is proposed for the extraction of morphine and codeine as model basic drugs from complex biological samples. Here, an aqueous media that was captured inside the agarose gel membrane, acted as both gel membrane and the acceptor phase (AP) at the same time. In this regard, the membrane served as the separation filter (membrane) and supported liquid acceptor phase (SLAP) as well. With this new development, unwanted changes of the AP volume during the extraction, which is a common issue in the G-EME (due to electroendosmosis (EEO) phenomenon), was addressed properly. Briefly, the setup involved insertion of negative electrode inside the gel membrane and positive electrode into the donor phase (DP). Following that, the IG-EME was easily performed using optimal conditions (pH of the DP: 6.0; membrane composition (agarose concentration: 1% (w/v) in aqueous media with pH 3.0, and 15 mm thickness); voltage: 25 V; and extraction time: 30 min). After extraction, the agarose gel was withdrawn and centrifuged for 5 min with 12000 rpm, to disrupt its framework to release the "trapped aqueous AP" apart from the gel structure. The separated AP was finally injected into the HPLC-UV for the analysis. The limits of detection (LODs) and recoveries in this proposed method were obtained 1.5 ng mL-1 and 67.7 %-73.8 %, respectively. The system feasibility was examined by the quantification of model drugs in the real plasma and urine samples.
Collapse
Affiliation(s)
- Atyeh Rahimi
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
| | - Saeed Nojavan
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran.
| | - Hadi Tabani
- Department of Environmental Geology, Research Institute of Applied Sciences (ACECR), Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
42
|
Cocovi-Solberg DJ, Kellner A, Schmidt SN, Loibner AP, Miró M, Mayer P. Membrane Enhanced Bioaccessibility Extraction (MEBE) of hydrophobic soil pollutants - Using a semipermeable membrane for separating desorption medium and acceptor solvent. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113470. [PMID: 31706770 DOI: 10.1016/j.envpol.2019.113470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/05/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Bioaccessibility extractions are increasingly applied to measure the fraction of pollutants in soil, sediment and biochar, which can be released under environmentally or physiologically relevant conditions. However, the bioaccessibility of hydrophobic organic chemicals (HOCs) can be markedly underestimated when the sink capacity of the extraction medium is insufficient. Here, a novel method called "Membrane Enhanced Bioaccessibility Extraction" (MEBE) applies a semipermeable membrane to physically separate an aqueous desorption medium that sets the desorption conditions from an organic medium that serves as acceptor phase and infinite sink. The specific MEBE method combines HOC (1) desorption into a 2-hydroxypropyl-β-cyclodextrin solution, (2) transfer through a low-density polyethylene (LDPE) membrane and (3) release into ethanol, serving as analytical acceptor phase. The surface to volume ratio within the LDPE membrane is maximized for rapid depletion of desorbed molecules, and the capacity ratio between the acceptor phase and the environmental sample is maximized to achieve infinite sink conditions. Several experiments were conducted for developing, optimizing and pre-testing the method, which was then applied to four soils polluted with polycyclic aromatic hydrocarbons. MEBE minimized sample preparation and yielded a solvent extract readily analyzable by HPLC. This study focused on the proof-of-principle testing of the MEBE concept, which now can be extended and applied to other samples and desorption media.
Collapse
Affiliation(s)
- David J Cocovi-Solberg
- DTU Environment, Technical University of Denmark, Bygningstorvet B115, DK-2800, Kgs. Lyngby, Denmark; FI-TRACE group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa, Km 7.5, E-07122, Palma de Mallorca, Spain.
| | - Astrid Kellner
- DTU Environment, Technical University of Denmark, Bygningstorvet B115, DK-2800, Kgs. Lyngby, Denmark; BOKU, University of Natural Resources and Life Sciences Vienna, Dept. IFA-Tulln, Konrad Lorenz Strasse 20, A-3430, Tulln, Austria.
| | - Stine N Schmidt
- DTU Environment, Technical University of Denmark, Bygningstorvet B115, DK-2800, Kgs. Lyngby, Denmark.
| | - Andreas P Loibner
- BOKU, University of Natural Resources and Life Sciences Vienna, Dept. IFA-Tulln, Konrad Lorenz Strasse 20, A-3430, Tulln, Austria.
| | - Manuel Miró
- FI-TRACE group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa, Km 7.5, E-07122, Palma de Mallorca, Spain.
| | - Philipp Mayer
- DTU Environment, Technical University of Denmark, Bygningstorvet B115, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
43
|
Ríos-Gómez J, García-Valverde MT, López-Lorente ÁI, Toledo-Neira C, Lucena R, Cárdenas S. Polymeric ionic liquid immobilized onto paper as sorptive phase in microextraction. Anal Chim Acta 2020; 1094:47-56. [DOI: 10.1016/j.aca.2019.10.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/28/2022]
|
44
|
Applications of Hollow-Fiber and Related Microextraction Techniques for the Determination of Pesticides in Environmental and Food Samples—A Mini Review. SEPARATIONS 2019. [DOI: 10.3390/separations6040057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pesticides represent one of the most important groups of analytes in environmental analysis. Moreover, their levels are very frequently determined in food and beverages due to the concern over their possible adverse health effects. Their concentration in samples is usually very low; thus, they have to be preconcentrated. Conventional solvent and solid-phase extractions are mainly used for this purpose, but miniaturized approaches are also being applied more and more often. The present review covers solvent microextractions that use a semi-permeable membrane barrier between the sample and the solvent. The main representatives of this approach are hollow-fiber microextraction (HFME), solvent bar microextraction (SBME), electromembrane extraction (EME), and different variations of those, such as combinations with other sorbent or solvent microextractions, electromigration, etc. The relevant research from the last decade, dealing with the application of these microextractions to the isolation of pesticides from various environmental and food samples, is critically discussed with emphasis on their strengths and weak points.
Collapse
|
45
|
Reversed-phase chromatomembrane extraction as a novel approach for automated sample pretreatment: Anions determination in biodiesel by ion chromatography with conductivity detection. Anal Chim Acta 2019; 1087:62-68. [PMID: 31585567 DOI: 10.1016/j.aca.2019.08.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 11/20/2022]
Abstract
In this study, a reversed-phase chromatomembrane extraction (RP-CME) method as a novel approach for automated sample pretreatment was suggested for the first time. The RP-CME was applied to automated separation of anions (formate, chloride, nitrate, phosphate and sulfate) from biodiesel samples as a proof-of-concept example. The novel design of chromatomembrane cell was developed for on-line RP-CME. The RP-CME procedure assumed mass-transfer of water-soluble analytes from organic sample phase (biodiesel sample) to aqueous phase supported in a porous composite mass-transfer block. The composite mass-transfer block based on microporous hydrophobic poly (tetrafluoroethylene) and hydrophilic glass fiber was developed for the RP-CME implementation. The block provided the effective retention of aqueous phase into the cell and simultaneous penetration of organic phase. The hydrophilic membrane-based sheet was used for the on-line separation of hydrophilic emulsion (biodiesel in water) containing target analytes obtained during analytes elution by aqueous phase from the mass-transfer block. The RP-CME was successfully coupled with an ion chromatography with conductivity detection. The limits of detection, calculated from a blank test based on 3σ, were 5 μg kg-1 for sulfate, 6 μg kg-1 for nitrate, 3 μg kg-1 for chloride, 5 μg kg-1 for phosphate and 1 μg kg-1 for formate.
Collapse
|
46
|
Mollahosseini A, Elyasi Y, Rastegari M. Flat membrane-based electromembrane extraction coupled with UV–visible spectrophotometry for the determination of diethylhexyl phthalate in water samples. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Liquid - Phase microextraction and electromembrane extraction in millifluidic devices:A tutorial. Anal Chim Acta 2019; 1080:12-21. [DOI: 10.1016/j.aca.2019.05.075] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 01/20/2023]
|
48
|
Abstract
Metal–organic frameworks (MOFs) have attracted recently considerable attention in analytical sample preparation, particularly when used as novel sorbent materials in solid-phase microextraction (SPME). MOFs are highly ordered porous crystalline structures, full of cavities. They are formed by inorganic centers (metal ion atoms or metal clusters) and organic linkers connected by covalent coordination bonds. Depending on the ratio of such precursors and the synthetic conditions, the characteristics of the resulting MOF vary significantly, thus drifting into a countless number of interesting materials with unique properties. Among astonishing features of MOFs, their high chemical and thermal stability, easy tuneability, simple synthesis, and impressive surface area (which is the highest known), are the most attractive characteristics that makes them outstanding materials in SPME. This review offers an overview on the current state of the use of MOFs in different SPME configurations, in all cases covering extraction devices coated with (or incorporating) MOFs, with particular emphases in their preparation.
Collapse
|
49
|
Omena E, Oenning AL, Merib J, Richter P, Rosero-Moreano M, Carasek E. A green and simple sample preparation method to determine pesticides in rice using a combination of SPME and rotating disk sorption devices. Anal Chim Acta 2019; 1069:57-65. [DOI: 10.1016/j.aca.2019.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
|
50
|
Selecting an extraction solvent for a greener liquid phase microextraction (LPME) mode-based analytical method. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|