1
|
Yang Q, Qiu Q, Shi Y, Wang J, Chen F, Yang J, Zhang W, Yin Z. Determination of strobilurin fungicides residual in vegetables based on amino modified magnetic graphene oxide solid phase extraction coupled with GC-MS/MS. J Chromatogr A 2025; 1739:465455. [PMID: 39549664 DOI: 10.1016/j.chroma.2024.465455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/18/2024]
Abstract
This research investigated the creation and utilization of an amino-functionalized magnetic graphene oxide (Fe₃O₄-NH₂@GO) nanocomposite as a selective sorbent for extracting and identifying strobilurin fungicides (SFs) from vegetable samples. The investigation utilized a method where magnetic solid phase extraction (MSPE) was integrated with Gas chromatography-triple quadrupole mass spectrometer (GC-MS/MS) for analysis. The physicochemical properties of synthesized sorbent were characterized using Scanning electron microscope (SEM) , Fourier infrared transform spectrum (FT-IR) , X Ray Diffraction (XRD), and vibrating sample magnetometry (VSM) techniques. The adsorption performance of Fe₃O₄-NH₂@GO aligned with the pseudo-second-order kinetics, Elovich, and Freundlich isothermal adsorption models, suggesting various interactions with SFs, including π-π interactions, hydrogen bonding, and electrostatic forces. The maximum adsorption capacity of two selected representative SFs (Picoxystrobin and E-metominostrobin) for the adsorbent were 55.85 mg/g and 47.35 mg/g, respectively. Additionally, the amino group exhibited notable potential for SFs adsorption. Parameters for MSPE, such as the quantity of sorbent, adsorption duration, eluent types and volumes, and sample pH, were optimized. Under optimal conditions, the developed method showed satisfactory performance within a range of 10 to 2000 µg L⁻¹ (R² ≥ 0.9969), low detection limits (0.01-0.080 µg/kg), high analyte recovery (80.5-104.3 %), and good precision (RSD ≤ 4.96 %, n = 6). This method is rapid, straightforward, environmentally friendly, demonstrates good sensitivity and providing a new perspectives on developing sorbents for SFs in complex food matrices. Also Fe₃O₄-NH₂@GO as a sorbent firstly used for extraction and enrichment of phenyl fungicides residues in food samples exhibits remarkable promise, thereby contributing to the advancement of pesticides residue determination methodologies.
Collapse
Affiliation(s)
- Qinghua Yang
- Centers for Disease Control and Prevention of Nantong, Jiang Su 226007, PR China; Public Health Application Research Institute of Nantong University, Jiangsu 226007, PR China
| | - Qianying Qiu
- Centers for Disease Control and Prevention of Nantong, Jiang Su 226007, PR China; Public Health Application Research Institute of Nantong University, Jiangsu 226007, PR China
| | - Yilan Shi
- Centers for Disease Control and Prevention of Nantong, Jiang Su 226007, PR China; Public Health Application Research Institute of Nantong University, Jiangsu 226007, PR China
| | - Jinxin Wang
- Centers for Disease Control and Prevention of Nantong, Jiang Su 226007, PR China; Public Health Application Research Institute of Nantong University, Jiangsu 226007, PR China
| | - Feng Chen
- Centers for Disease Control and Prevention of Nantong, Jiang Su 226007, PR China; Public Health Application Research Institute of Nantong University, Jiangsu 226007, PR China
| | - Juan Yang
- Centers for Disease Control and Prevention of Nantong, Jiang Su 226007, PR China; Public Health Application Research Institute of Nantong University, Jiangsu 226007, PR China
| | - Weibing Zhang
- Centers for Disease Control and Prevention of Nantong, Jiang Su 226007, PR China; Public Health Application Research Institute of Nantong University, Jiangsu 226007, PR China.
| | - Zhen Yin
- Health Supervision Institute of Nantong, jiang Su Province 226007, PR China.
| |
Collapse
|
2
|
Al-Huqail AA. Effect of jasmonic acid on the phytoremediation of dinitrophenol from wastewater by Solanum nigrum L. and Atriplex lentiformis (Torr.) S. Watson. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80144-80153. [PMID: 37296250 DOI: 10.1007/s11356-023-28148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Phytoremediation is one of the best methods for cleaning up natural resources like water because plants are eco-friendly and safe for the ecosystem. Hyperaccumulators, e.g., Solanum nigrum L. and Atriplex lentiformis (Torr.) S. Watson, have been used to remove toxic metals from soil and water through phytoremediation techniques, but it is unknown if they can remove hazardous chemicals such as dinitrophenol (DNP), from wastewater. A hydroponic experiment was conducted to study the efficiency of S. nigrum and A. lentiformis in removing DNP from wastewater. Jasmonic acid (JAC) was applied to the tested plants in two doses, 0.25 and 0.50 mmol, in an effort to better understand how it affects phytoremediation effectiveness. The growth of S. nigrum and A. lentiformis improved significantly (p < 0.05) by the foliar application of JAC. The applications of JAC1 and JAC2 significantly (p < 0.05) increased nutrient uptake and chlorophyll concentrations in S. nigrum and A. lentiformis plants. The foliar spraying of S. nigrum and A. lentiformis with JAC significantly (p < 0.05) increased the antioxidant enzymes activity, i.e., SOD and POD. The levels of osmoregulatory substances like proline and carbohydrates significantly (p < 0.05) increased after JAC was sprayed on S. nigrum and A. lentiformis plants. In the case of S. nigrum, the efficiency of DNP removal varied between 53 and 69%, with an average of 63%, while in the case of A. lentiformis, it varied between 47 and 62%, with an average of 56%. The removal efficiency of DNP reached 67 and 69% when S. nigrum was sprayed with JAC1 and JAC2. When JAC1 and JAC2 were sprayed on A. lentiformis, DNP removal efficiency rose from 47 to 60 and from 47 to 62%, respectively. S. nigrum and A. lentiformis plants can be grown normally and survive in dinitrophenol-contaminated water without showing any toxic symptoms. S. nigrum and A. lentiformis have a powerful antioxidant system and the ability to produce vital compounds that alleviate the stress caused by DNP toxicity. The findings are crucial for cleaning up polluted water and protecting the ecosystem's health from dangerous pollutants.
Collapse
Affiliation(s)
- Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Jeon J, Park Y, Hwang Y. Catalytic Hydrodechlorination of 4-Chlorophenol by Palladium-Based Catalyst Supported on Alumina and Graphene Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091564. [PMID: 37177109 PMCID: PMC10181078 DOI: 10.3390/nano13091564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Hydrodechlorination (HDC) is a reaction that involves the use of hydrogen to cleave the C-Cl bond in chlorinated organic compounds such as chlorophenols and chlorobenzenes, thus reducing their toxicity. In this study, a palladium (Pd) catalyst, which is widely used for HDC due to its advantageous physical and chemical properties, was immobilized on alumina (Pd/Al) and graphene-based materials (graphene oxide and reduced graphene oxide; Pd/GO and Pd/rGO, respectively) to induce the HDC of 4-chlorophenol (4-CP). The effects of the catalyst dosage, initial 4-CP concentration, and pH on 4-CP removal were evaluated. We observed that 4-CP was removed very rapidly when the HDC reaction was induced by Pd/GO and Pd/rGO. The granulation of Pd/rGO using sand was also investigated as a way to facilitate the separation of the catalyst from the treated aqueous solution after use, which is to improve practicality and effectiveness of the use of Pd catalysts with graphene-based support materials in an HDC system. The granulated catalyst (Pd/rGOSC) was employed in a column to induce HDC in a continuous flow reaction, leading to the successful removal of most 4-CP after 48 h. The reaction mechanisms were also determined based on the oxidation state of Pd, which was observed using X-ray photoelectron spectroscopy. Based on the results as a whole, the proposed granulated catalyst has the potential to greatly enhance the practical applicability of HDC for water purification.
Collapse
Affiliation(s)
- Jintae Jeon
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Yuri Park
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Yuhoon Hwang
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
4
|
Maloku A, Berisha L, Jashari G, Arbneshi T, Kalcher K. Enhancement Effect of Cetyltrimethylammonium Bromide on Electrochemical Determination of Chlorophenols using a Carbon Paste Electrode. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820030120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Hu Z, Zhang X, Li J, Zhu Y. Comparative Study on the Regeneration of Fe 3O 4@Graphene Oxide Composites. Front Chem 2020; 8:150. [PMID: 32185164 PMCID: PMC7059001 DOI: 10.3389/fchem.2020.00150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/17/2020] [Indexed: 11/13/2022] Open
Abstract
In this study, two kinds of composites with the structure of graphene oxide (GO) sheets wrapped magnetic nanoparticles were investigated on their regeneration. The composites have a similar core-shell structure, but the interactions between the core and shell are quite different, which are electrostatic and covalent. They were characterized by scanning/transmission electron microscopy, power X-ray diffraction, and vibrating sample magnetometer analysis. Their morphologies and structures of the samples had been revealed using methylene blue and Pb(II) as adsorbates during regeneration. The results showed that the composites with covalent bonding interaction could maintain a stable core-shell structure and present a good regeneration performance for adsorption-desorption of methylene blue and Pb(II). The composites with electrostatic interaction could approximately preserve its core-shell structure and could be recyclable for adsorption-desorption of methylene blue, however, they would disintegrate its core-shell structure during adsorption/desorption of Pb(II), thus greatly decreasing their regeneration performance. The regeneration mechanisms of the composites were analyzed, which could provide a useful theoretical guide to design the GO sheets wrapped magnetic nanoparticles composites.
Collapse
Affiliation(s)
- Zhongliang Hu
- Department of Inorganic Nonmetallic Material, College of Metallurgy and Material Engineering, Hunan University of Technology, Zhuzhou, China
| | - Xiaojing Zhang
- Department of Inorganic Nonmetallic Material, College of Metallurgy and Material Engineering, Hunan University of Technology, Zhuzhou, China
| | - Jingying Li
- Department of Inorganic Nonmetallic Material, College of Metallurgy and Material Engineering, Hunan University of Technology, Zhuzhou, China
| | - Yirong Zhu
- Department of Inorganic Nonmetallic Material, College of Metallurgy and Material Engineering, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
6
|
Pashaei Y, Daraei B, Shekarchi M. Magnetic-Dispersive Solid Phase Extraction Based on Graphene Oxide-Fe3O4 Nanocomposites Followed by High Performance Liquid Chromatography-Fluorescence for the Preconcentration and Determination of Terazosin Hydrochloride in Human Plasma. J Chromatogr Sci 2020; 58:178-186. [PMID: 31746326 DOI: 10.1093/chromsci/bmz085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/11/2019] [Accepted: 09/18/2019] [Indexed: 11/13/2022]
Abstract
In the present study, a facile modified impregnation method was employed to synthesize superparamagnetic graphene oxide-Fe3O4 (GO-Fe3O4) nanocomposites. Based on the GO-Fe3O4 as adsorbent, a simple and fast magnetic-dispersive solid phase extraction followed by high performance liquid chromatography with fluorescence detection (M-dSPE-HPLC-FL) method was established and validated for the preconcentration and determination of terazosin hydrochloride (TRZ) in human plasma samples. The obtained nanomaterials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometry. Different parameters affecting the extraction efficiency, such as sample pH, amount of sorbent, extraction time, elution solvent and its volume and desorption time, were evaluated and optimized. The linearity of the proposed method was excellent over the range 0.3-50.0 ng mL-1 with an acceptable coefficient of determination (R2 = 0.9989). The limit of quantification and limit of detection were found to be 0.3 and 0.09 ng mL-1, respectively, and the preconcentration factor of 10 was achieved. Intra- and inter-day precision expressed as relative standard deviation (RSD %, n = 6) were between 2.2-3.8% and 4.7-6.4%, respectively. Accuracy, estimated by recovery assays, was 97.7-106.6% with RSD ≤ 5.2%. Ultimately, the applicability of the method was successfully confirmed by the extraction and determination of TRZ in human plasma samples.
Collapse
Affiliation(s)
- Yaser Pashaei
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bahram Daraei
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Shekarchi
- Food and Drug Laboratory Research Center, Food and Drug Organization, MOH & ME, Tehran, Iran
| |
Collapse
|
7
|
Azzouz A, Colón LP, Souhail B, Ballesteros E. A multi-residue method for GC-MS determination of selected endocrine disrupting chemicals in fish and seafood from European and North African markets. ENVIRONMENTAL RESEARCH 2019; 178:108727. [PMID: 31520833 DOI: 10.1016/j.envres.2019.108727] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
An integrated study was conducted to determine the presence of six types of endocrine disrupting chemicals (bisphenol A, triclosan, two alkylphenols, two phenylphenols, eleven organophosphorus pesticides and seven parabens) in the fish and seafood samples from Europe and North Africa. The proposed method involves ultrasound-assisted extraction followed by continuous solid-phase extraction prior to GC-MS analysis. Analytical quality parameters such as linearity, accuracy, precision, sensitivity and selectivity were all good. Limits of detections ranged from 0.5 to 20.0 ng/kg. The relative standard deviation was lower than 7.5% and recoveries ranged from 84 to 105%. The method was successfully used to determine the target analytes in 20 fish and seafood samples from different fish shops and supermarkets in Europe and North Africa. Analyte contents spanned the range 4.6-730 ng/kg and were all below the maximum legally allowed limits. EDCs most frequently found in the samples analysed were dichlorvos, 2-phenylphenol and nonylphenol.
Collapse
Affiliation(s)
- Abdelmonaim Azzouz
- Department of Physical and Analytical Chemistry, E.P.S. of Linares, University of Jaén, E-23700, Linares, Jaén, Spain; Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Laura Palacios Colón
- Department of Physical and Analytical Chemistry, E.P.S. of Linares, University of Jaén, E-23700, Linares, Jaén, Spain
| | - Badredine Souhail
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Evaristo Ballesteros
- Department of Physical and Analytical Chemistry, E.P.S. of Linares, University of Jaén, E-23700, Linares, Jaén, Spain.
| |
Collapse
|
8
|
Magnetically recoverable Fe2O3/N-graphene with enhanced visible photocatalytic performance. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2018.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Surfactant-assisted dispersive liquid–liquid micro-extraction combined with magnetic solid-phase extraction for analysis of polyphenols in tobacco samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1354-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Yu S, Liu Z, Li H, Zhang J, Yuan XX, Jia X, Wu Y. Combination of a graphene SERS substrate and magnetic solid phase micro-extraction used for the rapid detection of trace illegal additives. Analyst 2018; 143:883-890. [DOI: 10.1039/c7an01547j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface enhanced Raman scattering (SERS) is an ultra-sensitive spectroscopy technique, which can provide rich structural information for a great number of molecules, while solid phase micro-extraction (SPME) is an efficient method for sample pretreatment in analytical chemistry, particularly in a micro-system.
Collapse
Affiliation(s)
- Shihua Yu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Zhigang Liu
- Center of Analysis and Measurement
- Jilin Institute of Chemical Technology
- Jilin 132022
- P. R. China
| | - Hongwei Li
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Jianpo Zhang
- College of Chemical & Pharmaceutical Engineering
- Jilin Institute of Chemical Technology
- Jilin 132022
- P. R. China
| | - Xin-xin Yuan
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Xiangyu Jia
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
11
|
Cao X, Jiang Z, Wang S, Hong S, Li H, Shao Y, She Y, Wang J, Jin F, Jin M. One-pot synthesis of magnetic zeolitic imidazolate framework/grapheme oxide composites for the extraction of neonicotinoid insecticides from environmental water samples. J Sep Sci 2017; 40:4747-4756. [DOI: 10.1002/jssc.201700674] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaolin Cao
- Key Laboratory of Agri-Food Safety and Quality, Institute of Quality Standard and Testing Technology for Agro-Products; Chinese Academy of Agricultural Sciences; Beijing P.R. China
| | - Zejun Jiang
- Key Laboratory of Agri-Food Safety and Quality, Institute of Quality Standard and Testing Technology for Agro-Products; Chinese Academy of Agricultural Sciences; Beijing P.R. China
| | - Shanshan Wang
- Key Laboratory of Agri-Food Safety and Quality, Institute of Quality Standard and Testing Technology for Agro-Products; Chinese Academy of Agricultural Sciences; Beijing P.R. China
| | - Sihui Hong
- Key Laboratory of Agri-Food Safety and Quality, Institute of Quality Standard and Testing Technology for Agro-Products; Chinese Academy of Agricultural Sciences; Beijing P.R. China
| | - Hui Li
- Key Laboratory of Agri-Food Safety and Quality, Institute of Quality Standard and Testing Technology for Agro-Products; Chinese Academy of Agricultural Sciences; Beijing P.R. China
| | - Yong Shao
- Key Laboratory of Agri-Food Safety and Quality, Institute of Quality Standard and Testing Technology for Agro-Products; Chinese Academy of Agricultural Sciences; Beijing P.R. China
| | - Yongxin She
- Key Laboratory of Agri-Food Safety and Quality, Institute of Quality Standard and Testing Technology for Agro-Products; Chinese Academy of Agricultural Sciences; Beijing P.R. China
| | - Jing Wang
- Key Laboratory of Agri-Food Safety and Quality, Institute of Quality Standard and Testing Technology for Agro-Products; Chinese Academy of Agricultural Sciences; Beijing P.R. China
| | - Fen Jin
- Key Laboratory of Agri-Food Safety and Quality, Institute of Quality Standard and Testing Technology for Agro-Products; Chinese Academy of Agricultural Sciences; Beijing P.R. China
| | - Maojun Jin
- Key Laboratory of Agri-Food Safety and Quality, Institute of Quality Standard and Testing Technology for Agro-Products; Chinese Academy of Agricultural Sciences; Beijing P.R. China
| |
Collapse
|
12
|
Wang M, Jiao Y, Cheng C, Hua J, Yang Y. Nitrogen-doped carbon quantum dots as a fluorescence probe combined with magnetic solid-phase extraction purification for analysis of folic acid in human serum. Anal Bioanal Chem 2017; 409:7063-7075. [DOI: 10.1007/s00216-017-0665-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/24/2017] [Accepted: 09/20/2017] [Indexed: 12/14/2022]
|
13
|
Stepwise Synthesis of Graphene Oxide-Wrapped Magnetic Composite and Its Application for the Removal of Pb(II). ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/s13369-017-2613-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Li N, Chen J, Shi YP. Magnetic polyethyleneimine functionalized reduced graphene oxide as a novel magnetic solid-phase extraction adsorbent for the determination of polar acidic herbicides in rice. Anal Chim Acta 2017; 949:23-34. [DOI: 10.1016/j.aca.2016.11.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/14/2016] [Accepted: 11/04/2016] [Indexed: 10/20/2022]
|