1
|
Zhang X, Frankevich V, Ding J, Ma Y, Chingin K, Chen H. Direct mass spectrometry analysis of exhaled human breath in real-time. MASS SPECTROMETRY REVIEWS 2025; 44:43-61. [PMID: 37565588 DOI: 10.1002/mas.21855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/02/2022] [Accepted: 10/01/2022] [Indexed: 08/12/2023]
Abstract
The molecular composition of exhaled human breath can reflect various physiological and pathological conditions. Considerable progress has been achieved over the past decade in real-time analysis of exhaled human breath using direct mass spectrometry methods, including selected ion flow tube mass spectrometry, proton transfer reaction mass spectrometry, extractive electrospray ionization mass spectrometry, secondary electrospray ionization mass spectrometry, acetone-assisted negative photoionization mass spectrometry, atmospheric pressure photoionization mass spectrometry, and low-pressure photoionization mass spectrometry. Here, recent developments in direct mass spectrometry analysis of exhaled human breath are reviewed with regard to analytical performance (chemical sensitivity, selectivity, quantitative capabilities) and applications of the developed methods in disease diagnosis, targeted molecular detection, and real-time metabolic monitoring.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, People's Republic of China
| | - Vladimir Frankevich
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Jianhua Ding
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, People's Republic of China
| | - Yuanyuan Ma
- Department of GCP, Shanghai Public Health Clinical Center, Shanghai, China
| | - Konstantin Chingin
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, People's Republic of China
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| |
Collapse
|
2
|
López-Juan A, Millán-Santiago J, Benedé JL, Chisvert A, Lucena R, Cárdenas S. Coupling Miniaturized Stir Bar Sorptive Dispersive Microextraction to Needle-Based Electrospray Ionization Emitters for Mass Spectrometry: Determination of Tetrahydrocannabinol in Human Saliva as a Proof of Concept. Anal Chem 2024; 96:9629-9635. [PMID: 38743697 PMCID: PMC11170552 DOI: 10.1021/acs.analchem.4c01297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Direct coupling of sample preparation with mass spectrometry (MS) can speed up analysis, enabling faster decision-making. In such combinations, where the analysis time is mainly defined by the extraction procedure, magnetic dispersive solid-phase extraction emerges as a relevant technique because of its rapid workflow. The dispersion and retrieval of the magnetic sorbent are typically uncoupled stages, thus reducing the potential simplicity. Stir bar sorptive dispersive microextraction (SBSDME) is a novel technique that integrates both stages into a single device. Its miniaturization (mSBSDME) makes it more portable and compatible with low-availability samples. This article reports the direct combination of mSBSDME and MS using a needle-based electrospray ionization (NESI) emitter as the interface. This combination is applied to determine tetrahydrocannabinol in saliva samples, a relevant societal problem if the global consumption rates of cannabis are considered. The coupling requires only the transference of the magnet (containing the sorbent and the isolated analyte) from the mSBSDME to the hub of a hypodermic needle, where the online elution occurs. The application of 5 kV on the needle forms an electrospray on its tip, transferring the ionized analyte to the MS inlet. The excellent performance of mSBSDME-NESI-MS/MS relies on the sensitivity (limits of detection as low as 2.25 ng mL-1), the precision (relative standard deviation lower than 15%), and the accuracy (relative recoveries ranged from 87 to 127%) obtained. According to the results, the mSBSDME-NESI-MS/MS technique promises faster and more efficient chemical analysis in MS-based applications.
Collapse
Affiliation(s)
- Andreu
L. López-Juan
- GICAPC
Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot E-46100, Valencia, Spain
- Affordable
and Sustainable Sample Preparation (AS2P) Research Group, Analytical
Chemistry Department, Instituto Químico para la Energía
y el Medioambiente (IQUEMA), University
of Córdoba, Campus of Rabanales, Marie Curie Building, Córdoba E-14071, Spain
| | - Jaime Millán-Santiago
- Affordable
and Sustainable Sample Preparation (AS2P) Research Group, Analytical
Chemistry Department, Instituto Químico para la Energía
y el Medioambiente (IQUEMA), University
of Córdoba, Campus of Rabanales, Marie Curie Building, Córdoba E-14071, Spain
| | - Juan L. Benedé
- GICAPC
Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot E-46100, Valencia, Spain
| | - Alberto Chisvert
- GICAPC
Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot E-46100, Valencia, Spain
| | - Rafael Lucena
- Affordable
and Sustainable Sample Preparation (AS2P) Research Group, Analytical
Chemistry Department, Instituto Químico para la Energía
y el Medioambiente (IQUEMA), University
of Córdoba, Campus of Rabanales, Marie Curie Building, Córdoba E-14071, Spain
| | - Soledad Cárdenas
- Affordable
and Sustainable Sample Preparation (AS2P) Research Group, Analytical
Chemistry Department, Instituto Químico para la Energía
y el Medioambiente (IQUEMA), University
of Córdoba, Campus of Rabanales, Marie Curie Building, Córdoba E-14071, Spain
| |
Collapse
|
3
|
Wang J, Zhang W, Ding Q, Xu J, Yu Q, Zhang L. Flexible filament winding strategy to prepare COF@polyionic liquid-coated fibers for non-selective exclusion of macromolecules in electro-enhanced solid-phase microextraction. Anal Chim Acta 2024; 1306:342609. [PMID: 38692788 DOI: 10.1016/j.aca.2024.342609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Accurate quantitative analysis of small molecule metabolites in biological samples is of great significance. Hydroxypolycyclic aromatic hydrocarbons (OH-PAHs) are metabolic derivatives of emerging pollutants, reflecting exposure to polycyclic aromatic hydrocarbons (PAHs). Macromolecules such as proteins and enzymes in biological samples will interfere with the accurate quantification of OH-PAHs, making direct analysis impossible, requiring a series of complex treatments such as enzymatic hydrolysis. Therefore, the development of matrix-compatible fiber coatings that can exclude macromolecules is of great significance to improve the ability of solid-phase microextraction (SPME) technology to selectively quantify small molecules in complex matrices and achieve rapid and direct analysis. RESULTS We have developed an innovative coating with a stable macromolecular barrier using electrospinning and flexible filament winding (FW) technologies. This coating, referred to as the hollow fibrous covalent organic framework@polyionic liquid (F-COF@polyILs), demonstrates outstanding conductivity and stability. It accelerates the adsorption equilibrium time (25 min) for polar OH-PAHs through electrically enhanced solid-phase microextraction (EE-SPME) technology. Compared to the powder form, F-COF@polyILs coating displays effective non-selective large-size molecular sieving. Combining gas chromatography-tandem triple quadrupole mass spectrometry (GC-MS/MS), we have established a simple, efficient quantitative analysis method for OH-PAHs with a low detection limit (0.008-0.05 ng L-1), wide linear range (0.02-1000 ng L-1), and good repeatability (1.0%-7.3 %). Experimental results show that the coated fiber exhibits good resistance to matrix interference (2.5%-16.7 %) in complex biological matrices, and has been successfully used for OH-PAHs analysis in human urine and plasma. SIGNIFICANCE FW technology realizes the transformation of the traditional powder form of COF in SPME coating to a uniform non-powder coating, giving its ability to exclude large molecules in complex biological matrices. A method for quantitatively detecting OH-PAHs in real biological samples was also developed. Therefore, the filament winding preparation method for F-COF@polyILs coated fibers, along with fibrous COFs' morphology control, has substantial implications for efficiently extracting target compounds from complex matrices.
Collapse
Affiliation(s)
- Jingyi Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenmin Zhang
- Department of Chemistry and Biotechnology, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Qingqing Ding
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Jinhua Xu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qidong Yu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Lan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
4
|
Zheng R, Su R, Fan Y, Xing F, Huang K, Yan F, Chen H, Liu B, Fang L, Du Y, Zhou F, Wang D, Feng S. Machine Learning-Based Integrated Multiomics Characterization of Colorectal Cancer Reveals Distinctive Metabolic Signatures. Anal Chem 2024; 96:8772-8781. [PMID: 38743842 DOI: 10.1021/acs.analchem.4c01171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The metabolic signature identification of colorectal cancer is critical for its early diagnosis and therapeutic approaches that will significantly block cancer progression and improve patient survival. Here, we combined an untargeted metabolic analysis strategy based on internal extractive electrospray ionization mass spectrometry and the machine learning approach to analyze metabolites in 173 pairs of cancer samples and matched normal tissue samples to build robust metabolic signature models for diagnostic purposes. Screening and independent validation of metabolic signatures from colorectal cancers via machine learning methods (Logistic Regression_L1 for feature selection and eXtreme Gradient Boosting for classification) was performed to generate a panel of seven signatures with good diagnostic performance (the accuracy of 87.74%, sensitivity of 85.82%, and specificity of 89.66%). Moreover, seven signatures were evaluated according to their ability to distinguish between cancer and normal tissues, with the metabolic molecule PC (30:0) showing good diagnostic performance. In addition, genes associated with PC (30:0) were identified by multiomics analysis (combining metabolic data with transcriptomic data analysis) and our results showed that PC (30:0) could promote the proliferation of colorectal cancer cell SW480, revealing the correlation between genetic changes and metabolic dysregulation in cancer. Overall, our results reveal potential determinants affecting metabolite dysregulation, paving the way for a mechanistic understanding of altered tissue metabolites in colorectal cancer and design interventions for manipulating the levels of circulating metabolites.
Collapse
Affiliation(s)
- Ran Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Rui Su
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Yusi Fan
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Software, Jilin University, Changchun 130021, China
| | - Fan Xing
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Huanwen Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Botong Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Laiping Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Yechao Du
- Department of General Surgery Center, First Hospital of Jilin University, 1 Xinmin Street Changchun, Jilin 130012, China
| | - Fengfeng Zhou
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Software, Jilin University, Changchun 130021, China
| | - Daguang Wang
- Department of Gastric Colorectal and Anal Surgery, First Hospital of Jilin University, 1 Xinmin Street Changchun, Jilin 130012, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
5
|
Huang X, Li Z, Zhang T, Zhu J, Wang X, Nie M, Harada K, Zhang J, Zou X. Research progress in human biological monitoring of aromatic hydrocarbon with emphasis on the analytical technology of biomarkers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114917. [PMID: 37094484 DOI: 10.1016/j.ecoenv.2023.114917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Aromatic hydrocarbons are unsaturated compounds containing carbon and hydrogen that form single aromatic ring, or double, triple, or multiple fused rings. This review focuses on the research progress of aromatic hydrocarbons represented by polycyclic aromatic hydrocarbons (including halogenated polycyclic aromatic hydrocarbons), benzene and its derivatives including toluene, ethylbenzene, xylenes (o-, m- and p-), styrene, nitrobenzene, and aniline. Due to the toxicity, widespread coexistence, and persistence of aromatic hydrocarbons in the environment, accurate assessment of exposure to aromatic hydrocarbons is essential to protect human health. The effects of aromatic hydrocarbons on human health are mainly derived from three aspects: different routes of exposure, the duration and relative toxicity of aromatic hydrocarbons, and the concentration of aromatic hydrocarbons which should be below the biological exposure limit. Therefore, this review discusses the primary exposure routes, toxic effects on humans, and key populations, in particular. This review briefly summarizes the different biomarker indicators of main aromatic hydrocarbons in urine, since most aromatic hydrocarbon metabolites are excreted via urine, which is more feasible, convenient, and non-invasive. In this review, the pretreatment and analytical techniques are compiled systematically for the qualitative and quantitative assessments of aromatic hydrocarbons metabolites such as gas chromatography and high-performance liquid chromatography with multiple detectors. This review aims to identify and monitor the co-exposure of aromatic hydrocarbons that provides a basis for the formulation of corresponding health risk control measures and guide the adjustment of the exposure dose of pollutants to the population.
Collapse
Affiliation(s)
- Xinyi Huang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Zhuoya Li
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Tianai Zhang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Jing Zhu
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Xuan Wang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Manqing Nie
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Kouji Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jing Zhang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China.
| | - Xiaoli Zou
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
A novel and easy-to-construct polymeric l-glutamic acid-modified sensor for urinary 1-hydroxypyrene detection: Human biomonitoring of polycyclic aromatic hydrocarbons exposure. Talanta 2023; 253:123929. [PMID: 36108517 DOI: 10.1016/j.talanta.2022.123929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/13/2022]
Abstract
1-Hydroxypyrene (1-OHP), a metabolite of polycyclic aromatic hydrocarbons (PAHs), is a frequently used biomarker for assessing human exposure to PAHs. Therefore, the technology that provides a quick, simple, cost-effective, portable, accurate, precise, and reliable test is still in great demand. To the best of our knowledge, the creation of an electrochemical device based on poly(l-glutamic acid)-modified a screen-printed graphene electrode (poly(L-GA)/SPGE) for 1-OHP detection was described for the first time. The developed sensor was simply and rapidly manufactured via only a single step of electropolymerization. All the concerned parameters and electroanalytical conditions were studied to obtain the best performance of the methodology. Under optimal conditions, the 1-OHP sensing provided a linear range of 1-1000 nM with the limits of detection and quantification of 0.95 and 3.16 nM, respectively. Moreover, this developed sensor was successfully utilized by determining 1-OHP in human urine samples. In comparison with conventional methods, this newly proposed electrochemical methodology might be tremendously valuable for 1-OHP evaluation in environmental and occupational applications, leading to the early detection of illness risk linked to PAHs in the human body.
Collapse
|
7
|
Zheng R, Su R, Xing F, Li Q, Liu B, Wang D, Du Y, Huang K, Yan F, Wang J, Chen H, Feng S. Metabolic-Dysregulation-Based iEESI-MS Reveals Potential Biomarkers Associated with Early-Stage and Progressive Colorectal Cancer. Anal Chem 2022; 94:11821-11830. [PMID: 35976989 DOI: 10.1021/acs.analchem.2c02072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The application of rapid and accurate diagnostic methods can improve colorectal cancer (CRC) survival rates dramatically. Here, we used a non-targeted metabolic analysis strategy based on internal extractive electrospray ionization mass spectrometry (iEESI-MS) to detect metabolite ions associated with the progression of CRC from 172 tissues (45 stage I/II CRC, 41 stage III/IV CRC, and 86 well-matched normal tissues). A support vector machine (SVM) model based on 10 differential metabolite ions for differentiating early-stage CRC from normal tissues was built with a good prediction accuracy of 92.6%. The biomarker panel consisting of lysophosphatidylcholine (LPC) (18:0) has good diagnostic potential in differentiating early-stage CRC from advanced-stage CRC. We showed that the down-regulation of LPC (18:0) in tumor tissues is associated with CRC progression and related to the regulation of the epidermal growth factor receptor. Pathway analysis showed that metabolic pathways in CRC are related to glycerophospholipid metabolism and purine metabolism. In conclusion, we built an SVM model with good performance to distinguish between early-stage CRC and normal groups based on iEESI-MS and found that LPC (18:0) is associated with the progression of CRC.
Collapse
Affiliation(s)
- Ran Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Rui Su
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Fan Xing
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qing Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Botong Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Daguang Wang
- Department of Gastric Colorectal and Anal Surgery, First Hospital of Jilin University, Changchun 130021, China
| | - Yechao Du
- Department of Gastric Colorectal and Anal Surgery, First Hospital of Jilin University, Changchun 130021, China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jianfeng Wang
- Department of Radiotherapy, China-Japan Union Hospital of Jilin University, Changchun 130021, China
| | - Huanwen Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
8
|
Miao H, Wu XQ, Wang YN, Chen DQ, Chen L, Vaziri ND, Zhuang S, Guo Y, Su W, Ma SX, Zhang HQ, Shang YQ, Yu XY, Zhao YL, Mao JR, Gao M, Zhang JH, Zhao J, Zhang Y, Zhang L, Zhao YY, Cao G. 1-Hydroxypyrene mediates renal fibrosis through aryl hydrocarbon receptor signalling pathway. Br J Pharmacol 2021; 179:103-124. [PMID: 34625952 DOI: 10.1111/bph.15705] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE In chronic kidney disease (CKD), patients inevitably reach end-stage renal disease and require renal transplant. Evidence suggests that CKD is associated with metabolite disorders. However, the molecular pathways targeted by metabolites remain enigmatic. Here, we describe roles of 1-hydroxypyrene in mediating renal fibrosis. EXPERIMENTAL APPROACH We analysed 5406 urine and serum samples from patients with Stage 1-5 CKD using metabolomics, and 1-hydroxypyrene was identified and validated using longitudinal and drug intervention cohorts as well as 5/6 nephrectomised and adenine-induced rats. KEY RESULTS We identified correlations between the urine and serum levels of 1-hydroxypyrene and the estimated GFR in patients with CKD onset and progression. Moreover, increased 1-hydroxypyrene levels in serum and kidney tissues correlated with decreased renal function in two rat models. Up-regulated mRNA expression of aryl hydrocarbon receptor and its target genes, including CYP1A1, CYP1A2 and CYP1B1, were observed in patients and rats with progressive CKD. Further we showed up-regulated mRNA expression of aryl hydrocarbon receptor and its three target genes, plus up-regulated nuclear aryl hydrocarbon receptor protein levels in mice and HK-2 cells treated with 1-hydroxypyrene, which caused accumulation of extracellular matrix components. Treatment with aryl hydrocarbon receptor short hairpin RNA or flavonoids inhibited mRNA expression of aryl hydrocarbon receptor and its target genes in 1-hydroxypyrene-induced HK-2 cells and mice. CONCLUSION AND IMPLICATIONS Metabolite 1-hydroxypyrene was demonstrated to mediate renal fibrosis through activation of the aryl hydrocarbon receptor signalling pathway. Targeting aryl hydrocarbon receptor may be an alternative therapeutic strategy for CKD progression.
Collapse
Affiliation(s)
- Hua Miao
- Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| | - Xia-Qing Wu
- Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| | - Yan-Ni Wang
- Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| | - Dan-Qian Chen
- Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| | - Lin Chen
- Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Wei Su
- Department of Nephrology, Baoji Central Hospital, Baoji, China
| | - Shi-Xing Ma
- Department of Nephrology, Baoji Central Hospital, Baoji, China
| | - Huan-Qiao Zhang
- Department of Nephrology, Baoji Central Hospital, Baoji, China
| | - You-Quan Shang
- Department of Nephrology, Baoji Central Hospital, Baoji, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, China
| | - Yan-Long Zhao
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, China
| | - Jia-Rong Mao
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, China
| | - Ming Gao
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, China
| | - Jin-Hua Zhang
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, China
| | - Jin Zhao
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, China
| | - Yuan Zhang
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, China
| | - Li Zhang
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, China
| | - Ying-Yong Zhao
- Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Mikhail IE, Tehranirokh M, Gooley AA, Guijt RM, Breadmore MC. Hyphenated sample preparation-electrospray and nano-electrospray ionization mass spectrometry for biofluid analysis. J Chromatogr A 2021; 1646:462086. [PMID: 33892255 DOI: 10.1016/j.chroma.2021.462086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Stand-alone electrospray ionization mass spectrometry (ESI-MS) has been advancing through enhancements in throughput, selectivity and sensitivity of mass spectrometers. Unlike traditional MS techniques which usually require extensive offline sample preparation and chromatographic separation, many sample preparation techniques are now directly coupled with stand-alone MS to enable outstanding throughput for bioanalysis. In this review, we summarize the different sample clean-up and/or analyte enrichment strategies that can be directly coupled with ESI-MS and nano-ESI-MS for the analysis of biological fluids. The overview covers the hyphenation of different sample preparation techniques including solid phase extraction (SPE), solid phase micro-extraction (SPME), slug flow micro-extraction/nano-extraction (SFME/SFNE), liquid extraction surface analysis (LESA), extraction electrospray, extraction using digital microfluidics (DMF), and electrokinetic extraction (EkE) with ESI-MS and nano-ESI-MS.
Collapse
Affiliation(s)
- Ibraam E Mikhail
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), Australia; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences (Chemistry), University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia; Department of Analytical Chemistry, Faculty of Pharmacy, Mansoura University, 35516, Egypt
| | - Masoomeh Tehranirokh
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), Australia; Trajan Scientific and Medical, Ringwood, VIC, 3134, Australia
| | - Andrew A Gooley
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), Australia; Trajan Scientific and Medical, Ringwood, VIC, 3134, Australia
| | - Rosanne M Guijt
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), Australia; Centre for Regional and Rural Futures, Deakin University, Geelong, VIC, 3220, Australia
| | - Michael C Breadmore
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), Australia; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences (Chemistry), University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
10
|
Song G, Zhu Q, Li L, Zheng Z, Zhao Q, Feng J, Zhang X, Wang P, Chen K, Shen Q. Lipidomics phenotyping of clam (Corbicula fluminea) through graphene/fibrous silica nanohybrids based solid-phase extraction and HILIC-MS analysis. Food Chem 2021; 354:129565. [PMID: 33756323 DOI: 10.1016/j.foodchem.2021.129565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/20/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023]
Abstract
Polyunsaturated phospholipids are abundant in clam (Corbicula fluminea) but difficult to be fully extracted. Herein, graphene/fibrous silica (G/KCC-1) nanohybrids were synthesized, characterized, and applied for solid-phase extraction (SPE) of phospholipids in clam. The effectiveness of G/KCC-1 SPE was verified by hydrophilic interaction chromatography mass spectrometry (HILIC-MS) based lipidomics and statistical analysis. The ions of PE 16:0/18:1 (m/z 716.4), PC 16:0/20:5 (m/z 824.6) and etc. were regarded as the main difference among the crude lipids, acetone washed extract, and eluate of G/KCC-1 SPE. Finally, this method was validated in terms of linearity (R2 0.9965 to 0.9981), sensitivity (LOD 0.19-0.51 μg·mL-1 and LOQ 0.48 - 1.47 μg·mL-1), and precision (RSDintra-day ≤ 7.16% and RSDinter-day ≤ 7.30%). In conclusion, the G/KCC-1 SPE and HILIC-MS method was shown to be accurate and efficient in selective extracting and phenotyping phospholipids in C. fluminea.
Collapse
Affiliation(s)
- Gongshuai Song
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Qinchao Zhu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Linqiu Li
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zhenxiao Zheng
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Qiaoling Zhao
- Zhoushan Institute of Calibration and Testing for Quality and Technical Supervision, Zhoushan 316021, China
| | - Junli Feng
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Xiaodi Zhang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Pingya Wang
- Zhoushan Institute of Calibration and Testing for Quality and Technical Supervision, Zhoushan 316021, China
| | - Kang Chen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China.
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China.
| |
Collapse
|
11
|
Chen L, Ghiasvand A, Rodriguez ES, Innis PC, Paull B. Applications of nanomaterials in ambient ionization mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
|
13
|
Titania-coated fibrous silica (TiO2/KCC-1) core-shell microspheres based solid-phase extraction in clam (Corbicula fluminea) using hydrophilic interaction liquid chromatography and mass spectrometry. Food Res Int 2020; 137:109408. [DOI: 10.1016/j.foodres.2020.109408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
|
14
|
Wang Z, Cao Y, Lu Y, Zhang F, Su Y, Guo Y. Ultrasonic extraction and nebulization in real-time coupled with carbon fiber ionization mass spectrometry for rapid screening of the synthetic drugs adulterated into herbal products. Anal Chim Acta 2020; 1136:62-71. [DOI: 10.1016/j.aca.2020.08.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
|
15
|
Lu H, Zhang H, Wei Y, Chen H. Ambient mass spectrometry for the molecular diagnosis of lung cancer. Analyst 2020; 145:313-320. [PMID: 31872201 DOI: 10.1039/c9an01365b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lung cancer is one of the most common malignancies and the leading cause of cancer-related death worldwide. Among the technologies suitable for the rapid and accurate molecular diagnosis of lung cancer, ambient mass spectrometry (AMS) has gained increasing interest as it allows the direct profiling of molecular information from various biological samples (e.g., tissue, serum, urine and sputum) in real-time and with minimal or no sample pretreatment. This minireview summarizes the applications of AMS in lung cancer studies (including tissue molecular identification, the discovery of potential biomarkers, and surgical margin assessment), and discusses the challenges and perspectives of AMS in the clinical precision molecular diagnosis of lung cancer.
Collapse
Affiliation(s)
- Haiyan Lu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | | | | | | |
Collapse
|
16
|
Enrichment of phospholipids using magnetic Fe3O4/TiO2 nanoparticles for quantitative detection at single cell levels by electrospray ionization mass spectrometry. Talanta 2020; 212:120769. [DOI: 10.1016/j.talanta.2020.120769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 11/23/2022]
|
17
|
Liu A, Kou W, Zhang H, Xu J, Zhu L, Kuang S, Huang K, Chen H, Jia Q. Quantification of Trace Organophosphorus Pesticides in Environmental Water via Enrichment by Magnetic-Zirconia Nanocomposites and Online Extractive Electrospray Ionization Mass Spectrometry. Anal Chem 2020; 92:4137-4145. [DOI: 10.1021/acs.analchem.0c00304] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Aiying Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Wei Kou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Hua Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Jiaquan Xu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Lixue Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Siliang Kuang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| |
Collapse
|
18
|
Zhang H, Lu H, Huang K, Li J, Wei F, Liu A, Chingin K, Chen H. Selective detection of phospholipids in human blood plasma and single cells for cancer differentiation using dispersed solid-phase microextraction combined with extractive electrospray ionization mass spectrometry. Analyst 2020; 145:7330-7339. [DOI: 10.1039/d0an01204a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Rapid and selective determination of phospholipids in microvolume biofluid samples for cancer differentiation was achieved by d-SPME–iEESI-MS.
Collapse
Affiliation(s)
- Hua Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
| | - Haiyan Lu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Jiajia Li
- Department of Obstetrics and Gynecology
- The First Hospital of Jilin University
- P. R. China
| | - Feng Wei
- Department of Hepatobiliary and Pancreatic Surgery
- The First Hospital of Jilin University
- P. R. China
| | - Aiying Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
| |
Collapse
|
19
|
Lu H, Zhang H, Chingin K, Wei Y, Xu J, Ke M, Huang K, Feng S, Chen H. Sequential Detection of Lipids, Metabolites, and Proteins in One Tissue for Improved Cancer Differentiation Accuracy. Anal Chem 2019; 91:10532-10540. [DOI: 10.1021/acs.analchem.9b01507] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Haiyan Lu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hua Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China
| | - Yiping Wei
- Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| | - Jiaquan Xu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China
| | - Mufang Ke
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China
| |
Collapse
|
20
|
Han J, Liu W, Su R, Zhu L, Wu D, Xu J, Liu A, Zhang H, Kou W, Zhang X, Yang S. Coupling of micro-solid-phase extraction and internal extractive electrospray ionization mass spectrometry for ultra-sensitive detection of 1-hydroxypyrene and papaverine in human urine samples. Anal Bioanal Chem 2019; 411:3281-3290. [PMID: 30989270 DOI: 10.1007/s00216-019-01794-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/15/2019] [Accepted: 03/20/2019] [Indexed: 01/14/2023]
Abstract
Quantification of ultra-trace analytes in complex biological samples using micro-solid-phase extraction followed by direct detection with internal extractive electrospray ionization mass spectrometry (μSPE-iEESI-MS) was demonstrated. 1-Hydroxypyrene (1-OHP) and papaverine at attomole levels in human raw urine samples were analyzed under negative and positive ion detection mode, respectively. The μSPE was simply prepared by packing a disposable syringe filter with octadecyl carbon chain (C18)-bonded micro silica particles, which were then treated as the "bulk sample" after the analytes were efficiently enriched by the C18 particles. Under the optimized experimental conditions, the analytes were readily eluted by isopropanol/water (80/20, V/V) at a high voltage of ± 4.0 kV, producing analyte ions under ambient conditions. The limit of detection (LOD) was 0.02 pg/L (9.2 amol) for 1-hydroxypyrene and 0.02 pg/L (5.9 amol) for papaverine. The acceptable linearity (R2 > 0.99), signal stability (RSD ≤ 10.7%), spike recoveries (91-95%), and comparable results for real urine samples were also achieved, opening up possibilities for quantitative analysis of trace compounds (at attomole levels) in complex bio-samples. Graphical abstract.
Collapse
Affiliation(s)
- Jing Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.,Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Wei Liu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Rui Su
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lixue Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Debo Wu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China.
| | - Jiaquan Xu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Aiying Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Hua Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wei Kou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoping Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Shuiping Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
21
|
Huang C, Wang Y, Huang Q, He Y, Zhang L. Magnetic γ-cyclodextrin polymer with compatible cavity promote the magnetic solid-phase extraction of microcystins in water samples. Anal Chim Acta 2019; 1054:38-46. [DOI: 10.1016/j.aca.2018.12.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 11/17/2022]
|
22
|
Shen S, Zhang H, Huang K, Chen H, Shen W, Fang X. Differentiation of cultivation areas and crop years of milled rice using single grain mass spectrometry. NEW J CHEM 2019. [DOI: 10.1039/c8nj02740d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A method for the rapid detection of fatty acids in single rice grain would make the evaluation of rice quality easier.
Collapse
Affiliation(s)
- Susu Shen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Hua Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Huanwen Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Wenxin Shen
- Jiangxi Institute of Analysis and Testing
- Nanchang 330029
- P. R. China
| | - Xiaowei Fang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
| |
Collapse
|
23
|
Tong C, Guo K, Xu J, Tong X, Shi S. Online extraction and cleanup–quadrupole time-of-flight tandem mass spectrometry for rapid analysis of bioactive components in natural products. Anal Bioanal Chem 2018; 411:679-687. [DOI: 10.1007/s00216-018-1491-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/08/2018] [Accepted: 11/07/2018] [Indexed: 10/27/2022]
|
24
|
ZHANG XL, ZHANG H, WANG XC, HUANG KK, WANG D, CHEN HW. Advances in Ambient Ionization for Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61122-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Recent advances in biological sample preparation methods coupled with chromatography, spectrometry and electrochemistry analysis techniques. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.02.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Internal extractive electrospray ionization-mass spectrometry: a powerful platform for bioanalysis. Bioanalysis 2018; 10:523-525. [DOI: 10.4155/bio-2018-0038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
27
|
Pacheco-Fernández I, Pino V, Lorenzo-Morales J, Ayala JH, Afonso AM. Salt-induced ionic liquid-based microextraction using a low cytotoxic guanidinium ionic liquid and liquid chromatography with fluorescence detection to determine monohydroxylated polycyclic aromatic hydrocarbons in urine. Anal Bioanal Chem 2018; 410:4701-4713. [DOI: 10.1007/s00216-018-0946-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/29/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
|
28
|
Internal Extractive Electrospray Ionization Mass Spectrometry for Quantitative Determination of Fluoroquinolones Captured by Magnetic Molecularly Imprinted Polymers from Raw Milk. Sci Rep 2017; 7:14714. [PMID: 29116200 PMCID: PMC5676746 DOI: 10.1038/s41598-017-15202-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/23/2017] [Indexed: 12/28/2022] Open
Abstract
Antibiotics contamination in food products is of increasing concern due to their potential threat on human health. Herein solid-phase extraction based on magnetic molecularly imprinted polymers coupled with internal extractive electrospray ionization mass spectrometry (MMIPs-SPE-iEESI-MS) was designed for the quantitative analysis of trace fluoroquinolones (FQs) in raw milk samples. FQs in the raw milk sample (2 mL) were selectively captured by the easily-lab-made magnetic molecularly imprinted polymers (MMIPs), and then directly eluted by 100 µL electrospraying solvent biased with +3.0 kV to produce protonated FQs ions for mass spectrometric characterization. Satisfactory analytical performance was obtained in the quantitative analysis of three kinds of FQs (i.e., norfloxacin, enoxacin, and fleroxacin). For all the samples tested, the established method showed a low limit of detection (LOD ≤ 0.03 µg L−1) and a high analysis speed (≤4 min per sample). The analytical performance for real sample analysis was validated by a nationally standardized protocol using LC-MS, resulting in acceptable relative error values from −5.8% to +6.9% for 6 tested samples. Our results demonstrate that MMIPs-SPE-iEESI-MS is a new strategy for the quantitative analysis of FQs in complex biological mixtures such as raw milk, showing promising applications in food safety control and biofluid sample analysis.
Collapse
|
29
|
Zheng H, Zhu T, Li X, Ma J, Jia Q. Peanut agglutinin and β-cyclodextrin functionalized polymer monolith: Microextraction of IgG galactosylation coupled with online MS detection. Anal Chim Acta 2017; 983:141-148. [DOI: 10.1016/j.aca.2017.06.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 06/22/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
|
30
|
Jianyong Z, Jianjun X, Yongzhong O, Junwen L, Haiyan L, Dongliang Y, Jinhua P, Junwen X, Huanwen C, Yiping W. Rapid discrimination of human oesophageal squamous cell carcinoma by mass spectrometry based on differences in amino acid metabolism. Sci Rep 2017. [PMID: 28623324 PMCID: PMC5473808 DOI: 10.1038/s41598-017-03375-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oesophageal cancer (OC) is associated with high morbidity and mortality, and surgery is the most effective approach to treat it. In order to reduce surgical risks and duration of surgery, we explored a new strategy to determine tumour margins in surgery. In this study, we included 128 cancerous and 128 noncancerous database entries obtained from 32 human patients. Using internal extractive electrospray ionization-MS, in positive ion detection mode, the relative abundances of m/z 104.13, m/z 116.10, m/z 132.13, and m/z 175.13 were higher in cancer tissue while the relative abundances of m/z 82.99, m/z 133.11, m/z 147.08, m/z 154.06, and m/z 188.05 were higher in normal tissue. Using partial least squares analysis, the mass spectra of cancer samples was discriminated from those of normal tissues, and the discriminatory ions were obtained from loading plots. Dimethylglycine(m/z 104), proline(m/z 116), isoleucine(m/z 132), asparagine(m/z 133), glutamine(m/z 147), and arginine(m/z 175) were identified by collision-induced dissociation experiments. Using the ROC curve analysis, we verified the validity of six amino acids for the identification of tumour tissue. Further investigations of tissue amino acids may allow us to better understand the underlying mechanisms involved in OC and develop novel means to identify tumour tissue during operation.
Collapse
Affiliation(s)
- Zhang Jianyong
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, P. R. China.,Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi Province, 330013, P. R. China
| | - Xu Jianjun
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, P. R. China
| | - Ouyang Yongzhong
- School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, Jiangxi Province, 330013, P. R. China
| | - Liu Junwen
- School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, Jiangxi Province, 330013, P. R. China
| | - Lu Haiyan
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi Province, 330013, P. R. China
| | - Yu Dongliang
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, P. R. China
| | - Peng Jinhua
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, P. R. China
| | - Xiong Junwen
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, P. R. China
| | - Chen Huanwen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi Province, 330013, P. R. China.
| | - Wei Yiping
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, P. R. China.
| |
Collapse
|
31
|
Quantification of monohydroxylated polycyclic aromatic hydrocarbons in human urine samples using solid-phase microextraction coupled with glass-capillary nanoelectrospray ionization mass spectrometry. Anal Chim Acta 2017; 973:68-74. [DOI: 10.1016/j.aca.2017.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/27/2017] [Accepted: 04/02/2017] [Indexed: 12/21/2022]
|
32
|
Huang Y, Ma Y, Hu H, Guo P, Miao L, Yang Y, Zhang M. Rapid and sensitive detection of trace malachite green and its metabolite in aquatic products using molecularly imprinted polymer-coated wooden-tip electrospray ionization mass spectrometry. RSC Adv 2017. [DOI: 10.1039/c7ra10094a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study, a molecularly imprinted polymer-coated wooden-tip (MIPCWT) electrospray ionization mass spectrometry (ESI-MS) method was developed for rapid and sensitive detection of trace malachite green (MG) and its metabolite in aquatic products.
Collapse
Affiliation(s)
- Yanying Huang
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| | - Yanfang Ma
- Guangdong Engineering and Technology Research Center for Ambient Mass Spectrometry
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals
- Guangdong Institute of Analysis (China National Analytical Center Guangzhou)
- Guangzhou 510070
- China
| | - Huawen Hu
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| | - Pengran Guo
- Guangdong Engineering and Technology Research Center for Ambient Mass Spectrometry
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals
- Guangdong Institute of Analysis (China National Analytical Center Guangzhou)
- Guangzhou 510070
- China
| | - Lei Miao
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| | - Yunyun Yang
- Guangdong Engineering and Technology Research Center for Ambient Mass Spectrometry
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals
- Guangdong Institute of Analysis (China National Analytical Center Guangzhou)
- Guangzhou 510070
- China
| | - Min Zhang
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| |
Collapse
|
33
|
Zheng H, Song N, Li X, Jia Q. Anchoring β-cyclodextrin modified lysine to polymer monolith with biotin: specific capture of plasminogen. Analyst 2017; 142:4773-4781. [PMID: 29160868 DOI: 10.1039/c7an01436h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A biotin-Lys-CD based monolithic material was employed for the specific capture of plasminogen.
Collapse
Affiliation(s)
- Haijiao Zheng
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Naizhong Song
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Xiqian Li
- China-Japan Hospital of Jilin University
- Changchun 130033
- China
| | - Qiong Jia
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
34
|
XIAO YP, LU HY, LÜ SJ, XIE SX, WANG ZZ, CHEN HW. Rapid Analysis of Trace Salbutamol and Clenbuterol in Pork Samples by Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60968-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|