1
|
Song XL, Liu YQ, He FY, Wu YY, Wang DD, Lv H, Wang XS, Sun ZG, Cheng CL, Liao KC, Chen Y. Facile fabrication of carbon nanotube hollow microspheres as a fiber coating for ultrasensitive solid-phase microextraction of phthalic acid esters in tea beverages. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:420-426. [PMID: 38165136 DOI: 10.1039/d3ay01943h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The efficient extraction of phthalic acid esters (PAEs) is challenging due to their extremely low concentration, complicated matrices and hydrophilicity. Herein, hollow microspheres, as an ideal coating, possess significant potential for solid-phase microextraction (SPME) due to their fascinating properties. In this study, multiwalled carbon nanotube hollow microspheres (MWCNT-HMs) were utilized as a fiber coating for the SPME of PAEs from tea beverages. MWCNT-HMs were obtained by dissolving the polystyrene (PS) cores with organic solvents. Interestingly, MWCNT-HMs well maintain the morphology of the MWCNTs@PS precursors. The layer-by-layer (LBL) assembly of MWCNTs on PS microsphere templates was achieved through electrostatic interactions. Six PAEs, di-ethyl phthalate (DEP), di-iso-butyl phthalate (DIBP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di-2-ethylhexyl phthalate (DEHP) and di-n-octyl phthalate (DOP), were selected as target analytes for assessing the efficiency of the coating for SPME. The stirring rate, sample solution pH and extraction time were optimized by using the Box-Behnken design. Under optimal working conditions, the proposed MWCNT-HMs/SPME was coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS) to achieve high enrichment factors (118-2137), wide linearity (0.0004-10 μg L-1), low limits of detection (0.00011-0.0026 μg L-1) and acceptable recovery (80.2-108.5%) for the detection of PAEs. Therefore, the MWCNT-HM coated fibers are promising alternatives in the SPME method for the sensitive detection of PAEs at trace levels in tea beverages.
Collapse
Affiliation(s)
- Xin-Li Song
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Yu-Qing Liu
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Fei-Yan He
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Yi-Yao Wu
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Dong-Dong Wang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Hui Lv
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Xue-Shan Wang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Zhong-Guan Sun
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Can-Ling Cheng
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Ke-Chao Liao
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Yue Chen
- Department of Criminal Science and Technology, Shandong Police College, Jinan 250014, China
| |
Collapse
|
2
|
Zhang W, Yang Y, Mao J, Zhang Q, Fan W, Chai G, Shi Q, Zhu C, Zhang S, Xie J. Quinoline Bridging Hyperconjugated Covalent Organic Framework as Solid-Phase Microextraction Coating for Ultrasensitive Determination of Phthalate Esters in Water Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17999-18009. [PMID: 37904272 DOI: 10.1021/acs.jafc.3c02859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Phthalate esters (PAEs) are widely distributed in the environment, and this has caused serious health and safety concerns. Development of rapid and ultrasensitive identification and analysis methods for phthalate esters is urgent and highly desirable. In this work, a novel nitrogen-rich covalent organic framework (N-TTI) derived quinoline bridging covalent organic framework (N-QTTI) was fabricated and used as a solid-phase microextraction (SPME) coating for the ultrasensitive determination of phthalate esters in water samples. The physical and chemical properties of N-QTTI were investigated sufficiently. The N-QTTI-coated fiber demonstrates a superior enrichment performance than either the N-TTI-coated fiber or commercial fibers under the optimized SPME conditions. For the first time, we propose a semi-immersion strategy for the extraction of PAEs from water samples based on N-QTTI-coated SPME fibers. Combined with gas chromatography-mass spectrometry (GC-MS), the developed method N-QTTI-SPME-GC-MS exhibits a wide linear range with a satisfactory linearity (R2 ≥ 0.995). The limits of detection (LOD, S/N = 3) and the limits of quantification (LOQs, S/N = 10) were 0.17-1.70 and 0.57-5.60 ng L-1, respectively. The repeatability of the new method was examined using relative standard deviations (RSDs) between intraday and interday data, which were 0.38-7.98% and 1.22-6.60%, respectively. The spiked recoveries at three levels of 10, 100, and 1000 ng L-1 were in the range of 90.0-106.2% with RSDs of less than 7.48%. The enrichment factors ranged from 291 to 17180. When compared to previously published works, the LODs of the newly established method were improved 5-5400 times, and the enrichment factors were increased by at least 8 times. The absorption mechanism was investigated by X-ray photoelectron spectroscopy and noncovalent interaction force analysis. The technique was successfully employed for detecting PAEs in water samples.
Collapse
Affiliation(s)
- Wenfen Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Yuan Yang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Jian Mao
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Qidong Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Wu Fan
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Guobi Chai
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Qingzhao Shi
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Shusheng Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Jianping Xie
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
3
|
Zang X, Wang M, Chang Q, Wang C, Wang Z, Xu J. Determination of phthalate esters in bottled beverages by direct immersion solid phase microextraction with a porous boron nitride coated fiber followed by gas chromatography-mass spectrometry. J Sep Sci 2022; 45:2987-2995. [PMID: 35642725 DOI: 10.1002/jssc.202200026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 11/09/2022]
Abstract
A porous boron nitride with a large surface area was synthesized by one step grinding method with melamine, urea and boric acid as the precursors. The prepared porous boron nitride was used as the fiber coating material for the solid-phase microextraction of seven phthalate esters (diethylphthalate, diallyl phthalate, diisobutyl phthalate, dibutyl phthalat, butylbenzyl phthalate, dicyclohexyl phthalate and di-2-ethylhexylphthalate) prior to their gas chromatography-mass spectrometric detection. The important experimental parameters including the extraction time, extraction temperature, salt concentration, and stirring rate were optimized by both single factor and central composite design methods. Under the optimized experimental conditions, the linear response range for the analytes was from 0.030 to 30.0 μg L-1 , and the limits of detection were from 0.010 to 0.040 μg L-1 , respectively. The relative recoveries of the analytes for spiked samples at two concentration levels were 83.0%-109% with the relative standard deviations less than 12%. The established method was successfully applied for the determination of the phthalate esters in bottled juice beverage samples. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaohuan Zang
- College of Chemistry and Environmental Science, Hebei University, No. 180 Wusi East Road, Baoding 071002, Hebei, PR China.,Department of Chemistry, College of Science, Hebei Agricultural University, No. 289 Lingyusi Street, Baoding, Hebei, 071001, PR China
| | - Mengting Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, No. 289 Lingyusi Street, Baoding, Hebei, 071001, PR China
| | - Qingyun Chang
- Department of Chemistry, College of Science, Hebei Agricultural University, No. 289 Lingyusi Street, Baoding, Hebei, 071001, PR China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, No. 289 Lingyusi Street, Baoding, Hebei, 071001, PR China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, No. 289 Lingyusi Street, Baoding, Hebei, 071001, PR China
| | - Jianzhong Xu
- College of Chemistry and Environmental Science, Hebei University, No. 180 Wusi East Road, Baoding 071002, Hebei, PR China
| |
Collapse
|
4
|
Pourreza N, Zadeh-Dabbagh R. Vortex-assisted Dispersive Solid-phase Extraction Using Schiff-base Ligand Anchored Nanomagnetic Iron Oxide for Preconcentration of Phthalate Esters and Determination by Gas Chromatography and Flame Ionization Detector. ANAL SCI 2021; 37:1213-1220. [PMID: 33390412 DOI: 10.2116/analsci.20p363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phthalate esters are synthetic chemicals that are widely used in plastic industries as plasticizer. They are harmful to humans and could be carcinogenic. In this research, a new nanosorbent was prepared via a Schiff-base reaction between p-dimethylaminobenzaldehyde and Fe3O4@SiO2-NH2 nanoparticles. A characterization of the sorbent was performed by Fourier-transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, and energy-dispersive spectroscopy. A modified nanosorbent has a core shell structure, and shows a great tendency towards the sorption of phthalate esters. Hence, it was utilized for the dispersive solid-phase extraction of six phthalate esters and determination by gas chromatography-flame ionization detection. Several variables, such as the pH, sorbent amount, salt effects, extraction and desorption time, extraction solvent type and volume, were investigated to establish the optimal conditions. Calibration graphs were linear in the range of 1.0 - 150.0 μg L-1 for dimethyl phthalate, bis-(2-ethylhexyl) phthalate, di-n-octyl phthalate and 0.1 - 200.0 μg L-1 for diethyl phthalate, di-n-butyl phthalate and butyl benzyl phthalate, respectively. The obtained limits of detections (S/N = 3) were in the range of 0.02 - 0.31 μg L-1. Application of the method for the enrichment and determination of phthalate esters in mineral water, natural low fat yogurt and sodium chloride infusion (0.9%, w/v) was investigated.
Collapse
Affiliation(s)
- Nahid Pourreza
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz
| | - Reza Zadeh-Dabbagh
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz
| |
Collapse
|
5
|
Ren L, Huang Y, Zhao B, Xu L, Long T. Magnetic solid phase extraction based on dodecyl functionalization of magnetic ferrite microspheres for determination of phthalate esters in environmental water. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2021.1958343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Limin Ren
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University, Huangzhou, China
| | - Yingying Huang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University, Huangzhou, China
| | - Bingshan Zhao
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University, Huangzhou, China
| | - Lanying Xu
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University, Huangzhou, China
| | - Tao Long
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University, Huangzhou, China
| |
Collapse
|
6
|
LI Z, LI N, ZHAO T, ZHANG Z, WANG M. [Fabrication of nanomaterials incorporated polymeric monoliths and application in sample pretreatment]. Se Pu 2021; 39:229-240. [PMID: 34227305 PMCID: PMC9403804 DOI: 10.3724/sp.j.1123.2020.05030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 11/25/2022] Open
Abstract
Polymeric monolithic columns are fabricated by in situ polymerization of the corresponding monomer, crosslinkers, porogenic solvents and radical initiators within a mold. Compared with the conventional packed solid phase extraction adsorbents, polymeric monolithic columns with a continuous porous structure process distinctive advantages of rapid mass transfer and excellent permeability, which facilitates the extraction of trace amounts of the target from the matrix even at high flow velocities. Besides, these materials can be easily fabricated in situ within various cartridges, avoiding a further packing step associated with packed particulate adsorbents. Additionally, the abundant monomer availability, flexible porous structure, and wide applicable pH range make monoliths versatile for use in separation science. Thus, polymeric monolithic columns have been increasingly applied as efficient and promising extraction media for sample pretreatment food, pharmaceutical, biological and environmental analyses. However, these materials usually have the difficulty in morphology control and their interconnected porous micro-globular structure, which may result in low porosity, limited specific surface area and poor efficiency. In addition, polymeric monoliths suffer from the swelling in organic solvents, thus decreasing the service life and precision while increasing the cost consumption. Recently, the development of nanomaterial-incorporated polymeric monoliths with an improved ordered structure, enhanced adsorption efficiency and outstanding selectivity has attracted considerable attention. Nanoparticles are considered as particulates within the size range of 1-100 nm in at least one dimension, which endows them with unique optical, electrical and magnetic properties. These materials have a large surface area, excellent thermal and chemical stabilities, remarkable versatility, as well as a wide variety of active functional groups on their surface. With the aim of exploiting these advantages, researchers have shown great interest in applying nanomaterial-incorporated polymeric monoliths to separation science. Accordingly, significant progress has been achieved in this field. Nanomaterials can be entrapped via the direct synthesis of a polymerization solution that contains well dispersed nanomaterials in porogens. In addition, nanoparticles can be incorporated into the monolithic matrix by copolymerization and post-polymerization modification via specific interactions. Therefore, nanomaterial-incorporated polymeric monoliths combined the different shapes, chemical properties, and physical properties of the polymers with those of the nanoparticles. The presence of nanoparticles can improve the structural rigidity as well as the thermal and chemical stabilities of monolithic adsorbents. Besides, nanoparticles are capable of increasing the specific surface area and providing multiple active sites, which leads to enhanced extraction performance and selectivity of polymeric monolithic materials. In recent years, diverse types of nanomaterials, such as carbonaceous nanoparticles, metallic materials and metal oxides, metal-organic frameworks, covalent organic frameworks and inorganic nanoparticles have been extensively explored as hybrid adsorbents in the modes of solid phase extraction, solid phase microextraction, stir bar sorption extraction and on-line solid phase extraction. This review specifically summarizes the fabrication methods for nanomaterial incorporated polymeric monoliths and their application to the field of sample pretreatment. The existing challenges and future possible perspectives in the field are also discussed.
Collapse
Affiliation(s)
- Ziling LI
- 华北理工大学公共卫生学院, 河北 唐山 063210
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Na LI
- 华北理工大学公共卫生学院, 河北 唐山 063210
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Tengwen ZHAO
- 华北理工大学公共卫生学院, 河北 唐山 063210
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Ziyang ZHANG
- 华北理工大学公共卫生学院, 河北 唐山 063210
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Manman WANG
- 华北理工大学公共卫生学院, 河北 唐山 063210
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
7
|
Wu D, Liu F, Tian T, Wu JF, Zhao GC. Copper ferrite nanoparticles as novel coating appropriated to solid-phase microextraction of phthalate esters from aqueous matrices. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Wang Y, Li W, Hu X, Zhang X, Huang X, Li Z, Li M, Zou X, Shi J. Efficient preparation of dual-emission ratiometric fluorescence sensor system based on aptamer-composite and detection of bis(2-ethylhexyl) phthalate in pork. Food Chem 2021; 352:129352. [PMID: 33691206 DOI: 10.1016/j.foodchem.2021.129352] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/21/2021] [Accepted: 02/09/2021] [Indexed: 11/24/2022]
Abstract
A ratiometric fluorescence sensor system is proposed for detecting bis(2-ethylhexyl) phthalate (DEHP) in pork, which is based on aptamer recognition with molybdenum disulfide quantum dots and cadmium telluride quantum dots (MoS2 QDs/CdTe-Apta). Two signals exist in the system, among which the response signal is transmitted by CdTe-Apta. The amide condensation between aptamers and CdTe QDs shortens the distance between CdTe QDs and DEHP, thus quenching the fluorescence of CdTe QDs, possibly through a photoinduced electron transfer mechanism. The MoS2 QDs deliver the self-calibration signal, and the fluorescence of MoS2 QDs remains almost constant when co-existing with DEHP. Linearity (R2 = 0.9536) was established for the DEHP concentration range 0.005-3.0 mg·L-1, with a limit of detection of 0.21 μg·L-1. The system was successfully applied in the determination of DEHP in pork. The system has potential for the quantitative determination of DEHP in practical applications.
Collapse
Affiliation(s)
- Yueying Wang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenting Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xuetao Hu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Miaoyun Li
- College of Food Science and Technology, Henan Meat Processing and Safety International United Lab, Henan Agricultural University, Zhengzhou 450000, China.
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
9
|
Sun M, Feng J, Ji X, Li C, Han S, Sun M, Feng Y, Feng J, Sun H. Polyaniline/titanium dioxide nanorods functionalized carbon fibers for in-tube solid-phase microextraction of phthalate esters prior to high performance liquid chromatography-diode array detection. J Chromatogr A 2021; 1642:462003. [PMID: 33652369 DOI: 10.1016/j.chroma.2021.462003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 10/22/2022]
Abstract
To improve extraction performance of carbon fibers (CFs) towards phthalate esters (PAEs), titanium dioxide (TiO2) nanorods array was in-situ grown on the surface of CFs, then polyaniline (PANI) was used to modify it. PANI/TiO2 nanorods-CFs were placed into a polyetheretherketone tube for solid-phase microextraction (SPME). Combining the tube to high performance liquid chromatography (HPLC), it was evaluated and displayed good extraction performance for several PAEs. Compared with bare CFs, TiO2 nanorods and PANI, PANI/TiO2 nanorods presented best performance, attributed to the unique advantages between high surface area of TiO2 nanorods and multiple adsorption interactions (like π-π stacking, hydrogen bond) of PANI. After the optimization of the important factors (sampling volume, sampling rate, sample pH, concentrations of organic solvent and salt in sample, and desorption time), the online in-tube SPME-HPLC method was established. It provided low limits of detection (0.01-0.05 μg L-1) and wide linear ranges (0.03-30, 0.10-30, 0.17-30 μg L-1) with correlation coefficients larger than 0.9991. The relative standard deviations (n=6) between intra-day and inter-day tests were in the ranges of 3.5-10.3% and 4.7-13.9%, respectively. The method was successfully used to determine seven PAEs in real water samples. Besides of satisfactory durability, the material also exhibited superior extraction performance than some materials.
Collapse
Affiliation(s)
- Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Sen Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Mingxia Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yang Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Jiaqing Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Haili Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
10
|
Chu Q, Liu Y, Jiang S, Zhu Y, Lyu H, Xie Z. A novel adsorbent based on aptamer prepared via “thiol-ene” click for specific recognition of phthalic acid esters. Anal Chim Acta 2021; 1146:109-117. [DOI: 10.1016/j.aca.2020.12.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 11/25/2022]
|
11
|
Díaz de León-Martínez L, Meléndez-Marmolejo J, Vargas-Berrones K, Flores-Ramírez R. Synthesis and Evaluation of Molecularly Imprinted Polymers for the Determination of Di(2-ethylhexyl) Phthalate (DEHP) in Water Samples. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:806-812. [PMID: 33057741 DOI: 10.1007/s00128-020-03023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/06/2020] [Indexed: 05/14/2023]
Abstract
A molecularly imprinted polymer for the selective determination of Di(2-ethylhexyl) phthalate (DEHP) in water was synthesized and evaluated. This was accomplished by the use of sodium methacrylate as the monomer, toluene as a porogen, ethylene glycol dimethacrylate as a crosslinker, azobisisobutyronitrile as initiator and DEHP as a template molecule to generate the selectivity of the polymer for the compound, as well as synthesizing non-imprinted polymers. Three different polymerization approaches were used, emulsion, bulk and co-precipitation, the polymers obtained by emulsion presented a high retention rate reaching 99%. The method was able to pre-concentrate DEHP in water samples up to 250 times. To evaluate the applicability of the method, concentrations in fortified and bottled water were assessed using our polymer and determining DEHP concentrations by gas chromatography with mass spectrometry. Reported concentrations in bottled water were 12.1 µg/L, well above reference values established by the U.S. Environmental Protection Agency.
Collapse
Affiliation(s)
- Lorena Díaz de León-Martínez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | - Jessica Meléndez-Marmolejo
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | - Karla Vargas-Berrones
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | - Rogelio Flores-Ramírez
- CONACYT, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
12
|
Zhang Q, Liu G, Cao X, Yin J, Zhang Z. Preparation of magnetic zeolitic imidazolate framework-67 composites for the extraction of phthalate esters from environmental water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4906-4912. [PMID: 32996910 DOI: 10.1039/d0ay01482f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, magnetic ZIF-67 composites were prepared by an in situ method and utilized in the magnetic solid-phase extraction of phthalate esters. The obtained magnetic ZIF-67 composites were characterized in detail, and the adsorption performance was evaluated. The results showed that ZIF-67 crystals in the composites had a chamfered cubic shape with about 2.0 μm diameter and Fe3O4 was attached on the surface of ZIF-67. The parameters affecting magnetic solid-phase extraction efficiency were optimized including the adsorption and desorption conditions. Under the optimum conditions, magnetic solid-phase extraction coupled with gas chromatography-mass spectrometry for analyzing seven phthalate esters in environmental water samples was established. All the analytes exhibited good linearity (1-200 ng mL-1) with correlation coefficients higher than 0.9950. The relative standard deviations were between 4.3% and 8.9%. The developed method showed high sensitivity and had good potential for analyzing trace phthalate esters in water samples.
Collapse
Affiliation(s)
- Qingsong Zhang
- College of Life Science, Yantai University, Yantai 264005, China.
| | | | | | | | | |
Collapse
|
13
|
A selective and sensitive procedure for magnetic solid-phase microextraction of lead(II) on magnetic cellulose nanoparticles from environmental samples prior to its flame atomic absorption spectrometric detection. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-02085-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Nanosorbent-based solid phase microextraction techniques for the monitoring of emerging organic contaminants in water and wastewater samples. Mikrochim Acta 2020; 187:541. [DOI: 10.1007/s00604-020-04527-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/21/2020] [Indexed: 01/07/2023]
|
15
|
Santana-Mayor Á, Rodríguez-Ramos R, Socas-Rodríguez B, Rodríguez-Delgado MÁ, D'Orazio G. Nano-liquid chromatography combined with a sustainable microextraction based on natural deep eutectic solvents for analysis of phthalate esters. Electrophoresis 2020; 41:1768-1775. [PMID: 32297997 DOI: 10.1002/elps.202000032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 11/08/2022]
Abstract
The separation of 11 phthalic acid ester (PAEs) was carried out by nano-liquid chromatography coupled to ultraviolet and MS detection. Preliminary experiments were achieved in order to select suitable stationary phases and chromatographic conditions. The baseline separation was obtained, for all compounds, with an XBridgeTM C18 column in less than 15 min, working in step gradient mode. The sensitivity of the method was improved by on-column focusing. PAEs were extracted from alcoholic and nonalcoholic beverages using vortex-assisted emulsification dispersive liquid-liquid microextration and natural deep eutectic solvents. The whole method was validated in terms of linearity, sensitivity, precision, recovery, and repeatability. Combination of both off-line sample preparation preconcentration and large injection volume led to obtain LOQs in the range 5-47 ng/mL. The developed nano-LC-UV method was extended to MS detection to confirm the presence of PAEs in some beverages commercialized in different types of packaging.
Collapse
Affiliation(s)
- Álvaro Santana-Mayor
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
| | - Ruth Rodríguez-Ramos
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
| | - Bárbara Socas-Rodríguez
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
| | - Miguel Ángel Rodríguez-Delgado
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
| | - Giovanni D'Orazio
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Sistemi Biologici (ISB), Rome, Italy
| |
Collapse
|
16
|
Magnesium/aluminum-layered double hydroxide modified with hydrogen peroxide as a novel fiber coating for solid-phase microextraction of phthalate esters in aqueous samples. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104510] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Shahvandi SK, Banitaba MH, Ahmar H, Karimi P. A novel temperature controlled switchable solvent based microextraction method: Application for the determination of phthalic acid esters in water samples. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Sun T, Ali MM, Wang D, Du Z. On-site rapid screening of benzodiazepines in dietary supplements using pipette-tip micro-solid phase extraction coupled to ion mobility spectrometry. J Chromatogr A 2020; 1610:460547. [DOI: 10.1016/j.chroma.2019.460547] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 12/20/2022]
|
19
|
Feng Z, Huang C, Guo Y, Tong P, Zhang L. Chemical bonding of oxygenated carbon nitride nanosheets onto stainless steel fiber for solid-phase microextraction of phthalic acid esters. Anal Chim Acta 2019; 1084:43-52. [DOI: 10.1016/j.aca.2019.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 01/18/2023]
|
20
|
Melamine-formaldehyde aerogel functionalized with polydopamine as in-tube solid-phase microextraction coating for the determination of phthalate esters. Talanta 2019; 199:317-323. [DOI: 10.1016/j.talanta.2019.02.081] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/22/2019] [Accepted: 02/21/2019] [Indexed: 11/20/2022]
|
21
|
Zhang S, Yang Q, Zhou X, Li Z, Wang W, Zang X, Wang C, Shiddiky MJA, Murugulla AC, Nguyen NT, Wang Z, Yamauchi Y. Synthesis of nanoporous poly-melamine-formaldehyde (PMF) based on Schiff base chemistry as a highly efficient adsorbent. Analyst 2018; 144:342-348. [PMID: 30398492 DOI: 10.1039/c8an01623b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study proposes the construction of nanoporous poly-melamine-formaldehyde (PMF) through the Schiff base condensation reaction of paraformaldehyde and melamine. The PMF nanoparticles showed a good adsorption capability to some benzene-ring-containing dyes including acid fuchsine, nigrosine, and methyl orange. Moreover, the as-prepared PMF nanoparticles were employed as the coating adsorbent for the solid-phase microextraction (SPME) of seven volatile fatty acids (VFAs) with high enrichment factors. A PMF-assisted SPME method was established for the enrichment of VFAs from environmental water samples with satisfactory recoveries (88.5%-102.0%) and acceptable precisions (relative standard deviations <10.9%). This contribution might furnish an advanced benchmark for the exploitation of new porous organic polymers as the effective adsorbents for SPME or other fields of utilization.
Collapse
Affiliation(s)
- Shuaihua Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China. and International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Qian Yang
- College of Science and Technology, Hebei Agricultural University, Cangzhou 061100, China
| | - Xin Zhou
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Zhi Li
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Wenjin Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Xiaohuan Zang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Muhammad J A Shiddiky
- School of Environment and Science and Queensland Micro- and Nanotechnology Centre, Griffith University (Nathan Campus), QLD 4111, Australia
| | - Adharvana Chari Murugulla
- Dr. MACS Bio-Pharma Private Limited, Plot no.79/B & C, EPIP Pashamyalaram, Patancheru Mandal, Sangareddy Dist., Telangana 502307, India
| | - Nam-Trung Nguyen
- School of Environment and Science and Queensland Micro- and Nanotechnology Centre, Griffith University (Nathan Campus), QLD 4111, Australia
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia and Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| |
Collapse
|
22
|
Zheng J, Huang J, Yang Q, Ni C, Xie X, Shi Y, Sun J, Zhu F, Ouyang G. Fabrications of novel solid phase microextraction fiber coatings based on new materials for high enrichment capability. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Lou C, Guo D, Zhang K, Wu C, Zhang P, Zhu Y. Simultaneous determination of 11 phthalate esters in bottled beverages by graphene oxide coated hollow fiber membrane extraction coupled with supercritical fluid chromatography. Anal Chim Acta 2018; 1007:71-79. [DOI: 10.1016/j.aca.2017.12.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 11/08/2017] [Accepted: 12/06/2017] [Indexed: 12/18/2022]
|
24
|
Saini SS. Trace Analysis of di-(2-Ethylhexyl) Phthalate (DEHP) in Drinking Water Using MEPS and HPLC-UV. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/22297928.2018.1442247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Kuo YC, Heish WQ, Huang HY, Liu WL. Application of mesoporous carbon-polymer monolith for the extraction of phenolic acid in food samples. J Chromatogr A 2018; 1539:12-18. [DOI: 10.1016/j.chroma.2018.01.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/30/2017] [Accepted: 01/23/2018] [Indexed: 10/18/2022]
|
26
|
Li H, Cao Z, Cao X, Jiang Z, Abd El-Aty AM, Qi Y, Shao H, Jin F, Zheng L, Wang J. Magnetic solid-phase extraction using a mixture of two types of nanoparticles followed by gas chromatography-mass spectrometry for the determination of six phthalic acid esters in various water samples. RSC Adv 2018; 8:39641-39649. [PMID: 35558051 PMCID: PMC9090721 DOI: 10.1039/c8ra08643e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/21/2018] [Indexed: 11/21/2022] Open
Abstract
A mixture of Fe3O4@MIL-100 and Fe3O4@SiO2@polythiophene nanoparticles exhibit high extraction efficiency for PAEs in water.
Collapse
|
27
|
Mohebbi M, Heydari R, Ramezani M. Solvent-vapor-assisted liquid-liquid microextraction: A
novel method for the determination of phthalate esters in aqueous samples using GC-MS. J Sep Sci 2017; 40:4394-4402. [DOI: 10.1002/jssc.201700755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Maryam Mohebbi
- Department of Chemistry; Faculty of Sciences; Arak Branch; Islamic Azad University; Arak Iran
| | - Rouhollah Heydari
- Razi Herbal Medicines Research Center; Lorestan University of Medical Sciences; Khorramabad Iran
| | - Majid Ramezani
- Department of Chemistry; Faculty of Sciences; Arak Branch; Islamic Azad University; Arak Iran
| |
Collapse
|
28
|
Carbon-coated Fe3O4 nanoparticles with surface amido groups for magnetic solid phase extraction of Cr(III), Co(II), Cd(II), Zn(II) and Pb(II) prior to their quantitation by ICP-MS. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2283-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Amiri A, Chahkandi M, Targhoo A. Synthesis of nano-hydroxyapatite sorbent for microextraction in packed syringe of phthalate esters in water samples. Anal Chim Acta 2017; 950:64-70. [DOI: 10.1016/j.aca.2016.11.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/03/2016] [Accepted: 11/13/2016] [Indexed: 10/20/2022]
|
30
|
Wideł D, Jedynak K, Witkiewicz Z, Oszczudłowski J. Investigation of mesoporous carbon materials by magnetic solid phase extraction of selected phthalates from water samples. ADSORPT SCI TECHNOL 2016. [DOI: 10.1177/0263617416661333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|