1
|
Pateraki A, Psillakis E. Vacuum-assisted headspace solid phase microextraction for monitoring ripening-induced changes in tomato volatile profile. J Chromatogr A 2025; 1740:465556. [PMID: 39626334 DOI: 10.1016/j.chroma.2024.465556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025]
Abstract
This work proposes, for the first time, the use of vacuum-assisted headspace solid phase microextraction (Vac-HS-SPME) for studying the free volatiles in tomato fruits. Initially, a comparative optimization between Vac-HS-SPME and regular HS-SPME was conducted, examining the effects of sampling time (15-60 min) and temperature (40 and 60°C) on the extraction of 29 target compounds from tomato puree samples. Compared to regular HS-SPME, sampling under vacuum resulted in the detection of nine additional analytes at 40°C, and an extra three at 60°C. The optimized methods (45 minutes sampling with Vac-HS-SPME at 40°C and regular HS-SPME at 60°C) were then successfully applied for the semi-quantitative comparison of free volatiles during on-plant ripening. These studies revealed an increase in volatiles across the six ripening stages considered (mature green, breaker, turning, pink, light red and red ripe) that was dominated by aldehydes. Compared to HS-SPME, the optimized Vac-HS-SPME showed substantial improvement in extraction efficiencies, and enabled the detection of key volatiles at earlier ripening stages, such as the breaker and turning stages. Overall, compared to the regular method, this study demonstrated that Vac-HS-SPME is a powerful approach that provides additional insights on free volatiles in fruits, even when sampling at lower temperatures.
Collapse
Affiliation(s)
- Angeliki Pateraki
- Laboratory of Aquatic Chemistry, School of Chemical and Environmental Engineering, Polytechneioupolis, Technical University of Crete, 73100 Chania-Crete, Greece
| | - Elefteria Psillakis
- Laboratory of Aquatic Chemistry, School of Chemical and Environmental Engineering, Polytechneioupolis, Technical University of Crete, 73100 Chania-Crete, Greece.
| |
Collapse
|
2
|
Dugheri S, Cappelli G, Fanfani N, Squillaci D, Rapi I, Venturini L, Vita C, Gori R, Sirini P, Cipriano D, Sajewicz M, Mucci N. Vacuum-Assisted MonoTrap TM Extraction for Volatile Organic Compounds (VOCs) Profiling from Hot Mix Asphalt. Molecules 2024; 29:4943. [PMID: 39459311 PMCID: PMC11510596 DOI: 10.3390/molecules29204943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
MonoTrapTM was introduced in 2009 as a novel miniaturized configuration for sorptive sampling. The method for the characterization of volatile organic compound (VOC) emission profiles from hot mix asphalt (HMA) consisted of a two-step procedure: the analytes, initially adsorbed into the coating in no vacuum- or vacuum-assistance mode, were then analyzed following an automated thermal desorption (TD) step. We took advantage of the theoretical formulation to reach some conclusions on the relationship between the physical characteristics of the monolithic material and uptake rates. A total of 35 odor-active volatile compounds, determined by gas chromatography-mass spectrometry/olfactometry analysis, contributed as key odor compounds for HMA, consisting mainly of aldehydes, alcohols, and ketones. Chemometric analysis revealed that MonoTrapTM RGC18-TD was the better coating in terms of peak area and equilibrium time. A comparison of performance showed that Vac/no-Vac ratios increased, about an order of magnitude, as the boiling point of target analytes increased. The innovative hybrid adsorbent of silica and graphite carbon monolith technology, having a large surface area bonded with octadecylsilane, showed effective adsorption capability, especially to polar compounds.
Collapse
Affiliation(s)
- Stefano Dugheri
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.C.); (N.F.); (D.S.); (I.R.); (L.V.); (N.M.)
| | - Giovanni Cappelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.C.); (N.F.); (D.S.); (I.R.); (L.V.); (N.M.)
| | - Niccolò Fanfani
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.C.); (N.F.); (D.S.); (I.R.); (L.V.); (N.M.)
| | - Donato Squillaci
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.C.); (N.F.); (D.S.); (I.R.); (L.V.); (N.M.)
| | - Ilaria Rapi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.C.); (N.F.); (D.S.); (I.R.); (L.V.); (N.M.)
| | - Lorenzo Venturini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.C.); (N.F.); (D.S.); (I.R.); (L.V.); (N.M.)
| | - Chiara Vita
- PIN—University Center “Città di Prato” Educational and Scientific Service, University of Florence, 59100 Prato, Italy;
| | - Riccardo Gori
- Department of Civil and Environmental Engineering, University of Florence, 50139 Florence, Italy; (R.G.); (P.S.)
| | - Piero Sirini
- Department of Civil and Environmental Engineering, University of Florence, 50139 Florence, Italy; (R.G.); (P.S.)
| | | | | | - Nicola Mucci
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.C.); (N.F.); (D.S.); (I.R.); (L.V.); (N.M.)
| |
Collapse
|
3
|
Mascrez S, Aspromonte J, Spadafora ND, Purcaro G. Vacuum-assisted and multi-cumulative trapping in headspace solid-phase microextraction combined with comprehensive multidimensional chromatography-mass spectrometry for profiling virgin olive oil aroma. Food Chem 2024; 442:138409. [PMID: 38237298 DOI: 10.1016/j.foodchem.2024.138409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024]
Abstract
In the present work vacuum (Vac) and multiple cumulative trapping (MCT) headspace solid phase microextraction (HS-SPME) were evaluated as alternative or combined techniques for the volatile profiling. A higher extraction performance for semi-volatiles was shown by all three techniques. Synergic combination of Vac and MCT showed up to 5-times extraction power for less volatile compounds. The hyphenation of said techniques with comprehensive two-dimensional gas chromatography (GC × GC) enabled a comprehensive analysis of the volatilome. Firstly, 18 targeted quality markers, previously defined by means of classical HS-SPME, were explored for their ability to classify commercial categories. The applicability of such markers proved to be limited with the alternative sampling techniques. An untargeted approach enables the selection of specific features for each technique showing a better classification capacity of the commercial categories. No misclassifications were observed, except for one extra virgin olive oil classified as virgin olive oil in 3 × 10 min Vac-MCT-HS-SPME.
Collapse
Affiliation(s)
- Steven Mascrez
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, B-5030 Gembloux, Belgium
| | - Juan Aspromonte
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas (Universidad Nacional de La Plata, CIC-PBA, CONICET), Calle 47 esq. 115, 1900 La Plata, Argentina
| | - Natasha Damiana Spadafora
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Giorgia Purcaro
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, B-5030 Gembloux, Belgium.
| |
Collapse
|
4
|
Thomas SL, Myers C, Herrington JS, Schug KA. Investigation of operational fundamentals for vacuum-assisted headspace high-capacity solid-phase microextraction and gas chromatographic analysis of semivolatile compounds from a model solid sample. J Sep Sci 2024; 47:e2300779. [PMID: 38682835 DOI: 10.1002/jssc.202300779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 05/01/2024]
Abstract
Vacuum-assisted headspace solid-phase microextraction (Vac-HS-SPME) is a technique used to enhance SPME sampling of semi-volatile organic compounds. Here, it was combined with a high-capacity SPME Arrow, which features a larger volume of extraction phase and a more rugged configuration than traditional extraction fibers. An in-depth assessment of the critical parameters was conducted to achieve optimal extraction of representative compounds from a model solid sample matrix (Ottawa sand). Operational fundamentals investigated included the types of seals needed to create a leak-free environment under vacuum conditions; the magnitude of the vacuum applied and time needed to activate the Vac kinetics; order of sample vial preparation methods (VPMs); and other standard variables associated with extract analysis by gas chromatography-mass spectrometry. When exploring the limits of sample VPMs, results indicated an ideal workflow requires the solid sample to be spiked before sealing the vial, allow the sample to rest overnight, then apply vacuum at a pressure of -677 mbar (out of -789 mbar maximum possible vacuum with pump and compressor used), exerted on the vial for 90 s. This work provides the necessary workflow for the optimization of Vac-HS-SPME sampling of analytes from solid matrices.
Collapse
Affiliation(s)
- Shannon L Thomas
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Colton Myers
- Restek Corporation, Bellefonte, Pennsylvania, USA
| | | | - Kevin A Schug
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
5
|
Ganjitabar H, Hadidi R, Garcia GA, Nahon L, Powis I. Analysis of the volatile monoterpene composition of citrus essential oils by photoelectron spectroscopy employing continuously monitored dynamic headspace sampling. Analyst 2023; 148:6228-6240. [PMID: 37987708 DOI: 10.1039/d3an01448g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A new photoelectron spectroscopic method permitting a quantitative analysis of the volatile headspace of several essential oils is presented and discussed. In particular, we focus on the monoterpene compounds, which are known to be the dominant volatile components in many such oils. The photoelectron spectra of the monoterpene constituents may be effectively isolated by accepting for analysis only those electrons that accompany the production of m/z = 136 ions, and by using low photon energies that restrict cation fragmentation. The monoterpene isomers are then identified and quantified by regression modelling using a library of terpene standard spectra. An advantage of this approach is that pre-concentration of the volatile vapour is not required, and all steps are performed at ambient temperature, avoiding the possible deleterious effects (such as isomerisation/decomposition) that may sometimes arise in gas chromatographic (GC) procedures. As a proof-of-principle demonstration, three citrus oils (lemon, lime, bergamot) are analysed with this approach and the results are compared with reported GC composition profiles obtained for these oils. Potential advantages of the methodology that include multiplex detection and real-time, in situ analysis are identified and discussed. Alternative and faster experimental implementations concerning laboratory-based ionization and detection schemes are proposed and considered, as is the possibility of a straightforward extension towards simultaneous determination of enantiomeric excesses.
Collapse
Affiliation(s)
- Hassan Ganjitabar
- School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Rim Hadidi
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint Aubin BP 48, 91192 Gif sur Yvette Cedex, France
| | - Gustavo A Garcia
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint Aubin BP 48, 91192 Gif sur Yvette Cedex, France
| | - Laurent Nahon
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint Aubin BP 48, 91192 Gif sur Yvette Cedex, France
| | - Ivan Powis
- School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
6
|
Firouzy M, Hashemi P. Ionic Liquid-Based Magnetic Needle Headspace Single-Drop Microextraction Combined with HPLC/UV for the Determination of Chlorophenols in Wastewater. J Chromatogr Sci 2023; 61:743-749. [PMID: 36806901 DOI: 10.1093/chromsci/bmad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 01/03/2023] [Accepted: 02/03/2023] [Indexed: 02/19/2023]
Abstract
A magnetic needle headspace single-drop microextraction (MN-HS-SDME) method coupled to HPLC/UV has been developed. Trihexyl(tetradecyl)phosphonium chloride was employed as an ionic liquid (IL) solvent for the headspace extraction of some chlorophenol (CP) compounds from wastewater samples. Despite of the nonmagnetic character of the IL, a significant improvement in the extraction efficiency was obtained by the magnetization of the single-drop microextraction needle using a pair of permanent disk magnets. A simplex method for the fast optimization of the experimental conditions (e.g., stirring speed, ionic strength, pH, extraction time and temperature) was used. The coefficients of determination (R2) varied between 0.9932 and 0.9989, the limits of detection were from 0.004 to 0.007 μg mL-1 and the relative recoveries were in the range of 88-120% for the studied analytes. The developed MN-HS-SDME HPLC/UV method was successfully applied to the determination of CPs in industrial wastewater.
Collapse
Affiliation(s)
- Masoumeh Firouzy
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, 411417135167, Iran
| | - Payman Hashemi
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, 411417135167, Iran
| |
Collapse
|
7
|
Spadafora ND, Mascrez S, McGregor L, Purcaro G. Exploring multiple-cumulative trapping solid-phase microextraction coupled to gas chromatography-mass spectrometry for quality and authenticity assessment of olive oil. Food Chem 2022; 383:132438. [PMID: 35183954 DOI: 10.1016/j.foodchem.2022.132438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 01/18/2023]
Abstract
This study explores the potential of an innovative multi-cumulative trapping headspace solid-phase microextraction approach coupled with untargeted data analysis to enhance the information provided by aroma profiling of virgin olive oil. Sixty-nine samples of different olive oil commercial categories (extra-virgin, virgin and lampante oil) and different geographical origins were analysed using this novel workflow. The results from each sample were aligned and compared using for the first time a tile-based approach to enable the mining of all of the raw data within the chemometrics platform without any pre-processing methods. The data matrix obtained allowed the extraction of multiple-level information from the volatile profile of the samples. Not only was it possible to classify the samples within the commercial category that they belonged to, but the same data also provided interesting information regarding the geographical origin of the extra-virgin olive oil.
Collapse
Affiliation(s)
- Natasha D Spadafora
- DiBEST, University of Calabria, Via Ponte P. Bucci, Cubo 6b, Arcavacata Di Rende, 87036, Italy; Markes International Ltd, 1000B Central Park, Western Avenue, Bridgend, CF31 3RT, UK; Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, n. 46, Ferrara 44121, UK
| | - Steven Mascrez
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux 5030, Belgium
| | - Laura McGregor
- SepSolve Analytical, 4 Swan Court, Peterborough PE7 8GX, UK
| | - Giorgia Purcaro
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux 5030, Belgium.
| |
Collapse
|
8
|
Rizzo PV, Del Toro-Gipson RS, Cadwallader DC, Drake MA. Identification of aroma-active compounds in Cheddar cheese imparted by wood smoke. J Dairy Sci 2022; 105:5622-5640. [PMID: 35570037 DOI: 10.3168/jds.2021-21697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022]
Abstract
Cheddar cheese is the most popular cheese in the United States, and the demand for specialty categories of cheese, such as smoked cheese, are rising. The objective of this study was to characterize the flavor differences among Cheddar cheeses smoked with hickory, cherry, or apple woods, and to identify important aroma-active compounds contributing to these differences. First, the aroma-active compound profiles of hickory, cherry, and apple wood smokes were analyzed by solid-phase microextraction (SPME) gas chromatography-olfactometry (GCO) and gas chromatography-mass spectrometry (GC-MS). Subsequently, commercial Cheddar cheeses smoked with hickory, cherry, or apple woods, as well as an unsmoked control, were evaluated by a trained sensory panel and by SPME GCO and GC-MS to identify aroma-active compounds. Selected compounds were quantified with external standard curves. Seventy-eight aroma-active compounds were identified in wood smokes. Compounds included phenolics, carbonyls, and furans. The trained panel identified distinct sensory attributes and intensities among the 3 cheeses exposed to different wood smokes (P < 0.05). Hickory smoked cheeses had the highest intensities of flavors associated with characteristic "smokiness" including smoke aroma, overall smoke flavor intensity, and meaty, smoky flavor. Cherry wood smoked cheeses were distinguished by the presence of a fruity flavor. Apple wood smoked cheeses were characterized by the presence of a waxy, green flavor. Ninety-nine aroma-active compounds were identified in smoked cheeses. Phenol, guaiacol, 4-methylguaiacol, and syringol were identified as the most important compounds contributing to characteristic "smokiness." Benzyl alcohol contributed to the fruity flavor in cherry wood smoked cheeses, and 2-methyl-2-butenal and 2-ethylfuran were responsible for the waxy, green flavor identified in apple wood smoked cheeses. These smoke flavor compounds, in addition to diacetyl and acetoin, were deemed important to the flavor of cheeses in this study. Results from this study identified volatile aroma-active compounds contributing to differences in sensory perception among Cheddar cheeses smoked with different wood sources.
Collapse
Affiliation(s)
- P V Rizzo
- Department of Food, Bioprocessing, and Nutrition Sciences, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695
| | - R S Del Toro-Gipson
- Department of Food, Bioprocessing, and Nutrition Sciences, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695
| | - D C Cadwallader
- Department of Food, Bioprocessing, and Nutrition Sciences, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695
| | - M A Drake
- Department of Food, Bioprocessing, and Nutrition Sciences, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695.
| |
Collapse
|
9
|
Zhakupbekova A, Baimatova N, Psillakis E, Kenessov B. Quantification of trace transformation products of rocket fuel unsymmetrical dimethylhydrazine in sand using vacuum-assisted headspace solid-phase microextraction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33645-33656. [PMID: 35028834 DOI: 10.1007/s11356-021-17844-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Quantification of unsymmetrical dimethylhydrazine transformation products in solid samples is an important stage in monitoring of environmental pollution caused by heavy rockets launches. The new method for simultaneous quantification of unsymmetrical dimethylhydrazine transformation products in sand samples using vacuum-assisted headspace solid-phase microextraction without addition of water followed by gas chromatography-mass spectrometry is proposed. Decreasing air evacuation time from 120 to 20 s at 23 °C resulted in increased responses of analytes by 25-46% and allowed obtaining similar responses as after evacuation at -30 °C. The best combination of responses of analytes and their relative standard deviations (RSDs) was achieved after air evacuation of a sample (m = 1.00 g) for 20 s at 23 °C, incubation for 30 min at 40 °C, and 30-min extraction at 40 °C by Carboxen/polydimethylsiloxane (Car/PDMS) fiber. The method was validated in terms of linearity (R2=0.9912-0.9938), limits of detection (0.035 to 3.6 ng g-1), limits of quantification (0.12-12 ng g-1), recovery (84-97% with RSDs 1-11%), repeatability (RSDs 3-9%), and reproducibility (RSDs 7-11%). It has a number of major advantages over existing methods based on headspace solid-phase microextraction-lower detection limits, better accuracy and precision at similar or lower cost of sample preparation. The developed method was successfully applied for studying losses of analytes from open vials with model sand spiked with unsymmetrical dimethylhydrazine transformation products. It can be recommended for analysis of trace concentrations of unsymmetrical dimethylhydrazine transformation products when studying their transformation, migration and distribution in contaminated sand.
Collapse
Affiliation(s)
- Aray Zhakupbekova
- Center of Physical Chemical Methods of Research and Analysis, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 96a Tole bi Street, office 101, 050012, Almaty, Kazakhstan
- UNESCO Chair for Sustainable Development, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Nassiba Baimatova
- Center of Physical Chemical Methods of Research and Analysis, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 96a Tole bi Street, office 101, 050012, Almaty, Kazakhstan.
| | - Elefteria Psillakis
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Technical University of Crete, Chania, Greece
| | - Bulat Kenessov
- Center of Physical Chemical Methods of Research and Analysis, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 96a Tole bi Street, office 101, 050012, Almaty, Kazakhstan
| |
Collapse
|
10
|
Delbecque N, Mascrez S, Psillakis E, Purcaro G. Sub-ambient temperature sampling of fish volatiles using vacuum-assisted headspace solid phase microextraction: Theoretical considerations and proof of concept. Anal Chim Acta 2022; 1192:339365. [DOI: 10.1016/j.aca.2021.339365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/01/2022]
|
11
|
Mirzajani R, Kardani F, Ramezani Z. The fabrication of a novel polyacrylonitrile/reduced graphene oxide-amino-halloysite/bimetallic metal–organic framework electrospun nanofiber adsorbent for the ultrasonic-assisted thin-film microextraction of fatty acid methyl esters in dairy products with gas chromatography-flame ionization detection. RSC Adv 2021; 11:14686-14699. [PMID: 35423972 PMCID: PMC8697828 DOI: 10.1039/d0ra07674k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/22/2021] [Indexed: 11/21/2022] Open
Abstract
In this work, electrospun polyacrylonitrile/reduced graphene oxide-amino-halloysite/bimetallic metal–organic framework (PAN/rGO-amino-HNT/Co0.5Zn0.5(MeIm)2) nanofiber film was synthesized and investigated as a novel adsorbent for the ultrasonic-assisted thin-film microextraction (UA-TFME) of fatty acid methyl esters (FAMEs), including palmitic methyl ester (PAME), oleic methyl ester (OAME), stearic methyl ester (SAME), and linoleic methyl ester (LAME), from dairy products. The hybrid nanocomposite was obtained via bonding halloysite nanotubes to reduced graphene oxide, followed by loading with bimetallic metal–organic frameworks. The determination of FAMEs with nanofiber film was performed in two stages of desorption and absorption where, initially, the analytes were adsorbed onto the nanofiber film and then desorbed with organic solvent. In this study, ultrasound was used for both the adsorption and desorption stages. The advantages of ultrasonication are extensive, overcoming the shortcomings of conventional techniques in terms of energy consumption and solvent use, allowing a shorter treatment time with a low cost of implementation. Based on PAN/rGO-amino-HNT/Co0.5Zn0.5(MeIm)2 thin film, a microextraction-gas chromatography-flame ionization detection (TFME-GC-FID) method was developed. Experimental parameters affecting the extraction and desorption steps were optimized. The desorption parameters, including desorption time and the properties of the desorption solvent, were investigated one factor at a time. Then, effective parameters in the adsorption step were optimized using a Box–Behnken design and Design-Expert 7 software. Under the optimal conditions, the method detection limits (S/N = 3) were in the range of 0.03–0.06 μg L−1 and the limits of quantification (S/N = 10) were within 0.11–0.23 μg L−1. The relative standard deviations for intra-day and inter-day precision were 2.4–4.7% and 2.6–3.4%, respectively. In the present work, the UA-TFME method was successfully applied for the quantification of fatty acid methyl esters in dairy products (milk, yogurt, cheese, yogurt soda and butter samples) for the first time. The fatty acids were transesterified using standard procedures and were subjected to UA-TFME treatment prior to GC-FID determination. The developed method possesses the advantages of simplicity, rapidity, cost-effectiveness, sensitivity, and non-invasiveness. Electrospun polyacrylonitrile/reduced graphene oxide-amino-halloysite/bimetallic metal–organic framework nanofiber film was synthesized and successfully applied to the ultrasonic-assisted thin-film microextraction (UA-TFME) of fatty acid methyl esters from dairy products.![]()
Collapse
Affiliation(s)
- R. Mirzajani
- Chemistry Department
- College of Science
- Shahid Chamran University of Ahvaz
- Ahvaz
- Iran
| | - F. Kardani
- Chemistry Department
- College of Science
- Shahid Chamran University of Ahvaz
- Ahvaz
- Iran
| | - Z. Ramezani
- Department of Medicinal Chemistry
- School of Pharmacy
- Ahvaz Jundishapur University of Medical Sciences
- Ahvaz
- Iran
| |
Collapse
|
12
|
Trujillo-Rodríguez MJ, Pacheco-Fernández I, Taima-Mancera I, Díaz JHA, Pino V. Evolution and current advances in sorbent-based microextraction configurations. J Chromatogr A 2020; 1634:461670. [DOI: 10.1016/j.chroma.2020.461670] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022]
|
13
|
Liu S, Huang Y, Qian C, Xiang Z, Ouyang G. Physical assistive technologies of solid-phase microextraction: Recent trends and future perspectives. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115916] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
The effect of vacuum: an emerging experimental parameter to consider during headspace microextraction sampling. Anal Bioanal Chem 2020; 412:5989-5997. [PMID: 32524370 DOI: 10.1007/s00216-020-02738-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/16/2020] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
Abstract
The effect of vacuum is an emerging experimental parameter to consider during optimization of a variety of headspace microextraction methodologies. The positive effect of vacuum was initially demonstrated for headspace solid-phase microextraction and was recently expanded to single-drop microextraction and higher capacity sorbents i.e. stir bar sorptive extraction. In all cases, sampling under vacuum greatly accelerated the extraction kinetics of analytes exhibiting long equilibration times under atmospheric pressure. At the same time, the extraction of analytes that reached equilibrium fast was not affected. In all optimized methods, extraction times were greatly reduced and/or sampling temperatures were lower to those reported with the standard methodology under atmospheric pressure. This work succinctly overviews the effect of vacuum on the different headspace microextraction technologies reported so far. The fundamental concepts describing the pressure dependence of each methodology are pulled together and presented in a simplified manner. The latest findings on the combined effects of vacuum and several selected experimental parameters typically examined during method optimization are then presented and the practical aspects of past outcomes are highlighted. The discussion also includes the air-evacuation step and the analysis of complex matrices. This article is intended for readers who are either new to the field of vacuum headspace microextraction sampling or its use and want to exploit this powerful approach. Graphical abstract.
Collapse
|
15
|
Mascrez S, Purcaro G. Enhancement of volatile profiling using multiple-cumulative trapping solid-phase microextraction. Consideration on sample volume. Anal Chim Acta 2020; 1122:89-96. [PMID: 32503747 DOI: 10.1016/j.aca.2020.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/23/2020] [Accepted: 05/02/2020] [Indexed: 01/05/2023]
Abstract
In the present work, the performance of the multiple-cumulative trapping headspace solid-phase microextraction technique used in the headspace linearity range and saturated headspace was investigated and compared, with the ultimate goal of maximizing the fingerprinting information extractable using a cross-sample comparison algorithm for olive oil quality assessment. It was highlighted as the use of 0.1 g of olive oil provides comparable or even better profiling than 1.5 g at a little expense of sensitivity. However, the use of multiple-cumulative-solid-phase microextraction, along with the correct sample volume, improved not only the overall sensitivity but significantly burst the level of information for cross-sample studies.
Collapse
Affiliation(s)
- Steven Mascrez
- Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| | - Giorgia Purcaro
- Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium.
| |
Collapse
|
16
|
Mascrez S, Purcaro G. Exploring multiple‐cumulative trapping solid‐phase microextraction for olive oil aroma profiling. J Sep Sci 2020; 43:1934-1941. [DOI: 10.1002/jssc.202000098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Steven Mascrez
- Gembloux Agro‐Bio TechUniversity of Liège Gembloux Belgium
| | | |
Collapse
|
17
|
Capetti F, Rubiolo P, Bicchi C, Marengo A, Sgorbini B, Cagliero C. Exploiting the versatility of vacuum‐assisted headspace solid‐phase microextraction in combination with the selectivity of ionic liquid‐based GC stationary phases to discriminate
Boswellia
spp. resins through their volatile and semivolatile fractions. J Sep Sci 2020; 43:1879-1889. [DOI: 10.1002/jssc.202000084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Francesca Capetti
- Dipartimento di Scienza e Tecnologia del FarmacoUniversità di Torino Turin Italy
| | - Patrizia Rubiolo
- Dipartimento di Scienza e Tecnologia del FarmacoUniversità di Torino Turin Italy
| | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia del FarmacoUniversità di Torino Turin Italy
| | - Arianna Marengo
- Dipartimento di Scienza e Tecnologia del FarmacoUniversità di Torino Turin Italy
| | - Barbara Sgorbini
- Dipartimento di Scienza e Tecnologia del FarmacoUniversità di Torino Turin Italy
| | - Cecilia Cagliero
- Dipartimento di Scienza e Tecnologia del FarmacoUniversità di Torino Turin Italy
| |
Collapse
|
18
|
Mascrez S, Psillakis E, Purcaro G. A multifaceted investigation on the effect of vacuum on the headspace solid-phase microextraction of extra-virgin olive oil. Anal Chim Acta 2020; 1103:106-114. [DOI: 10.1016/j.aca.2019.12.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022]
|
19
|
Abstract
Thirty years since the invention and public disclosure of solid phase microextraction (SPME), the technology continues evolving and inspiring several other green extraction technologies amenable for the collection of small molecules present in complex matrices. In this manuscript, we review the fundamental and operational aspects of a novel SPME geometry that can be used to “hunt” target molecules in complex matrices: the SPME Arrow. In addition, a series of applications in environmental, food, cannabis and forensic analysis are succinctly covered. Finally, special emphasis is placed on novel interfaces to analytical instrumentation, as well as recent developments in coating materials for the SPME Arrow.
Collapse
|
20
|
Vacuum-assisted headspace sorptive extraction: Theoretical considerations and proof-of-concept extraction of polycyclic aromatic hydrocarbons from water samples. Anal Chim Acta 2020; 1096:100-107. [DOI: 10.1016/j.aca.2019.10.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022]
|
21
|
Application of vacuum solid-phase microextraction for the analysis of semi-hard cheese volatiles. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03426-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractSolid-phase microextraction (SPME) is a well-established technique in the analysis of food volatile compounds, usually performed for qualitative analysis. This paper presents an elaboration of conditions for SPME analysis of main volatile compounds in hard cheese and an evaluation of suitability of vacuum to improve the transfer of volatile compounds towards SPME fiber. Compounds representing the main groups of hard cheese volatiles were investigated: 1-pentanol, butanoic acid, 2,3-butanedione and 2-heptanone. Parameters for SPME extraction (temperature, water, sodium carbonate addition, time, vacuum) were evaluated. Application of vacuum had a positive effect on all analytes when extraction was performed from water, but in the cheese matrix the effect was significant only for butanoic acid. Extraction time was the most significant factor for extraction efficiency in examined cheeses, while temperature had a minor effect on the amount of extracted volatiles. The method was applied on Edam, Emmentaler, Gouda and Maasdam cheeses obtained from the market.
Collapse
|
22
|
Trujillo-Rodríguez MJ, Anderson JL, Dunham SJB, Noad VL, Cardin DB. Vacuum-assisted sorbent extraction: An analytical methodology for the determination of ultraviolet filters in environmental samples. Talanta 2019; 208:120390. [PMID: 31816753 DOI: 10.1016/j.talanta.2019.120390] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022]
Abstract
Vacuum-assisted sorbent extraction (VASE) has been applied in combination with gas chromatography-mass spectrometry for the determination of UV filters in water samples. VASE is a variant of headspace extraction which was developed in conjunction with the sorbent pen (SP) technology. This technique combines the advantages of both stir-bar assisted extraction and headspace solid-phase microextraction. The SP traps allowed both reduced pressure in-vial extraction and direct thermal desorption via a unique gas chromatographic injection port. The main parameters that affect the performance of VASE, including both extraction and desorption conditions, were extensively optimized. Under optimum conditions, extraction required 10 mL of sample within 40 mL vials, pH 3.5, ~30 s of air-evacuation, 14 h incubation at 70 °C, stirring at 200 rpm, and a final water management step conducted at ~ -17 °C for 15 min. Optimal thermal desorption required preheating at 260 °C for 2 min followed by desorption at 300 °C for 2 min. The beneficial effect of reduced-pressure extraction was demonstrated by comparing the UV filter extraction time profiles collected using VASE to an analogous atmospheric pressure procedure, resulting in up to a 3-fold improvement under optimized conditions. The VASE methodology enabled simultaneous extractions using different SPs without compromising the method reproducibility, which increases the overall sample throughput. The method was characterized by low limits of detection, from 0.5 to 80 ng L-1, and adequate reproducibility, with inter-SP and inter-day relative standard deviation lower than 14%. Tap and lake water was successfully analyzed with the proposed methodology, resulting in relative recoveries of spiked samples ranging between 70.0 and 120%.
Collapse
Affiliation(s)
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.
| | | | | | | |
Collapse
|
23
|
Pacheco-Fernández I, Trujillo-Rodríguez MJ, Kuroda K, Holen AL, Jensen MB, Anderson JL. Zwitterionic polymeric ionic liquid-based sorbent coatings in solid phase microextraction for the determination of short chain free fatty acids. Talanta 2019; 200:415-423. [DOI: 10.1016/j.talanta.2019.03.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/18/2022]
|
24
|
Peng Y, Huang M, Hu Y, Li G, Xia L. Microwave-assisted synthesis of porphyrin conjugated microporous polymers for microextraction of volatile organic acids in tobaccos. J Chromatogr A 2019; 1594:45-53. [PMID: 30799063 DOI: 10.1016/j.chroma.2019.02.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/10/2019] [Accepted: 02/16/2019] [Indexed: 02/08/2023]
Abstract
Conjugated microporous polymers (CMPs) with permanent microporosity and extended p-conjugated skeletons have recently shown the fascinating application in separation and enrichment. In this report, porphyrin CMP that possessed microporous structure and nitrogen-rich pyrrole building blocks was successfully synthesized by microwave-assisted method. Then, a novel coating based on porphyrin CMP was fabricated on silica fiber for efficient enrichment volatile organic acids (VOAs). The simulation showed the coating exhibited strong interaction with volatile organic acids based on charge transfer interaction, hydrogen bond and size effect. Hence, we proposed a method for determination of volatile organic acids in tobaccos by headspace solid-phase microextraction (HS-SPME) with porphyrin CMP coating by gas chromatography-mass spectrometry. The results showed that the coating provided high enrichment factors for VOAs ranging from 66,657 to 133,970 and low limits of detection from 4.6 to 22 ng/L. A good linearity was observed for propionic acid and crotonic acid ranging from 0.050 to 8.0 μg/L, 2-methylheptanoic acid ranging from 0.063 to 1.5 μg/L, others ranging from 0.025 to 3.0 μg/L with the determination coefficient (R2) between 0.9900 and 0.9980. The strategy for determination of volatile compounds in complex solid samples was successfully applied to the analysis of volatile organic acids in tobacco leaves. The results showed that the method was accurate and reliable.
Collapse
Affiliation(s)
- Yi Peng
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Manyan Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
25
|
Vakinti M, Mela SM, Fernández E, Psillakis E. Room temperature and sensitive determination of haloanisoles in wine using vacuum-assisted headspace solid-phase microextraction. J Chromatogr A 2019; 1602:142-149. [PMID: 30961964 DOI: 10.1016/j.chroma.2019.03.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 01/03/2023]
Abstract
Headspace solid-phase microextraction (HSSPME) is a widespread technique used to extract trace amounts of haloanisoles from wine samples. A major challenge to overcome is the high ethanol content in wines that affects the solubilities of haloanisoles and reduces their headspace abundance. To overcome this obstacle and meet sensitivity requirements, reported HSSPME procedures typically suggest heating the wine samples and/or sampling for extended times. The present work proposes the use of vacuum-assisted HSSPME (Vac-HSSPME) to accelerate the extraction kinetics whilst sampling at room temperature. Although ethanol affected the physico-chemical properties of the target analytes, these changes were not sufficient to prevent the positive effect of vacuum on HSSPME sampling. To demonstrate the benefits of adopting the vacuum approach, Vac-HSSPME and regular HSSPME methods were independently optimized and the results were compared at all times. The effect of ethanol under each pressure condition was also discussed. Under the optimum conditions found, Vac-HSSPME sampling for 30 min at room temperature at 25 °C yielded lower detection limits (0.13 to 0.19 ng L-1) than those obtained with regular HSSPME sampling for 30 min at 55 °C (0.26 to 0.76 ng L-1). The proposed Vac-HSSPME method was successfully applied to quantify haloanisoles in bottled red wines and a discussion on the effect of wine volatiles was included. The standard addition method was used to minimize matrix effects. The increase in total pressure due to the presence of ethanol and other volatile wine components did not reduce the positive effect of vacuum on HSSPME. Nonetheless, in accordance to past HSSPME methods, the limits of detection and quantification were affected due to the noise level increase and analyte interaction with matrix. The proposed Vac-HSSPME procedure was applied to twelve bottled red wines and one sample was found positive on 2,4,6-trichloronanisole.
Collapse
Affiliation(s)
- Maria Vakinti
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Polytechnioupolis, Technical University of Crete, GR-73100, Chania, Crete, Greece
| | - Sofia-Maria Mela
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Polytechnioupolis, Technical University of Crete, GR-73100, Chania, Crete, Greece
| | - Elena Fernández
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Polytechnioupolis, Technical University of Crete, GR-73100, Chania, Crete, Greece
| | - Elefteria Psillakis
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Polytechnioupolis, Technical University of Crete, GR-73100, Chania, Crete, Greece.
| |
Collapse
|
26
|
Ghidotti M, Fabbri D, Torri C. Determination of linear and cyclic volatile methyl siloxanes in biogas and biomethane by solid-phase microextraction and gas chromatography-mass spectrometry. Talanta 2018; 195:258-264. [PMID: 30625541 DOI: 10.1016/j.talanta.2018.11.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
A new method based on solid-phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS) was developed for the analysis of seven linear (L2 - L5) and cyclic (D3 - D5) volatile methyl siloxanes (VMS) in biogas and biomethane, directly collected into Tedlar® bags (Tedlar SPME) from anaerobic digesters and wastewater treatment plants. The method was employed to monitor VMS content in biomethane produced by biogas upgrading with a pilot-plant membrane unit and provided adequate limits of quantification (< 0.05 mg m-3) to detect trace siloxane impurities. Tedlar SPME was validated against a standard procedure based on indirect sampling of gas streams with sorbent tubes followed by solvent extraction and GC-MS. Method precision (RSD) on total and individual VMS concentrations was lower than 10%, while RSD values of the standard procedure were higher than 20%. Tedlar SPME suitably revealed high VMS levels, expressed as total volatile silicon (> 1 mgSim-3), in wastewater biogas and provided a more efficient sampling of heavier VMS in comparison to the sorbent tubes method. At low values (< 0.1 mgSim-3) typical of wood waste biogas and biomethane, no statistically significant differences were observed between the two methods. Overall, Tedlar SPME simplified the analytical procedure by reducing the procedural steps, avoiding the use of solvents and demonstrated its applicability for testing the quality of biomethane as advanced biofuel.
Collapse
Affiliation(s)
- Michele Ghidotti
- Interdepartmental Centre for Industrial Research "FRAME" and Department of Chemistry "Giacomo Ciamician", University of Bologna, Ravenna Campus, via S.Alberto 163, I-48123 Ravenna, Italy.
| | - Daniele Fabbri
- Interdepartmental Centre for Industrial Research "FRAME" and Department of Chemistry "Giacomo Ciamician", University of Bologna, Ravenna Campus, via S.Alberto 163, I-48123 Ravenna, Italy
| | - Cristian Torri
- Interdepartmental Centre for Industrial Research "FRAME" and Department of Chemistry "Giacomo Ciamician", University of Bologna, Ravenna Campus, via S.Alberto 163, I-48123 Ravenna, Italy
| |
Collapse
|
27
|
|
28
|
Orazbayeva D, Kenessov B, Zhakupbekova A. Quantification of transformation products of unsymmetrical dimethylhydrazine in aqueous extracts from soil
based on vacuum-assisted headspace solid-phase microextraction. CHEMICAL BULLETIN OF KAZAKH NATIONAL UNIVERSITY 2018. [DOI: 10.15328/cb1014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Quantification of transformation products of unsymmetrical dimethylhydrazine (UDMH) in soil requires tedious, time- and labor-consuming sample preparation. The simple and fast method for quantification of transformation products of UDMH in aqueous extracts from soil using vacuum-assisted headspace solid-phase microextraction (Vac-HSSPME) was optimized in this work. The method is based on extraction of analytes from soil with water followed by Vac-HSSPME of the obtained aqueous extracts, and gas chromatography-mass spectrometry analysis. The target transformation products were: pyrazine, 1-methyl-1H-pyrazole, N-nitrosodimethylamine, N,N-dimethylformamide, 1-methyl-1Н-1,2,4-triazole, 1-methyl-imidazole and 1H-pyrazole. The effect of a sample pH on responses of target analytes was studied. It was negligible, and no pH adjustment was recommended before a subsequent extraction. The water amount was optimized to provide the best combination of analytes responses and their precision. Extraction by adding 7.00 mL of water to 2.0 g of soil ensured linear dependence of responses of the analytes on their concentrations in soil. The optimized method provided detection limits of target analytes in soil in the range from 0.2 to 9 ng/g. The spike recoveries obtained for model samples were in the range 90-103%. The developed method can be recommended for application in laboratories conducting routine analyses of soil samples potentially contaminated by rocket fuel residuals.
Collapse
|
29
|
Orazbayeva D, Kenessov B, Psillakis E, Nassyrova D, Bektassov M. Determination of transformation products of unsymmetrical dimethylhydrazine in water using vacuum-assisted headspace solid-phase microextraction. J Chromatogr A 2018; 1555:30-36. [DOI: 10.1016/j.chroma.2018.04.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 01/16/2023]
|
30
|
Characterization of the aroma profile of novel Brazilian wines by solid-phase microextraction using polymeric ionic liquid sorbent coatings. Anal Bioanal Chem 2018; 410:4749-4762. [DOI: 10.1007/s00216-018-1134-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/28/2018] [Accepted: 05/07/2018] [Indexed: 01/06/2023]
|
31
|
Shahvandi SK, Banitaba MH, Ahmar H. Development of a new pH assisted homogeneous liquid-liquid microextraction by a solvent with switchable hydrophilicity: Application for GC-MS determination of methamphetamine. Talanta 2018; 184:103-108. [PMID: 29674019 DOI: 10.1016/j.talanta.2018.02.115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 10/17/2022]
Abstract
In this study, a new method based on homogeneous liquid-phase microextraction was developed for the determination of methamphetamine (MA) in urine samples. Dipropylamine (DPA), as a solvent with switchable hydrophilicity, was used as the extraction solvent and can be miscible/immiscible based on variable pH values of the aqueous sample solution. The effects of operational extraction parameters such as DPA volume, temperature, the amount of added acid and base solutions, and NaCl content of the sample were investigated. Under optimal conditions the preconcentration factor, limit of detection and linearity of the method were achieved in the ranges of 98.8, 1.5 µgL-1 and 5-1500 µgL-1, respectively. Also, within-run precision, between-run precision and robustness of the method were investigated. Finally, the proposed method was successfully applied to the analysis of MA in urine sample.
Collapse
Affiliation(s)
- Siamak Kiani Shahvandi
- Department of Chemistry, Faculty of Science, University of Zabol, P.O. Box 98615-538, Zabol, Iran
| | - Mohammad Hossein Banitaba
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Hamid Ahmar
- Department of Chemistry, Faculty of Science, University of Zabol, P.O. Box 98615-538, Zabol, Iran.
| |
Collapse
|
32
|
Reyes-Garcés N, Gionfriddo E, Gómez-Ríos GA, Alam MN, Boyacı E, Bojko B, Singh V, Grandy J, Pawliszyn J. Advances in Solid Phase Microextraction and Perspective on Future Directions. Anal Chem 2017; 90:302-360. [DOI: 10.1021/acs.analchem.7b04502] [Citation(s) in RCA: 402] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - Md. Nazmul Alam
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Ezel Boyacı
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| | - Varoon Singh
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Jonathan Grandy
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
33
|
Simple, Low-Cost and Reliable Device for Vacuum-Assisted Headspace Solid-Phase Microextraction of Volatile and Semivolatile Compounds from Complex Solid Samples. Chromatographia 2017. [DOI: 10.1007/s10337-017-3422-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
34
|
Recent advances on ionic liquid uses in separation techniques. J Chromatogr A 2017; 1559:2-16. [PMID: 28958758 DOI: 10.1016/j.chroma.2017.09.044] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
Abstract
The molten organic salts with melting point below 100°C, commonly called ionic liquids (ILs) have found numerous uses in separation sciences due to their exceptional properties as non molecular solvents, namely, a negligible vapor pressure, a high thermal stability, and unique solvating properties due to polarity and their ionic character of molten salts. Other properties, such as viscosity, boiling point, water solubility, and electrochemical window, are adjustable playing with which anion is associated with which cation. This review focuses on recent development of the uses of ILs in separation techniques actualizing our 2008 article (same authors, J. Chromatogr. A, 1184 (2008) 6-18) focusing on alkyl methylimidazolium salts. These developments include the use of ILs in nuclear waste reprocessing, highly thermally stable ILs that allowed for the introduction of polar gas chromatography capillary columns able to work at temperature never seen before (passing 300°C), the use of ILs in liquid chromatography and capillary electrophoresis, and the introduction of tailor-made ILs for mass spectrometry detection of trace anions at the few femtogram level. The recently introduced deep eutectic solvents are not exactly ILs, they are related enough so that their properties and uses in countercurrent chromatography are presented.
Collapse
|
35
|
Magnetic ionic liquids as extraction solvents in vacuum headspace single-drop microextraction. Talanta 2017; 172:86-94. [DOI: 10.1016/j.talanta.2017.05.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/25/2022]
|
36
|
Psillakis E. Vacuum-assisted headspace solid-phase microextraction: A tutorial review. Anal Chim Acta 2017; 986:12-24. [DOI: 10.1016/j.aca.2017.06.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/18/2017] [Accepted: 06/21/2017] [Indexed: 12/17/2022]
|
37
|
Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems. J Chromatogr A 2017; 1500:1-23. [DOI: 10.1016/j.chroma.2017.04.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 01/08/2023]
|
38
|
Yang Q, Wang Y, Zhang H, Xu K, Wei X, Chen J, Xu P. The solid-phase extraction of α-chymotrypsin based on a novel porous polymeric dianionic ionic liquid-coated magnetic material. RSC Adv 2017. [DOI: 10.1039/c7ra09434e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel magnetic solid-phase extraction (MSPE) method based on carboxymethylcellulose sodium modified Fe3O4 nanocomposite coated with porous polymeric dianionic ionic liquid (Fe3O4@CMC@PPDIL) was proposed and applied to extracting α-chymotrypsin.
Collapse
Affiliation(s)
- Qin Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Yuzhi Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Hongmei Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Kaijia Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Xiaoxiao Wei
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Jing Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Panli Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| |
Collapse
|