1
|
da Silva MKL, Barreto FC, Sousa GDS, Simões RP, Ahuja G, Dutta S, Mulchandani A, Cesarino I. Development of an Electrochemical Paper-Based Device Modified with Functionalized Biochar for the Screening of Paracetamol in Substandard Medicines. Molecules 2024; 29:5468. [PMID: 39598857 PMCID: PMC11597429 DOI: 10.3390/molecules29225468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
The global prevalence of counterfeit and low-quality pharmaceuticals poses significant health risks and challenges in medical treatments, creating a need for rapid and reliable drug screening technologies. This study introduces a cost-effective electrochemical paper-based device (ePAD) modified with functionalized bamboo-derived biochar (BCF) for the detection of paracetamol in substandard medicines. The sensor was fabricated using a custom 3D-printed stencil in PLA, designed for efficient production, and a 60:40 (m/m) graphite (GR) and glass varnish (GV) conductive ink, resulting in a robust and sensitive platform. The electroactive area of the ePAD/BCF sensor was determined as 0.37 cm2. Characterization via SEM and cyclic voltammetry (CV) verified its structural and electrochemical stability. The sensor demonstrated linear detection of paracetamol from 5.0 to 60.0 µmol L-1 with a detection limit of 3.50 µmol L-1. Interference studies showed high selectivity, with recoveries of over 90%, and the sensor successfully quantified paracetamol in commercial analgesic and anti-flu samples. This sustainable, bamboo-based ePAD offers a promising solution for rapid on-site pharmaceutical quality control, with significant potential to enhance drug screening accuracy.
Collapse
Affiliation(s)
- Martin Kassio Leme da Silva
- School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (M.K.L.d.S.); (F.C.B.); (G.d.S.S.); (R.P.S.)
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA; (G.A.); (A.M.)
| | - Francisco Contini Barreto
- School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (M.K.L.d.S.); (F.C.B.); (G.d.S.S.); (R.P.S.)
| | - Guilherme dos Santos Sousa
- School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (M.K.L.d.S.); (F.C.B.); (G.d.S.S.); (R.P.S.)
| | - Rafael Plana Simões
- School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (M.K.L.d.S.); (F.C.B.); (G.d.S.S.); (R.P.S.)
| | - Gaurav Ahuja
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA; (G.A.); (A.M.)
| | - Samriddha Dutta
- Department of Bioengineering, University of California, Riverside, CA 92521, USA;
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA; (G.A.); (A.M.)
| | - Ivana Cesarino
- School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (M.K.L.d.S.); (F.C.B.); (G.d.S.S.); (R.P.S.)
| |
Collapse
|
2
|
Caruncho-Pérez S, Díez AM, Prado-Comesaña A, Pazos M, Sanromán MÁ, González-Romero E. Decorated Electrode Surfaces with Nanostructures and Metal-Organic Frameworks as Transducers for Sensing. SENSORS (BASEL, SWITZERLAND) 2024; 24:6745. [PMID: 39460225 PMCID: PMC11511523 DOI: 10.3390/s24206745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
In this study, several materials are presented as modifiers of the screen-printed carbon electrodes with the aim of developing new sensing platforms for the voltammetric analysis of drugs. Specifically, Clotiapine and Sulfamethoxazole were selected as models for antipsychotics and antibiotics, respectively. Different nanostructures were studied as modifiers, including both transition metals and carbon-based materials. Moreover, biochar and two metal-organic frameworks (MOFs) were tested as well. The NH2-MIL-125(Ti) MOF showed an 80% improvement in the analytical signal of Sulfamethoxazole, but it partially overlapped with an additional signal associated with the loss of the MOF ligand. For this reason, several immobilization strategies were tested, but none of them met the requirements for the development of a sensor for this analyte. Conversely, carbon nanotubes and the NH2-MIL-101(Fe) MOF were successfully applied for the analysis of Clotiapine in the medicine Etumine®, with RSD below 2% and relative errors that did not exceed 9% in any case, which demonstrates the precision and accuracy achieved with the tested modifications. Despite these promising results, it was not possible to lower the limits of detection and quantification, so in this sense further investigation must be performed to increase the sensitivity of the developed sensors.
Collapse
Affiliation(s)
- Sara Caruncho-Pérez
- Department of Analytical and Food Chemistry, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain;
- CINTECX, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain; (A.M.D.); (M.P.); (M.Á.S.)
| | - Aida M. Díez
- CINTECX, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain; (A.M.D.); (M.P.); (M.Á.S.)
| | - Ana Prado-Comesaña
- Department of Analytical and Food Chemistry, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain;
- CINTECX, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain; (A.M.D.); (M.P.); (M.Á.S.)
| | - Marta Pazos
- CINTECX, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain; (A.M.D.); (M.P.); (M.Á.S.)
| | - María Ángeles Sanromán
- CINTECX, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain; (A.M.D.); (M.P.); (M.Á.S.)
| | - Elisa González-Romero
- Department of Analytical and Food Chemistry, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain;
| |
Collapse
|
3
|
Stojanović J, Milojević-Rakić M, Bajuk-Bogdanović D, Ranđelović D, Sokić M, Otašević B, Malenović A, Ležaić AJ, Protić A. Chemometrically-aided general approach to novel adsorbents studies: Case study on the adsorption of pharmaceuticals by the carbonized Ailanthus altissima leaves. Heliyon 2024; 10:e34841. [PMID: 39149065 PMCID: PMC11325374 DOI: 10.1016/j.heliyon.2024.e34841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
A chemometrically based approach was applied to select the most efficient drug adsorbent among the biochars obtained from the novel feedstock, the leaves of the invasive plant (Ailanthus altissima). The representative target adsorbates (atenolol, paracetamol, ketorolac and tetracycline) were selected on the basis of their physicochemical properties to cover a wide chemical space, which is the usual analytical challenge. Their adsorption was investigated using design of experiments as a comprehensive approach to optimise the performance of the adsorption system, rationalise the procedure and overcome common drawbacks. Among the response surface designs, the central composite design was selected as it allows the identification of important experimental factors (solid-to-liquid ratio, pH, ionic strength) and their interactions, and allows the selection of optimal experimental conditions to maximise adsorption performance. The biochars were prepared by pyrolysis at 500 °C and 800 °C (BC-500 and BC-800) and the ZnCl2-activated biochars were prepared at 650 °C and 800 °C (AcBC-650 and AcBC-800). The FTIR spectra revealed that increasing the pyrolysis temperature without activator decreases the intensity of all bands, while activation preserves functional groups, as evidenced by the spectra of AcBC-650 and AcBC-800. High temperatures during activation promoted the development of an efficient surface area, with the maximum observed for AcBC-800 reaching 347 m2 g-1. AcBC-800 was found to be the most efficient adsorbent with removal efficiencies of 34.1, 51.3, 55.9 and 38.2 % for atenolol, paracetamol, ketorolac and tetracycline, respectively. The models describing the relationship between the removal efficiency of AcBC-800 and the experimental factors studied, showed satisfactory predictive ability (predicted R2 > 0.8) and no significant lack-of-fit was observed. The results obtained, including the mathematical models, the properties of the adsorbates and the adsorbents, clearly indicate that the adsorption mechanisms of activated biochars are mainly based on hydrophobic interactions, pore filling and hydrogen bonding.
Collapse
Affiliation(s)
- Jevrem Stojanović
- Department of Drug Analysis, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Maja Milojević-Rakić
- University of Belgrade-Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Danica Bajuk-Bogdanović
- University of Belgrade-Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Dragana Ranđelović
- Sector for metallurgical technology and environmental protection, Institute for Technology of Nuclear and Other Mineral Raw Materials, Bulevar Franš d'Eperea 86, 11000 Belgrade, Serbia
| | - Miroslav Sokić
- Sector for metallurgical technology and environmental protection, Institute for Technology of Nuclear and Other Mineral Raw Materials, Bulevar Franš d'Eperea 86, 11000 Belgrade, Serbia
| | - Biljana Otašević
- Department of Drug Analysis, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Anđelija Malenović
- Department of Drug Analysis, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Aleksandra Janošević Ležaić
- Department of Physical Chemistry and Instrumental Methods, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Ana Protić
- Department of Drug Analysis, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Kalinke C, de Oliveira PR, Marcolino-Júnior LH, Bergamini MF. Nanostructures of Prussian blue supported on activated biochar for the development of a glucose biosensor. Talanta 2024; 274:126042. [PMID: 38583326 DOI: 10.1016/j.talanta.2024.126042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
This work emphasizes the utilization of biochar, a renewable material, as an interesting platform for anchoring redox mediators and bioreceptors in the development of economic, environmentally friendly biosensors. In this context, Fe(III) ions were preconcentrated on highly functionalized activated biochar, allowing the stable synthesis of Prussian blue nanostructures with an average size of 58.3 nm. The determination of glucose was carried out by indirectly monitoring the hydrogen peroxide generated through the enzymatic reaction, followed by its subsequent redox reaction with reduced Prussian blue (also known as Prussian white) in a typical electrochemical-chemical mechanism. The EDC/NHS (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and N-Hydroxysuccinimide) pair was employed for the stable covalent immobilization of the enzyme on biochar. The biosensor demonstrated good enzyme-substrate affinity, as evidenced by the Michaelis-Menten apparent kinetic constant (4.16 mmol L-1), and analytical performance with a wide linear dynamic response range (0.05-5.0 mmol L-1), low limits of detection (0.94 μmol L-1) and quantification (3.13 μmol L-1). Additionally, reliable repeatability, reproducibility, stability, and selectivity were obtained for the detection of glucose in both real and spiked human saliva and blood serum samples.
Collapse
Affiliation(s)
- Cristiane Kalinke
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná, 81531-980, Curitiba, PR, Brazil; Institute of Chemistry, University of Campinas, 13083-970, Campinas, SP, Brazil.
| | - Paulo R de Oliveira
- Senai Institute of Innovation in Electrochemistry, 81920-380, Curitiba, PR, Brazil
| | - Luiz H Marcolino-Júnior
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná, 81531-980, Curitiba, PR, Brazil
| | - Márcio F Bergamini
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná, 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
5
|
Kumar V, Sharma N, Panneerselvam B, Dasarahally Huligowda LK, Umesh M, Gupta M, Muzammil K, Zahrani Y, Malmutheibi M. Lignocellulosic biomass for biochar production: A green initiative on biowaste conversion for pharmaceutical and other emerging pollutant removal. CHEMOSPHERE 2024; 360:142312. [PMID: 38761824 DOI: 10.1016/j.chemosphere.2024.142312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/25/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
Lignocellulosic waste generation and their improper disposal has accelerated the problems associated with increased greenhouse gas emissions and associated environmental pollution. Constructive ways to manage and mitigate the pollution associated with lignocellulosic waste has propelled the research on biochar production using lignocellulose-based substrates. The sustainability of various biochar production technologies in employing lignocellulosic biomass as feedstock for biochar production not only aids in the lignocellulosic biomass valorization but also helps in carbon neutralization and carbon utilization. Functionalization of biochar through various physicochemical methods helps in improving their functional properties majorly by reducing the size of the biochar particles to nanoscale and modifying their surface properties. The usage of engineered biochar as nano adsorbents for environmental applications like dye absorption, removal of organic pollutants and endocrine disrupting compounds from wastewater has been the thrust areas of research in the past few decades. This review presents a comprehensive outlook on the up-to-date research findings related to the production and engineering of biochar from lignocellulosic biomass and their applications in environmental remediation especially with respect to wastewater treatment. Further a detailed discussion on various biochar activation methods and the future scope of biochar research is presented in this review work.
Collapse
Affiliation(s)
- Vinay Kumar
- Biomaterials and Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam, 602105, India.
| | - Neha Sharma
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam, 602105, India
| | - Balamurugan Panneerselvam
- Center of Excellence in Interdisciplinary Research for Sustainable Development, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Community Medicine, Saveetha Medical College, SIMATS, Chennai, 602105, India
| | | | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, 560029, Karnataka, India
| | - Manish Gupta
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | - Yousef Zahrani
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | - Musa Malmutheibi
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| |
Collapse
|
6
|
Wang Q, Shi X, Tang SF, Wang H, Chen Y, Zhang N. Preparation of a β-cyclodextrin grafted magnetic biochar for efficient extraction of four antiepileptic drugs in plasma samples. J Chromatogr A 2024; 1724:464893. [PMID: 38643615 DOI: 10.1016/j.chroma.2024.464893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024]
Abstract
Simultaneous monitoring of plasma concentration levels of multiple antiepileptic drugs (AEDs) is essential for dose adjustment in comprehensive epilepsy treatment, necessitating a sensitive technique for accurate extraction and determination of AEDs. Herein, a magnetic solid-phase extraction (MSPE) technique on the basis of modified biochar (BC) is investigated to extract four AEDs from plasma, in conjunction with high performance liquid chromatography. BC derived from Zizyphus jujuba seed shells was activated by phosphoric acid (PBC) and magnetized via coprecipitation to produce MPBC. The MPBCCD obtained after modification with β-cyclodextrin (CD) was characterized and evaluated for adsorption. It exhibited fast adsorption kinetics based on second-order kinetics and satisfactory adsorption capacity for AEDs. Then it was employed as the MSPE adsorbent and the influencing parameters were optimized. The enrichment factor was 18.75. The validation analysis revealed a favorable linearity that ranged from 0.04 to 20 μg·mL-1 along with a low limit of detection of 6.85 to 10.19 ng·mL-1. The recovery of the AEDs ranged from 78.7 to 109.2 %, with relative standard deviations below 6.7 %. Using quantum chemistry theory calculations and experimental results analysis, the adsorption mechanism was investigated. It disclosed that the suggested strategy built upon MPBCCD was appropriate for the assessment of AEDs in plasma and expanded the usage of BC as the environmentally favorable matrix for the analysis of biological samples.
Collapse
Affiliation(s)
- Qing Wang
- Institute of Collaborative Innovation in Great Health, College of Biotechnology and Food Science, Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China.
| | - Xinyu Shi
- Institute of Collaborative Innovation in Great Health, College of Biotechnology and Food Science, Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Shao-Feng Tang
- Institute of Collaborative Innovation in Great Health, College of Biotechnology and Food Science, Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Huanhuan Wang
- Department of stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yuan Chen
- Institute of Collaborative Innovation in Great Health, College of Biotechnology and Food Science, Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Na Zhang
- Institute of Collaborative Innovation in Great Health, College of Biotechnology and Food Science, Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| |
Collapse
|
7
|
G Díaz-Maroto C, Mašek O, Pizarro P, Serrano DP, Moreno I, Fermoso J. Removal of NO at low concentrations from polluted air in semi-closed environments by activated biochars from renewables feedstocks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118031. [PMID: 37167696 DOI: 10.1016/j.jenvman.2023.118031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/09/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
Efficient measures are urgently required in large cities for nitric oxide (NO) elimination from air in urban semi-closed environments (parking lots and tunnels), characterized by low NO concentrations (<10 ppmv) and temperatures. One of the most promising abatement alternatives is the NO oxidation to NO2, which can be further easily captured in an alkali solution or over a porous solid. However, most of the research devoted to this topic is focused on the elimination of NO from fuel exhaust gases, with high NO concentrations (400-2000 ppmv). In this work, sustainable and low-cost activated biochars of different origin and having very different ash contents were employed in NO removal at very low concentrations. Thus, low ash content forestry (oak woodchips, OAK) and high ash content from agriculture (oilseed rape straw, OSR) biochars were subjected to physical activation with CO2 at 900 °C (OAK550-A900CO2 and OSR700-A900CO2, respectively). The NO removal performance tests of such activated carbons were carried out at different experimental conditions: i.e., temperature, relative humidity (0-50 vol% RH), NO-containing gas (N2 or air), amount of activated carbon, and NO concentration, to assess how the activated biochar properties influence their NO removal capacity. The sample OSR700-A900CO2 contained a higher population of oxygen surface functionalities, which might play an important role in the NO removal efficiency in dry conditions since they could assist NO oxidation on carbon active sites when used above room temperature (50-75 °C). However, at room temperature (25 °C), the presence of narrow micropore size distribution at 6 Å became a more relevant property, since it facilitates an intimate contact between NO and O2. Accordingly, the activated biochar from OAK was much more efficient, achieving complete removal of NO from air flow (dry or with 50 vol% RH) at 25 °C during 400 min of testing, making it an ideal candidate as biofilter for purifying air streams of semi-closed spaces contaminated with low concentrations of NO.
Collapse
Affiliation(s)
- Carlos G Díaz-Maroto
- Thermochemical Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain; Chemical and Environmental Engineering Group, Rey Juan Carlos University, Móstoles, Madrid, Spain
| | - Ondřej Mašek
- UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Patricia Pizarro
- Thermochemical Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain; Chemical and Environmental Engineering Group, Rey Juan Carlos University, Móstoles, Madrid, Spain
| | - David P Serrano
- Thermochemical Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain; Chemical and Environmental Engineering Group, Rey Juan Carlos University, Móstoles, Madrid, Spain
| | - Inés Moreno
- Thermochemical Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain; Chemical and Environmental Engineering Group, Rey Juan Carlos University, Móstoles, Madrid, Spain
| | - Javier Fermoso
- Thermochemical Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain.
| |
Collapse
|
8
|
Mendonça MZM, de Oliveira FM, Petroni JM, Lucca BG, da Silva RAB, Cardoso VL, de Melo EI. Biochar from coffee husks: a green electrode modifier for sensitive determination of heavy metal ions. J APPL ELECTROCHEM 2023. [DOI: 10.1007/s10800-023-01853-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Vempathy A, Kumar A, Pandit S, Gupta M, Mathuriya AS, Lahiri D, Nag M, Kumar Y, Joshi S, Kumar N. Evaluation of the Datura peels derived biochar-based Anode for enhancing power output in microbial fuel cell application. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Ahmad A, Priyadarshini M, Yadav S, Ghangrekar MM, Surampalli RY. The potential of biochar-based catalysts in advanced treatment technologies for efficacious removal of persistent organic pollutants from wastewater: A review. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Sinha R, Kumar R, Sharma P, Kant N, Shang J, Aminabhavi TM. Removal of hexavalent chromium via biochar-based adsorbents: State-of-the-art, challenges, and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115356. [PMID: 35623129 DOI: 10.1016/j.jenvman.2022.115356] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/01/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Chromium originates from geogenic and extensive anthropogenic activities and significantly impacts natural ecosystems and human health. Various methods have been applied to remove hexavalent chromium (Cr(VI)) from aquatic environmental matrices, including adsorption via different adsorbents, which is considered to be the most common and low-cost approach. Biochar materials have been recognized as renewable carbon sorbents, pyrolyzed from various biomass at different temperatures under limited/no oxygen conditions for heavy metals remediation. This review summarizes the sources, chemical speciation & toxicity of Cr(VI) ions, and raw and modified biochar applications for Cr(VI) remediation from various contaminated matrices. Mechanistic understanding of Cr(VI) adsorption using different biochar-based materials through batch and saturated column adsorption experiments is documented. Electrostatic interaction and ion exchange dominate the Cr(VI) adsorption onto the biochar materials in acidic pH media. Cr(VI) ions tend to break down as HCrO4-, CrO42-, and Cr2O72- ions in aqueous solutions. At low pH (∼1-4), the availability of HCrO4- ions attributes the electrostatic forces of attraction due to the available functional groups such as -NH4+, -COOH, and -OH2+, which encourages higher adsorption of Cr(VI). Equilibrium isotherm, kinetic, and thermodynamic models help to understand Cr(VI)-biochar interactions and their adsorption mechanism. The adsorption studies of Cr(VI) are summarized through the fixed-bed saturated column experiments and Cr-contaminated real groundwater analysis using biochar-based sorbents for practical applicability. This review highlights the significant challenges in biochar-based material applications as green, renewable, and cost-effective adsorbents for the remediation of Cr(VI). Further recommendations and future scope for the implications of advanced novel biochar materials for Cr(VI) removal and other heavy metals are elegantly discussed.
Collapse
Affiliation(s)
- Rama Sinha
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, 803 116, India
| | - Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, 803 116, India
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, 803 116, India.
| | - Nishi Kant
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826 004, Jharkhand, India
| | - Jianying Shang
- Department of Soil and Water Science, China Agricultural University, Beijing, 100083, China
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India; School of Engineering, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, 248 007, India; Department of Chemistry, Karnatak University, Dharwad, 580 003, India.
| |
Collapse
|
12
|
Smoak RA, Schnoor JL. Nickel Hyperaccumulator Biochar as a Ni-Adsorbent and Enhanced Bio-ore. ACS ENVIRONMENTAL AU 2022; 2:65-73. [PMID: 35083467 PMCID: PMC8778606 DOI: 10.1021/acsenvironau.1c00018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022]
Abstract
![]()
Increasing nickel
(Ni) demand may spur the need for creative Ni
production methods. Agromining (farming for metals) uses plants that
can accumulate high concentrations of metal in their biomass, called
bio-ore, as a metal extraction strategy. Furthermore, biochar, produced
by biomass pyrolysis under low-oxygen conditions, can be used to remove
Ni from contaminated wastewaters. In this work we investigate whether
biochar synthesized from the Ni-hyperaccumulating plant Odontarrhena
chalcidica (synonymous Alyssum murale) can
be used as a Ni-adsorbing biochar. We grew O. chalcidica on soils with varying Ni concentration, characterized the plants
and resultant biochars synthesized at different pyrolysis temperatures,
and analyzed Ni batch adsorption results to determine the adsorption
capacity of O. chalcidica biochar. We found that
Ni concentration in O. chalcidica increases with
increasing soil Ni but reaches an accumulation limit around 23 g Ni
kg–1 dry weight in dried leaf samples. Pyrolysis
concentrated Ni in the biochar; higher pyrolysis temperatures led
to higher biochar Ni concentrations (max. 87 g Ni kg–1) and surface areas (max. 103 m2/g). Finally, the O. chalcidica biochar adsorption results were comparable
to high-performing Ni adsorbents in the literature. The adsorption
process greatly increased the Ni concentration in some biochars, indicating
that synthesizing biochar from O. chalcidica biomass
and using it as a Ni adsorbent can produce a Ni-enhanced bio-ore with
nickel content higher than all nickel-rich veins currently mined.
Collapse
Affiliation(s)
- Rachel A. Smoak
- Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242, United States
- IIHR − Hydroscience and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, Iowa 52242, United States
| | - Jerald L. Schnoor
- Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242, United States
- IIHR − Hydroscience and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, Iowa 52242, United States
| |
Collapse
|
13
|
Selective carbonaceous-based (nano)composite sensors for electrochemical determination of paraquat in food samples. Food Chem 2021; 373:131521. [PMID: 34775201 DOI: 10.1016/j.foodchem.2021.131521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/29/2021] [Accepted: 10/31/2021] [Indexed: 12/12/2022]
Abstract
A novel electrochemical sensor based on activated biochar (AB4) and reduced graphene oxide (rGO) was developed and tested for detection of paraquat (PQ) in food samples. Precursor biochar was obtained by the pyrolysis of water hyacinth biomass at 400, 500, and 600 °C, followed by a chemical activation step using HNO3 to increase the amount of oxygenated and nitrogenated groups. The modified electrodes (rGO-AB4) were tested in different experimental conditions, and exhibited good response under the optimized conditions, showing linearity from 0.74 to 9.82 μmol L-1 and a limit of detection and limit of quantification of 0.02 μmolL-1 and 0.07 μmol L-1, respectively. Interfering species such as glyphosate caused insignificant changes in the peak current of paraquat, and the selectivity of the method was tested using blank and spiked samples of coconut water, wastewater, honey, lettuce and lemon. Recovery ranged from 87.70±2.07% to 103.80±3.94%.
Collapse
|
14
|
Roberto de Oliveira P, Kalinke C, Alves Bonacin J, Malaspina O, Cornélio Ferreira Nocelli R, Campos Janegitz B. Propolis green biofilm for the immobilization of carbon nanotubes and metallic ions: Development of redox catalysts. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Kartoğlu B, Tezgit E, Yiğit A, Zaman BT, Bakırdere EG, Bakırdere S. Determination of Trace Nickel after Complexation with a Schiff Base by Switchable Solvent – Liquid Phase Microextraction (SS-LPME) and Flame Atomic Absorption Spectrometry (FAAS). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1980797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Bedrihan Kartoğlu
- Faculty of Art and Science, Chemistry Department, Yıldız Technical University, İstanbul, Turkey
| | - Ezgi Tezgit
- Faculty of Art and Science, Chemistry Department, Yıldız Technical University, İstanbul, Turkey
| | - Ayşenur Yiğit
- Faculty of Art and Science, Chemistry Department, Yıldız Technical University, İstanbul, Turkey
| | - Buse Tuğba Zaman
- Faculty of Art and Science, Chemistry Department, Yıldız Technical University, İstanbul, Turkey
| | - Emine Gülhan Bakırdere
- Faculty of Education, Science Education Department, Yıldız Technical University, İstanbul, Turkey
| | - Sezgin Bakırdere
- Faculty of Art and Science, Chemistry Department, Yıldız Technical University, İstanbul, Turkey
- Turkish Academy of Sciences (TÜBA), Çankaya, Ankara, Turkey
| |
Collapse
|
16
|
Biochar obtained from spent coffee grounds: Evaluation of adsorption properties and its application in a voltammetric sensor for lead (II) ions. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106114] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Sharif Manesh S, Masrournia M. Carbon nitride nanoparticles modified carbon paste electrodes as potentiometric sensors for determination of nickel(II) and chromium(III) ions in tap water samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-020-02105-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Cazetta AL, Spessato L, Almeida VC. The use of chemometric tools for screening and optimization of variables in the preparation and application of carbon-based materials. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Kalinke C, Zanicoski-Moscardi AP, de Oliveira PR, Mangrich AS, Marcolino-Junior LH, Bergamini MF. Simple and low-cost sensor based on activated biochar for the stripping voltammetric detection of caffeic acid. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Spanu D, Binda G, Dossi C, Monticelli D. Biochar as an alternative sustainable platform for sensing applications: A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105506] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Yu H, Gu L, Chen L, Wen H, Zhang D, Tao H. Activation of grapefruit derived biochar by its peel extracts and its performance for tetracycline removal. BIORESOURCE TECHNOLOGY 2020; 316:123971. [PMID: 32777718 DOI: 10.1016/j.biortech.2020.123971] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
A novel adsorbent derived from grapefruit peel (GP) based biochar (GPBC) was synthesized by combined carbonization of GP and subsequent activation by GP extracts. Compared to biochar without extracts activation, the technique granted GPBC-20 (with 1:20 of solid-solution ratio) more abundant surface functional groups, which exerts the adsorbent superior performance for tetracycline (TC) adsorption (37.92 mg/g v.s. 16.64 mg/g). The adsorption kinetics, isotherms and thermodynamics models were further used to evaluate the adsorption behavior of GPBC. The enhanced adsorption was analyzed by characterization of fresh and used GPBC, revealing that the adsorption mechanism was comprised of pore filling, charge interaction and chemical bonding. The comprehensive investigation of using agricultural waste extracts as activator to prepare its raw materials-based adsorbents may be of great significance for enhanced resource utilization.
Collapse
Affiliation(s)
- Haixiang Yu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Lin Gu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Lu Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Haifeng Wen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Daofang Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Shanghai University of International Business and Economics, Shanghai 201620, PR China
| | - Hong Tao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| |
Collapse
|
22
|
Sustainable materials for the design of forefront printed (bio)sensors applied in agrifood sector. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115909] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Kalinke C, Neumsteir NV, Aparecido GDO, Ferraz TVDB, dos Santos PL, Janegitz BC, Bonacin JA. Comparison of activation processes for 3D printed PLA-graphene electrodes: electrochemical properties and application for sensing of dopamine. Analyst 2020; 145:1207-1218. [DOI: 10.1039/c9an01926j] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This paper reports the comparison of the electrochemical properties of 3D PLA-graphene electrodes (PLA-G) under different activation conditions and through different processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Bruno Campos Janegitz
- Department of Nature Science
- Mathematics and Education
- Federal University of São Carlos
- Araras
- Brazil
| | | |
Collapse
|
24
|
Kalinke C, Wosgrau V, Oliveira PR, Oliveira GA, Martins G, Mangrich AS, Bergamini MF, Marcolino-Junior LH. Green method for glucose determination using microfluidic device with a non-enzymatic sensor based on nickel oxyhydroxide supported at activated biochar. Talanta 2019; 200:518-525. [DOI: 10.1016/j.talanta.2019.03.079] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 01/22/2023]
|
25
|
Kalinke C, Oliveira PR, Bonet San Emeterio M, González‐Calabuig A, Valle M, Salvio Mangrich A, Humberto Marcolino Junior L, Bergamini MF. Voltammetric Electronic Tongue Based on Carbon Paste Electrodes Modified with Biochar for Phenolic Compounds Stripping Detection. ELECTROANAL 2019. [DOI: 10.1002/elan.201900072] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Cristiane Kalinke
- Laboratory of Electrochemical SensorsDepartment of Chemistry, Federal University of Paraná CEP 81.531-980 Curitiba, Paraná Brazil
| | - Paulo Roberto Oliveira
- Laboratory of Electrochemical SensorsDepartment of Chemistry, Federal University of Paraná CEP 81.531-980 Curitiba, Paraná Brazil
| | - Marta Bonet San Emeterio
- Sensors and Biosensors GroupDepartment of Chemistry, Universitat Autonoma de Barcelona, Bellaterra Barcelona Spain
| | - Andreu González‐Calabuig
- Sensors and Biosensors GroupDepartment of Chemistry, Universitat Autonoma de Barcelona, Bellaterra Barcelona Spain
| | - Manel Valle
- Sensors and Biosensors GroupDepartment of Chemistry, Universitat Autonoma de Barcelona, Bellaterra Barcelona Spain
| | - Antonio Salvio Mangrich
- Laboratory of Process and Environmental Projects, Department of ChemistryFederal University of Paraná CEP 81.531-980 Curitiba, Paraná Brazil
- National Institute of Science and Technology of Energy and Environment (INCT E&A/CNPq) Brazil
| | - Luiz Humberto Marcolino Junior
- Laboratory of Electrochemical SensorsDepartment of Chemistry, Federal University of Paraná CEP 81.531-980 Curitiba, Paraná Brazil
| | - Márcio F. Bergamini
- Laboratory of Electrochemical SensorsDepartment of Chemistry, Federal University of Paraná CEP 81.531-980 Curitiba, Paraná Brazil
| |
Collapse
|
26
|
Martins G, Gogola JL, Caetano FR, Kalinke C, Jorge TR, Santos CND, Bergamini MF, Marcolino-Junior LH. Quick electrochemical immunoassay for hantavirus detection based on biochar platform. Talanta 2019; 204:163-171. [PMID: 31357278 DOI: 10.1016/j.talanta.2019.05.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 11/30/2022]
Abstract
This work describes the first method using biochar (BC) as carbonaceous platform for immunoassay application. BC is a highly functionalized material obtained through biomass pyrolysis under controlled conditions. Due to the highly functionalized surface, covalent binding between BC and biomolecules can be performed by EDC/NHS conjugation. The application of the modified electrode was done with Hantavirus, that are etiologic agents mainly transmitted by wild rodents. Among its pathologies Hantavirus Cardiopulmonary Syndrome (HCPS) arises at Americas, caused by Hantavirus Araucária and reaches 40% lethality. The diagnostic is based on the presence of specific hantavirus nucleoprotein (Np), under viremic condition or IgG2b antibodies (Ab), during first symptoms. The results presented a device sensitivity of 5.28 μA dec-1 and a LOD of 0.14 ng mL-1 to the Np detection, ranging from 5.0 ng mL-1 to 1.0 μg mL-1, the Ab detection works as qualitative type sensor above 200 ng mL-1. Both sensors were evaluated its selectivity and serum samples; selectivity against Gumboro disease, VP2 protein, and antibody IgG2a against Yellow fever disease (YF), respectively. So, the devices here proposed are promising tool suitable for both rodent and human hantavirus clinical surveys.
Collapse
Affiliation(s)
- Gustavo Martins
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil
| | - Jeferson L Gogola
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil
| | - Fabio R Caetano
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil
| | - Cristiane Kalinke
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil
| | - Taíssa R Jorge
- Instituto Carlos Chagas, FIOCRUZ, CEP 81310-020, Curitiba, PR, Brazil
| | | | - Márcio F Bergamini
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil
| | - Luiz H Marcolino-Junior
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil.
| |
Collapse
|
27
|
Liu Y, Yao L, He L, Liu N, Piao Y. Electrochemical Enzyme Biosensor Bearing Biochar Nanoparticle as Signal Enhancer for Bisphenol A Detection in Water. SENSORS 2019; 19:s19071619. [PMID: 30987318 PMCID: PMC6479578 DOI: 10.3390/s19071619] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/12/2019] [Accepted: 03/31/2019] [Indexed: 12/13/2022]
Abstract
An electrochemical tyrosinase enzyme (Tyr) biosensor using a highly conductive sugarcane derived biochar nanoparticle (BCNP) as a transducer and signal enhancer (BCNPs/Tyr/Nafion/GCE) was developed for the sensitive detection of bisphenol A (BPA). The BCNPs/Tyr/Nafion/GCE biosensor exhibited improved amperometric current responses such as higher sensing signal, decreased impedance and lowered reduction potential compared with the Tyr/Nafion/GCE due to high conductivity property of the biochar nanoparticle. Under the optimized conditions, it could detect BPA in good sensitivity with linear range from 0.02 to 10 μM, and a lowest detection limit of 3.18 nM. Moreover, it showed a low Km value, high reproducibility and good selectivity over other reagents, and the BCNPs/Tyr complex solution also showed good stability with 86.9% of sensing signal maintained after one month storage. The biosensor was also successfully utilized for real water detection with high accuracy as validated by high performance liquid chromatography. Therefore, the biochar nanoparticle based enzyme biosensor proved to be a potential and reliable method for high performance detection of pollutants in the environment.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Lan Yao
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Lingzhi He
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Na Liu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Yunxian Piao
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| |
Collapse
|
28
|
Shaaban M, Van Zwieten L, Bashir S, Younas A, Núñez-Delgado A, Chhajro MA, Kubar KA, Ali U, Rana MS, Mehmood MA, Hu R. A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 228:429-440. [PMID: 30243078 DOI: 10.1016/j.jenvman.2018.09.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/10/2018] [Accepted: 09/02/2018] [Indexed: 05/14/2023]
Abstract
Application of biochar to soil can play a significant role in the alteration of nutrients dynamics, soil contaminants as well as microbial functions. Therefore, strategic biochar application to soil may provide agronomic, environmental and economic benefits. Key environmental outcomes may include reduced availability of toxic metals and organic pollutants, reduced soil N losses and longer-term storage of carbon in soil. The use of biochar can certainly address key soil agronomic constraints to crop production including Al toxicity, low soil pH and may improve nutrient use efficiency. Biochar application has also demerits to soil properties and attention should be paid when using a specific biochar for a specific soil property improvement. This review provides a concise assessment and addresses impacts of biochar on soil properties.
Collapse
Affiliation(s)
- Muhammad Shaaban
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lukas Van Zwieten
- New South Wales Department of Primary Industries, Wollongbar, NSW 2477, Australia
| | - Saqib Bashir
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Aneela Younas
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Campus Univ., 27002 Lugo, Univ. Santiago de Compostela, Spain
| | - Muhammad Afzal Chhajro
- Department of Soil Science, Sindh Agriculture University, Tandojam 70060, Sindh, Pakistan
| | - Kashif Ali Kubar
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Umeed Ali
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Shoaib Rana
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Mirza Abid Mehmood
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ronggui Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
29
|
Chen Y, Cui Z, Ding H, Wan Y, Tang Z, Gao J. Cost-Effective Biochar Produced from Agricultural Residues and Its Application for Preparation of High Performance Form-Stable Phase Change Material via Simple Method. Int J Mol Sci 2018; 19:ijms19103055. [PMID: 30301253 PMCID: PMC6212854 DOI: 10.3390/ijms19103055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 11/16/2022] Open
Abstract
A new form-stable composite phase change material (PEG/ASB) composed of almond shell biochar (ASB) and polyethylene glycol (PEG) was produced via a simple and easy vacuum impregnation method. The supporting material ASB, which was cost effective, environmentally friendly, renewable and rich in appropriate pore structures, was produced from agricultural residues of almond shells by a simple pyrolysis method, and it was firstly used as the matrix of PEG. Different analysis techniques were applied to investigate the characteristics of PEG/ASB, including structural and thermal properties, and the interaction mechanism between ASB and PEG was studied. The thermogravimetric analysis (TGA) and thermal cycle tests demonstrated that PEG/ASB possessed favorable thermal stability. The differential scanning calorimetry (DSC) curves demonstrated that the capacities for latent heat storage of PEG/ASB were enhanced with increasing PEG weight percentage. Additionally, PEG/ASB had an excellent thermal conductivity of 0.402 W/mK, which was approximately 1.6 times higher than that of the pure PEG due to the addition of ASB. All the study results indicated that PEG/ASB had favorable phase change properties, which could be used for thermal energy storage.
Collapse
Affiliation(s)
- Yan Chen
- School of Port and Transportation Engineering, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Zhixing Cui
- School of Port and Transportation Engineering, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Han Ding
- School of Port and Transportation Engineering, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yechao Wan
- School of Port and Transportation Engineering, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Zhibo Tang
- School of Port and Transportation Engineering, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Junkai Gao
- School of Port and Transportation Engineering, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
30
|
Oliveira PR, Kalinke C, Mangrich AS, Marcolino-Junior LH, Bergamini MF. Copper hexacyanoferrate nanoparticles supported on biochar for amperometric determination of isoniazid. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Ferreira PA, Backes R, Martins CA, de Carvalho CT, da Silva RAB. Biochar: A Low-cost Electrode Modifier for Electrocatalytic, Sensitive and Selective Detection of Similar Organic Compounds. ELECTROANAL 2018. [DOI: 10.1002/elan.201800430] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Priscila Alves Ferreira
- Faculdade de Ciências Exatas e Tecnologias; Universidade Federal da Grande Dourados; 79.804-970 Dourados, MS Brazil
| | - Rafael Backes
- Faculdade de Ciências Exatas e Tecnologias; Universidade Federal da Grande Dourados; 79.804-970 Dourados, MS Brazil
| | - Cauê Alves Martins
- Faculdade de Ciências Exatas e Tecnologias; Universidade Federal da Grande Dourados; 79.804-970 Dourados, MS Brazil
| | - Cláudio Teodoro de Carvalho
- Faculdade de Ciências Exatas e Tecnologias; Universidade Federal da Grande Dourados; 79.804-970 Dourados, MS Brazil
| | | |
Collapse
|
32
|
Li L, Zhang K, Chen L, Huang Z, Liu G, Li M, Wen Y. Mass preparation of micro/nano-powders of biochar with water-dispersibility and their potential application. NEW J CHEM 2017. [DOI: 10.1039/c7nj00742f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel strategy for micro/nano-structural and/or water dispersible biochars and their potential application in new and traditional fields.
Collapse
Affiliation(s)
- Linjian Li
- Institute of Functional Materials and Agricultural Applied Chemistry
- Jiangxi Agricultural University
- Nanchang 330045
- P. R. China
| | - Kun Zhang
- Jiangxi Institute of Red Soil
- Nanchang
- P. R. China
| | - Li Chen
- Institute of Functional Materials and Agricultural Applied Chemistry
- Jiangxi Agricultural University
- Nanchang 330045
- P. R. China
| | - Zhong Huang
- Institute of Functional Materials and Agricultural Applied Chemistry
- Jiangxi Agricultural University
- Nanchang 330045
- P. R. China
| | - Guangbin Liu
- Institute of Functional Materials and Agricultural Applied Chemistry
- Jiangxi Agricultural University
- Nanchang 330045
- P. R. China
| | - Mingfang Li
- Institute of Functional Materials and Agricultural Applied Chemistry
- Jiangxi Agricultural University
- Nanchang 330045
- P. R. China
| | - Yangping Wen
- Institute of Functional Materials and Agricultural Applied Chemistry
- Jiangxi Agricultural University
- Nanchang 330045
- P. R. China
| |
Collapse
|