1
|
Ghareeb A, Fouda A, Kishk RM, El Kazzaz WM. Unlocking the potential of titanium dioxide nanoparticles: an insight into green synthesis, optimizations, characterizations, and multifunctional applications. Microb Cell Fact 2024; 23:341. [PMID: 39710687 DOI: 10.1186/s12934-024-02609-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
This comprehensive review explores the emergence of titanium dioxide nanoparticles (TiO2-NPs) as versatile nanomaterials, particularly exploring their biogenic synthesis methods through different biological entities such as plants, bacteria, fungi, viruses, and algae. These biological entities provide eco-friendly, cost-effective, biocompatible, and rapid methods for TiO2-NP synthesis to overcome the disadvantages of traditional approaches. TiO2-NPs have distinctive properties, including high surface area, stability, UV protection, and photocatalytic activity, which enable diverse applications. Through detailed analysis, this review demonstrates significant applications of green fabricated TiO2-NPs in biomedicine, explicitly highlighting their antimicrobial, anticancer, and antioxidant activities, along with applications in targeted drug delivery, photodynamic therapy, and theragnostic cancer treatment. Additionally, the review underscores their pivotal significance in biosensors, bioimaging, and agricultural applications such as nanopesticides and nanofertilizers. Also, this review proves valuable incorporation of TiO2-NPs in the treatment of contaminated soil and water with various environmental contaminants such as dyes, heavy metals, radionuclides, agricultural effluents, and pathogens. These comprehensive findings establish the foundation for future innovations in nanotechnology, underscoring the importance of further investigating bio-based synthetic approaches and bioactivity mechanisms to enhance their efficacy and safety across healthcare, agricultural, and environmental applications.
Collapse
Affiliation(s)
- Ahmed Ghareeb
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Rania M Kishk
- Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Waleed M El Kazzaz
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
2
|
Zhang Y, Sun S, Wu Y, Chen F. Emerging Roles of Graphitic Carbon Nitride-based Materials in Biomedical Applications. ACS Biomater Sci Eng 2024; 10:4645-4661. [PMID: 39086282 DOI: 10.1021/acsbiomaterials.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Graphite carbon nitride (g-C3N4) is a two-dimensional conjugated polymer with a unique energy band structure similar to graphene. Due to its outstanding analytical advantages, such as relatively small band gap (2.7 eV), low-cost synthesis, high thermal stability, excellent photocatalytic ability, and good biocompatibility, g-C3N4 has attracted the interest of researchers and industry, especially in the medical field. This paper summarizes the latest research on g-C3N4-based composites in various biomedical applications, including therapy, diagnostic imaging, biosensors, antibacterial, and wearable devices. In addition, the application prospects and possible challenges of g-C3N4 in nanomedicine are also discussed in detail. This review is expected to inspire emerging biomedical applications based on g-C3N4.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, P. R. China
| | - Shuang Sun
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, P. R. China
| | - Yuanyu Wu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, P. R. China
| | - Fangfang Chen
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, P. R. China
| |
Collapse
|
3
|
Fan Q, Li X, Dong H, Ni Z, Hu T. ZIF-67 Anchored on MoS 2/rGO Heterostructure for Non-Enzymatic and Visible-Light-Sensitive Photoelectrochemical Biosensing. BIOSENSORS 2024; 14:38. [PMID: 38248415 PMCID: PMC10813494 DOI: 10.3390/bios14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Graphene and graphene-like two-dimensional layered nanomaterials-based photoelectrochemical (PEC) biosensors have recently grown rapidly in popularity thanks to their advantages of high sensitivity and low background signal, which have attracted tremendous attention in ultrahigh sensitive small molecule detection. This work proposes a non-enzymatic and visible-light-sensitive PEC biosensing platform based on ZIF-67@MoS2/rGO composite which is synthesized through a facile and one-step microwave-assisted hydrothermal method. The combination of MoS2 and rGO could construct van der Waals heterostructures, which not only act as visible-light-active nanomaterials, but facilitate charge carriers transfer between the photoelectrode and glassy carbon electrode (GCE). ZIF-67 anchored on MoS2/rGO heterostructures provides large specific surface areas and a high proportion of catalytic sites, which cooperate with MoS2 nanosheets, realizing rapid and efficient enzyme-free electrocatalytic oxidation of glucose. The ZIF-67@MoS2/rGO-modified GCE can realize the rapid and sensitive detection of glucose at low detection voltage, which exhibits a high sensitivity of 12.62 μAmM-1cm-2. Finally, the ZIF-67@MoS2/rGO PEC biosensor is developed by integrating the ZIF-67@MoS2/rGO with a screen-printed electrode (SPE), which exhibits a high sensitivity of 3.479 μAmM-1cm-2 and a low detection limit of 1.39 μM. The biosensor's selectivity, stability, and repeatability are systematically investigated, and its practicability is evaluated by detecting clinical serum samples.
Collapse
Affiliation(s)
| | - Xiao Li
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China; (Q.F.); (H.D.); (Z.N.)
| | | | | | - Tao Hu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China; (Q.F.); (H.D.); (Z.N.)
| |
Collapse
|
4
|
Wang W, Zhang H, Wang D, Wang N, Liu C, Li Z, Wang L, Zhu X, Yu D. Self-powered biosensor using photoactive ternary nanocomposite: Testing the phospholipid content in rhodotorula glutinis oil. Biosens Bioelectron 2023; 242:115751. [PMID: 37839349 DOI: 10.1016/j.bios.2023.115751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
In the field of oil refining, the presence of excessive residual phosphorus in crude oil can significantly impact its quality, thereby emphasizing the necessity for compact and convenient testing equipment. This study primarily focuses on developing of self-powered biosensor (SPB) using immobilizing Choline Oxidase with a photoactive ternary nanocomposite complex (CHOx-BiOI-rGO-Fe3O4 NPs-ITO) as the anode and utilizing a Pt electrode as the cathode. The successful preparation of the ternary composite photoelectrode for the anode was confirmed through a range of characterization techniques, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), N2 absorption/desorption, Dynamic light scattering (DLS), and Ultraviolet-visible diffuse reflection spectrometer (UV-vis DRS). The electrochemical and photoelectrochemical properties were assessed using an electrochemical workstation, revealing a significant enhancement photoelectrical responsiveness attributed to the formation of heterojunction structures. The SPB exhibited a remarkable linear relationship between the instantaneous photocurrent and phosphatidylcholine (PC) concentration, with a regression equation of I (μA) = 39.62071C (mM) + 3.47271. The linear range covered a concentration range of 0.01-10 mM, and the detection limit (S/N = 3) was determined to be 0.008 mM. It demonstrated excellent reproducibility and storage stability, positioning it a promising alternative to High-performance liquid chromatography (HPLC) for accurate quantification of PC content in rhodotorula glutinis oil. The standard recovery PC content ranged from 98.48% to 103.53%, with a relative standard deviation (RSD) ranging from 1.4% to 2.4%. This research presents a convenient and precise detection device that has the potential to address the issue of lagging detection in the oil refining process.
Collapse
Affiliation(s)
- Weining Wang
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Hairong Zhang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Donghua Wang
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China; School of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ning Wang
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Chang Liu
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Ziyue Li
- School of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liqi Wang
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China; School of Computer and Information Engineering, Harbin University of Commerce, Harbin, 150028, China.
| | - Xiuqing Zhu
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
5
|
Kizhepat S, Rasal AS, Chang JY, Wu HF. Development of Two-Dimensional Functional Nanomaterials for Biosensor Applications: Opportunities, Challenges, and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091520. [PMID: 37177065 PMCID: PMC10180329 DOI: 10.3390/nano13091520] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
New possibilities for the development of biosensors that are ready to be implemented in the field have emerged thanks to the recent progress of functional nanomaterials and the careful engineering of nanostructures. Two-dimensional (2D) nanomaterials have exceptional physical, chemical, highly anisotropic, chemically active, and mechanical capabilities due to their ultra-thin structures. The diversity of the high surface area, layered topologies, and porosity found in 2D nanomaterials makes them amenable to being engineered with surface characteristics that make it possible for targeted identification. By integrating the distinctive features of several varieties of nanostructures and employing them as scaffolds for bimolecular assemblies, biosensing platforms with improved reliability, selectivity, and sensitivity for the identification of a plethora of analytes can be developed. In this review, we compile a number of approaches to using 2D nanomaterials for biomolecule detection. Subsequently, we summarize the advantages and disadvantages of using 2D nanomaterials in biosensing. Finally, both the opportunities and the challenges that exist within this potentially fruitful subject are discussed. This review will assist readers in understanding the synthesis of 2D nanomaterials, their alteration by enzymes and composite materials, and the implementation of 2D material-based biosensors for efficient bioanalysis and disease diagnosis.
Collapse
Affiliation(s)
- Shamsa Kizhepat
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Akash S Rasal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
6
|
Wang L, Zhang H, Li Z, Qu J, Xing K, Wang M, Han C, Qiu Z, Yu D. Development of a three-dimensional graphene-based photoelectrochemical biosensor and its use for monitoring lipase activity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Pourmadadi M, Rajabzadeh-Khosroshahi M, Saeidi Tabar F, Ajalli N, Samadi A, Yazdani M, Yazdian F, Rahdar A, Díez-Pascual AM. Two-Dimensional Graphitic Carbon Nitride (g-C 3N 4) Nanosheets and Their Derivatives for Diagnosis and Detection Applications. J Funct Biomater 2022; 13:204. [PMID: 36412845 PMCID: PMC9680252 DOI: 10.3390/jfb13040204] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 12/14/2022] Open
Abstract
The early diagnosis of certain fatal diseases is vital for preventing severe consequences and contributes to a more effective treatment. Despite numerous conventional methods to realize this goal, employing nanobiosensors is a novel approach that provides a fast and precise detection. Recently, nanomaterials have been widely applied as biosensors with distinctive features. Graphite phase carbon nitride (g-C3N4) is a two-dimensional (2D) carbon-based nanostructure that has received attention in biosensing. Biocompatibility, biodegradability, semiconductivity, high photoluminescence yield, low-cost synthesis, easy production process, antimicrobial activity, and high stability are prominent properties that have rendered g-C3N4 a promising candidate to be used in electrochemical, optical, and other kinds of biosensors. This review presents the g-C3N4 unique features, synthesis methods, and g-C3N4-based nanomaterials. In addition, recent relevant studies on using g-C3N4 in biosensors in regard to improving treatment pathways are reviewed.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | | | - Fatemeh Saeidi Tabar
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | - Narges Ajalli
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | - Amirmasoud Samadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
- Department of Chemical and Biomolecular Engineering, 6000 Interdisciplinary Science & Engineering Building (ISEB), Irvine, CA 92617, USA
| | - Mahsa Yazdani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran 14179-35840, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of science, University of Zabol, Zabol 538-98615, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
8
|
A facile “dark”-deposition approach for Pt single‐atom trapping on facetted anatase TiO2 nanoflakes and use in photocatalytic H2 generation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Chen F, Tang Q, Ma T, Zhu B, Wang L, He C, Luo X, Cao S, Ma L, Cheng C. Structures, properties, and challenges of emerging
2D
materials in bioelectronics and biosensors. INFOMAT 2022. [DOI: 10.1002/inf2.12299] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Fan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Qing Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Bihui Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Liyun Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Sujiao Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
- National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu China
| | - Lang Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
- National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu China
- Department of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| |
Collapse
|
10
|
Lei Z, Guo B. 2D Material-Based Optical Biosensor: Status and Prospect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102924. [PMID: 34898053 PMCID: PMC8811838 DOI: 10.1002/advs.202102924] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/05/2021] [Indexed: 05/07/2023]
Abstract
The combination of 2D materials and optical biosensors has become a hot research topic in recent years. Graphene, transition metal dichalcogenides, black phosphorus, MXenes, and other 2D materials (metal oxides and degenerate semiconductors) have unique optical properties and play a unique role in the detection of different biomolecules. Through the modification of 2D materials, optical biosensor has the advantages that traditional sensors (such as electrical sensing) do not have, and the sensitivity and detection limit are greatly improved. Here, optical biosensors based on different 2D materials are reviewed. First, various detection methods of biomolecules, including surface plasmon resonance (SPR), fluorescence resonance energy transfer (FRET), and evanescent wave and properties, preparation and integration strategies of 2D material, are introduced in detail. Second, various biosensors based on 2D materials are summarized. Furthermore, the applications of these optical biosensors in biological imaging, food safety, pollution prevention/control, and biological medicine are discussed. Finally, the future development of optical biosensors is prospected. It is believed that with their in-depth research in the laboratory, optical biosensors will gradually become commercialized and improve people's quality of life in many aspects.
Collapse
Affiliation(s)
- Zong‐Lin Lei
- Key Lab of In‐Fiber Integrated Optics of Ministry of Education of ChinaHarbin Engineering UniversityHarbin150001China
| | - Bo Guo
- Key Lab of In‐Fiber Integrated Optics of Ministry of Education of ChinaHarbin Engineering UniversityHarbin150001China
| |
Collapse
|
11
|
Design principle in biosensing: Critical analysis based on graphitic carbon nitride (G-C3N4) photoelectrochemical biosensor. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116454] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
A highly sensitive photoelectrochemical aptasensor based on BiVO 4 nanoparticles-TiO 2 nanotubes for detection of PCB72. Talanta 2021; 233:122551. [PMID: 34215054 DOI: 10.1016/j.talanta.2021.122551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022]
Abstract
In this work, a simple and highly sensitive photoelectrochemical (PEC) aptasensor has been developed for detecting PCB72 based on TiO2 nanotubes (NTs) decorated with BiVO4 nanoparticles (NPs). The BiVO4 NPs-TiO2 NTs composites prepared through a simple hydrothermal method exhibit good visible-light adsorption ability, high PEC response and perfect photo-excited stability. The synthesized composites were explored as the photoactive sensing materials for development of a PEC sensing platform for the first time. Here, Au nanoparticles (NPs) were first deposited the composites, and the anti-PCB72 aptamer molecules were immobilized on the Au NPs-deposited BiVO4 NPs-TiO2 NTs. The developed PEC aptasensor exhibits high sensitivity and specificity for PCB72 with a wide linear range from 1 ng/L to 500 ng/L and a low detection limit of 0.23 ng/L. The application of the aptasensor was evaluated by determining PCB 72 in the environment water samples. Thus, a simple and efficient PEC sensing platform was established for detecting the content of PCBs in the environment.
Collapse
|
13
|
Amri F, Septiani NLW, Rezki M, Iqbal M, Yamauchi Y, Golberg D, Kaneti YV, Yuliarto B. Mesoporous TiO 2-based architectures as promising sensing materials towards next-generation biosensing applications. J Mater Chem B 2021; 9:1189-1207. [PMID: 33406200 DOI: 10.1039/d0tb02292f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past two decades, mesoporous TiO2 has emerged as a promising material for biosensing applications. In particular, mesoporous TiO2 materials with uniform, well-organized pores and high surface areas typically exhibit superior biosensing performance, which includes high sensitivity, broad linear response, low detection limit, good reproducibility, and high specificity. Therefore, the development of biosensors based on mesoporous TiO2 has significantly intensified in recent years. In this review, the expansion and advancement of mesoporous TiO2-based biosensors for glucose detection, hydrogen peroxide detection, alpha-fetoprotein detection, immobilization of enzymes, proteins, and bacteria, cholesterol detection, pancreatic cancer detection, detection of DNA damage, kanamycin detection, hypoxanthine detection, and dichlorvos detection are summarized. Finally, the future perspective and research outlook on the utilization of mesoporous TiO2-based biosensors for the practical diagnosis of diseases and detection of hazardous substances are also given.
Collapse
Affiliation(s)
- Fauzan Amri
- Department of Engineering Physics, Faculty of Industrial Technology, Institute of Technology Bandung, Ganesha 10, Bandung 40132, Indonesia.
| | - Ni Luh Wulan Septiani
- Department of Engineering Physics, Faculty of Industrial Technology, Institute of Technology Bandung, Ganesha 10, Bandung 40132, Indonesia.
| | - Muhammad Rezki
- Department of Engineering Physics, Faculty of Industrial Technology, Institute of Technology Bandung, Ganesha 10, Bandung 40132, Indonesia.
| | - Muhammad Iqbal
- Department of Engineering Physics, Faculty of Industrial Technology, Institute of Technology Bandung, Ganesha 10, Bandung 40132, Indonesia.
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Tsukuba, Ibaraki 305-0044, Japan and School of Chemical Engineering & Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia and JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Science and Technology, Waseda University, 2-8-26 Nishi-Waseda, Shinjuku, Tokyo 169-0051, Japan
| | - Dmitri Golberg
- Centre for Materials Science and School of Chemistry and Physics Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia and Nanotubes Group, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Tsukuba, Ibaraki 305-0044, Japan.
| | - Yusuf Valentino Kaneti
- Department of Engineering Physics, Faculty of Industrial Technology, Institute of Technology Bandung, Ganesha 10, Bandung 40132, Indonesia. and JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Tsukuba, Ibaraki 305-0044, Japan
| | - Brian Yuliarto
- Department of Engineering Physics, Faculty of Industrial Technology, Institute of Technology Bandung, Ganesha 10, Bandung 40132, Indonesia. and Research Center for Nanosciences and Nanotechnology (RCNN), Institute of Technology Bandung, Bandung 40132, Indonesia
| |
Collapse
|
14
|
Li L, Zhai L, Liu H, Li B, Li M, Wang B. A novel H2O2photoelectrochemical sensor based on ternary RGO/Ag-TiO2 nanotube arrays nanocomposite. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Shahvardanfard F, Cha G, Denisov N, Osuagwu B, Schmuki P. Photoelectrochemical performance of facet-controlled TiO 2 nanosheets grown hydrothermally on FTO. NANOSCALE ADVANCES 2021; 3:747-754. [PMID: 36133847 PMCID: PMC9419489 DOI: 10.1039/d0na01017k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 06/13/2023]
Abstract
Single crystal anatase TiO2 nanosheets (TiO2-NSs) are grown hydrothermally on fluorine-doped tin oxide (FTO). By systematically changing the hydrothermal conditions such as reaction time, initial concentration of Ti precursor, F precursor, and HCl as an additive, a wide variety of TiO2-NSs, with different morphologies and faceting have been synthesized. For the different morphologies and different facet ratios (anatase S 001/S 001+101), the photoelectrochemical response is characterized and compared. We find that for photoanodes in neutral electrolytes, the magnitude of the photocurrent depends strongly on the growth parameters, that is, peak IPCEs can vary from 11.7% to 61%. For a wide range of parameters, the key parameter deciding on the photocurrent is the effective electrochemically active area of the electrode. Only for very high facet ratios >91%, the photoresponse can be strongly influenced by faceting - for samples with a S 001/S 001+101 of 91%, IPCE value of ≈84% is obtained. This work defines not only optimized synthesis conditions for a most effective growth of these single crystalline electrode, but also represents fundamental data for further applications of such electrodes.
Collapse
Affiliation(s)
- Fahimeh Shahvardanfard
- Institute for Surface Science and Corrosion WW4-LKO, Department of Materials Science and Engineering, University of Erlangen-Nuremberg Martensstrasse 7 91058 Erlangen Germany
| | - Gihoon Cha
- Institute for Surface Science and Corrosion WW4-LKO, Department of Materials Science and Engineering, University of Erlangen-Nuremberg Martensstrasse 7 91058 Erlangen Germany
| | - Nikita Denisov
- Institute for Surface Science and Corrosion WW4-LKO, Department of Materials Science and Engineering, University of Erlangen-Nuremberg Martensstrasse 7 91058 Erlangen Germany
| | - Benedict Osuagwu
- Institute for Surface Science and Corrosion WW4-LKO, Department of Materials Science and Engineering, University of Erlangen-Nuremberg Martensstrasse 7 91058 Erlangen Germany
| | - Patrik Schmuki
- Institute for Surface Science and Corrosion WW4-LKO, Department of Materials Science and Engineering, University of Erlangen-Nuremberg Martensstrasse 7 91058 Erlangen Germany
- Chemistry Department, Faculty of Sciences, King Abdulaziz University 80203 Jeddah Kingdom of Saudi Arabia
- Regional Centre of Advanced Technologies and Materials, Palacky University Olomouc 17. listopadu 50A 772 07 Olomouc Czech Republic
| |
Collapse
|
16
|
Sedki M, Chen Y, Mulchandani A. Non-Carbon 2D Materials-Based Field-Effect Transistor Biosensors: Recent Advances, Challenges, and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4811. [PMID: 32858906 PMCID: PMC7506755 DOI: 10.3390/s20174811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/25/2022]
Abstract
In recent years, field-effect transistors (FETs) have been very promising for biosensor applications due to their high sensitivity, real-time applicability, scalability, and prospect of integrating measurement system on a chip. Non-carbon 2D materials, such as transition metal dichalcogenides (TMDCs), hexagonal boron nitride (h-BN), black phosphorus (BP), and metal oxides, are a group of new materials that have a huge potential in FET biosensor applications. In this work, we review the recent advances and remarkable studies of non-carbon 2D materials, in terms of their structures, preparations, properties and FET biosensor applications. We will also discuss the challenges facing non-carbon 2D materials-FET biosensors and their future perspectives.
Collapse
Affiliation(s)
- Mohammed Sedki
- Department of Materials Science and Engineering, University of California, Riverside, CA 92521, USA
| | - Ying Chen
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| |
Collapse
|
17
|
A regenerative photoelectrochemical sensor based on functional porous carbon nitride for Cu2+ detection. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104922] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Enhancement of Biosensors by Implementing Photoelectrochemical Processes. SENSORS 2020; 20:s20113281. [PMID: 32526947 PMCID: PMC7308923 DOI: 10.3390/s20113281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/15/2022]
Abstract
Research on biosensors is growing in relevance, taking benefit from groundbreaking knowledge that allows for new biosensing strategies. Electrochemical biosensors can benefit from research on semiconducting materials for energy applications. This research seeks the optimization of the semiconductor-electrode interfaces including light-harvesting materials, among other improvements. Once that knowledge is acquired, it can be implemented with biological recognition elements, which are able to transfer a chemical signal to the photoelectrochemical system, yielding photo-biosensors. This has been a matter of research as it allows both a superior suppression of background electrochemical signals and the switching ON and OFF upon illumination. Effective electrode-semiconductor interfaces and their coupling with biorecognition units are reviewed in this work.
Collapse
|
19
|
Şerban I, Enesca A. Metal Oxides-Based Semiconductors for Biosensors Applications. Front Chem 2020; 8:354. [PMID: 32509722 PMCID: PMC7248172 DOI: 10.3389/fchem.2020.00354] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/06/2020] [Indexed: 01/07/2023] Open
Abstract
The present mini review contains a concessive overview on the recent achievement regarding the implementation of a metal oxide semiconductor (MOS) in biosensors used in biological and environmental systems. The paper explores the pathway of enhancing the sensing characteristics of metal oxides by optimizing various parameters such as synthesis methods, morphology, composition, and structure. Four representative metal oxides (TiO2, ZnO, SnO2, and WO3) are presented based on several aspects: synthesis method, morphology, functionalizing molecules, detection target, and limit of detection (LOD).
Collapse
Affiliation(s)
- Ionel Şerban
- Product Design, Mechatronics and Environmental Department, Transilvania University of Brasov, Brasov, Romania
| | - Alexandru Enesca
- Product Design, Mechatronics and Environmental Department, Transilvania University of Brasov, Brasov, Romania
| |
Collapse
|
20
|
Jafari S, Mahyad B, Hashemzadeh H, Janfaza S, Gholikhani T, Tayebi L. Biomedical Applications of TiO 2 Nanostructures: Recent Advances. Int J Nanomedicine 2020; 15:3447-3470. [PMID: 32523343 PMCID: PMC7234979 DOI: 10.2147/ijn.s249441] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
Titanium dioxide (TiO2) nanostructures are one of the most plentiful compounds that have emerged in various fields of technology such as medicine, energy and biosensing. Various TiO2 nanostructures (nanotubes [NTs] and nanowires) have been employed in photoelectrochemical (PEC) biosensing applications, greatly enhancing the detection of targets. TiO2 nanostructures, used as reinforced material or coatings for the bare surface of titanium implants, are excellent additive materials to compensate titanium implants deficiencies-like poor surface interaction with surrounding tissues-by providing nanoporous surfaces and hierarchical structures. These nanostructures can also be loaded by diversified drugs-like osteoporosis drugs, anticancer and antibiotics-and used as local drug delivery systems. Furthermore, TiO2 nanostructures and their derivatives are new emerging antimicrobial agents to overcome human pathogenic microorganisms. However, like all other nanomaterials, toxicity and biocompatibility of TiO2 nanostructures must be considered. This review highlights recent advances, along with the properties and numerous applications of TiO2-based nanostructure compounds in nano biosensing, medical implants, drug delivery and antibacterial fields. Moreover, in the present study, some recent advances accomplished on the pharmaceutical applications of TiO2 nanostructures, as well as its toxicity and biocompatibility, are presented.
Collapse
Affiliation(s)
- Sevda Jafari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Baharak Mahyad
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Islamic Republic of Iran
| | - Hadi Hashemzadeh
- Department of Nanobiotechnology, Tarbiat Modares University, Tehran, 14117, Islamic Republic of Iran
| | - Sajjad Janfaza
- Department of Nanobiotechnology, Tarbiat Modares University, Tehran, 14117, Islamic Republic of Iran
| | - Tooba Gholikhani
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI53233, USA
| |
Collapse
|
21
|
Mary Rajaitha P, Shamsa K, Murugan C, Bhojanaa KB, Ravichandran S, Jothivenkatachalam K, Pandikumar A. Graphitic carbon nitride nanoplatelets incorporated titania based type-II heterostructure and its enhanced performance in photoelectrocatalytic water splitting. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2190-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
22
|
Li S, Ma L, Zhou M, Li Y, Xia Y, Fan X, Cheng C, Luo H. New opportunities for emerging 2D materials in bioelectronics and biosensors. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2019.08.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Yang L, Zhang S, Liu X, Tang Y, Zhou Y, Wong DKY. Detection signal amplification strategies at nanomaterial-based photoelectrochemical biosensors. J Mater Chem B 2020; 8:7880-7893. [DOI: 10.1039/d0tb01191f] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focusses on unique material modification and signal amplification strategies reported in developing photoelectrochemical biosensors with utmost sensitivity and selectivity.
Collapse
Affiliation(s)
- Liwei Yang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| | - Si Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| | - Xiaoqiang Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| | - Yunfei Tang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| | - Danny K. Y. Wong
- Department of Molecular Sciences
- Macquarie University
- Sydney
- Australia
| |
Collapse
|
24
|
Yan B, Zhao X, Chen D, Cao Y, Lv C, Tu J, Wang X, Wu Q. Enhanced photoelectrochemical biosensing performance for Au nanoparticle–polyaniline–TiO2 heterojunction composites. RSC Adv 2020; 10:43985-43993. [PMID: 35517144 PMCID: PMC9058400 DOI: 10.1039/d0ra06890j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/08/2020] [Indexed: 12/02/2022] Open
Abstract
A new photoelectrochemical (PEC) sensing platform comprising TiO2 nanotube arrays (TiONTAs), polyaniline (PANI), and gold nanoparticles (AuNPs) was successfully fabricated. After loading the enzyme, this Au–PANI–TiONTA electrode showed excellent response to glucose at a linear range of 2–36 mM with a 0.02 mM detection limit. Good PEC performance was obtained due to the following advantages of the material: high visible-light harvesting ability for excellent light trapping capacity of PANI and AuNPs, good separation of the photo-induced charges related to the specific Au–PANI–TiONTA heterostructure, efficient electrode surface reaction kinetics derived from the large specific surface area of TiONTAs and improved electrode catalytic activity. This work proposed a new and general PEC enzymatic format and can be extended to prepare different PEC biosensors for biomolecules such as DNA, proteins and substrates of oxidases. A novel photoelectrode for glucose PEC biosensing composed of TiONTAs, PANI, and AuNPs was successfully obtained. The GOx@Au–PANI–TiONTA electrode exhibited a wide response range (2–36 mM) with a low detection limit (0.02 mM) and good stability.![]()
Collapse
Affiliation(s)
- Bingdong Yan
- State Key Laboratory of Marine Resource Utilization in the South China Sea
- School of Materials Science and Engineering
- Hainan University
- Haikou 570228
- P. R. China
| | - Xiaoru Zhao
- State Key Laboratory of Marine Resource Utilization in the South China Sea
- School of Materials Science and Engineering
- Hainan University
- Haikou 570228
- P. R. China
| | - Delun Chen
- State Key Laboratory of Marine Resource Utilization in the South China Sea
- School of Materials Science and Engineering
- Hainan University
- Haikou 570228
- P. R. China
| | - Yang Cao
- State Key Laboratory of Marine Resource Utilization in the South China Sea
- School of Materials Science and Engineering
- Hainan University
- Haikou 570228
- P. R. China
| | - Chuanzhu Lv
- Research Unit of Island Emergency Medicine
- Chinese Academy of Medical Sciences (No. 2019RU013)
- Hainan Medical University
- Haikou 571199
- P. R. China
| | - Jinchun Tu
- State Key Laboratory of Marine Resource Utilization in the South China Sea
- School of Materials Science and Engineering
- Hainan University
- Haikou 570228
- P. R. China
| | - Xiaohong Wang
- State Key Laboratory of Marine Resource Utilization in the South China Sea
- School of Materials Science and Engineering
- Hainan University
- Haikou 570228
- P. R. China
| | - Qiang Wu
- School of Tropical Medicine and Laboratory Medicine
- Key Laboratory of Emergency and Trauma of Ministry of Education
- Hainan Medical University
- Haikou 571199
- P. R. China
| |
Collapse
|
25
|
Liang D, Luo J, Huang Y, Liang X, Qiu X, Wang J, Yang M. A porous carbon nitride modified with cobalt phosphide as an efficient visible-light harvesting nanocomposite for photoelectrochemical enzymatic sensing of glucose. Mikrochim Acta 2019; 186:856. [DOI: 10.1007/s00604-019-3929-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023]
|
26
|
Kong W, Guo X, Jing M, Qu F, Lu L. Highly sensitive photoelectrochemical detection of bleomycin based on Au/WS 2 nanorod array as signal matrix and Ag/ZnMOF nanozyme as multifunctional amplifier. Biosens Bioelectron 2019; 150:111875. [PMID: 31757562 DOI: 10.1016/j.bios.2019.111875] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
Abstract
An ultrasensitive photoelectrochemical (PEC) biosensor was constructed based on gold nanoparticles (Au NPs)/tungsten sulfide nanorod array (WS2 NA) photoelectrode as the PEC matrix and silver nanoparticles/flake-like zinc metal-organic framework (Ag/ZnMOF) nanozyme with the peroxidase mimetic enzyme property for sensitive detection of bleomycin (BLM). In particular, Au/WS2 and Ag/ZnMOF were linked by thiolate DNA1 and DNA2 strand, respectively, and the Au/WS2-Ag/ZnMOF probe was prepared via hybridization reaction between the two DNAs. The introduction of Ag/ZnMOF in the probe offers two functions: i) the steric hindrance effect can effectively impede electron transport and reduce the photocurrent; ii) Ag/ZnMOF nanozyme can also be used as mimic peroxidase to effectively catalyze 3,3-diaminobenzidine (DAB) to produce the relevant precipitation, which will further reduce photocurrent and eliminate false positive signals. When BLM exists, BLM with Fe2+ as irreversible cofactor can specifically recognize and cleave of the 5'-GC-3' active site of DNA2, resulting in reduced precipitation deposited on the electrode and recovery of PEC signal. The highly sensitive PEC biosensor exhibits a the linear strategy from 0.5 nM to 500 nM with a detection limit down to 0.18 nM. Further, the unique strategy was conducted in biological samples for BLM detection with satisfactory consequence, offering available and efficient pathway for disease diagnosis.
Collapse
Affiliation(s)
- Weisu Kong
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Xiaoxi Guo
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Man Jing
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Fengli Qu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, PR China.
| | - Limin Lu
- Institute of Functional Materials and Agricultural Applied Chemistry, College of Science, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| |
Collapse
|
27
|
Çakıroğlu B, Özacar M. A Photoelectrochemical Biosensor Fabricated using Hierarchically Structured Gold Nanoparticle and MoS
2
on Tannic Acid Templated Mesoporous TiO
2. ELECTROANAL 2019. [DOI: 10.1002/elan.201900433] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Bekir Çakıroğlu
- Sakarya University, BiomedicalMagnetic and Semiconductor Materials Research Center (BIMAS-RC) 54187 Sakarya Turkey
| | - Mahmut Özacar
- Sakarya University, BiomedicalMagnetic and Semiconductor Materials Research Center (BIMAS-RC) 54187 Sakarya Turkey
- Sakarya University, Science & Arts FacultyDepartment of Chemistry 54187 Sakarya Turkey
| |
Collapse
|
28
|
Yang L, Liu X, Li L, Zhang S, Zheng H, Tang Y, Ju H. A visible light photoelectrochemical sandwich aptasensor for adenosine triphosphate based on MgIn 2S 4-TiO 2 nanoarray heterojunction. Biosens Bioelectron 2019; 142:111487. [PMID: 31276907 DOI: 10.1016/j.bios.2019.111487] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/16/2019] [Accepted: 06/29/2019] [Indexed: 12/24/2022]
Abstract
This work designed a MgIn2S4-TiONA heterojunction by growing MgIn2S4 nanoplates on TiO2 nanowire array (TiONA) for preparation of visible light photoelectrochemical (PEC) sensing platform. The heterojunction exhibited strong absorption of visible light, large surface area and high loading of biomolecules, leading to high sensing sensitivity. Using adenosine triphosphate (ATP), a marker of cell vitality, as the target model, a PEC sandwich aptasensor was constructed by immobilizing capture DNA1 on MgIn2S4 surface. In the presence of ATP and signal DNA2 with terminal ferrocene as the electron donor, a sandwiched DNA1-ATP-DNA2 complex could be formed on the PEC aptasensor. The aptasensor showed excellent performance with a wide linear range from 50 fM to 100 nM and a detection limit of 20 fM. The sensing performance including specificity, reproducibility, stability and practical use were also evaluated, showing promising application of the MgIn2S4-TiONA heterojunction in PEC biosensing.
Collapse
Affiliation(s)
- Liwei Yang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, PR China
| | - Xiaoqiang Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, PR China.
| | - Lele Li
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, PR China
| | - Si Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, PR China
| | - Hejie Zheng
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, PR China
| | - Yunfei Tang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, PR China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
29
|
Wang K, Song S, Zhang Q, Jin Y, Zhang Q. Fabrication of protonated g-C 3N 4 nanosheets as promising proton conductive materials. Chem Commun (Camb) 2019; 55:7414-7417. [PMID: 31180392 DOI: 10.1039/c9cc02758k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protonated g-C3N4 nanosheets were prepared by refluxing a mixture containing g-C3N4 and 95% H2SO4 at 80 °C for 1 hour. The obtained g-C3N4 nanosheets showed a similar layer structure to that of g-C3N4 and high water adsorption capacities. They also depicted superior conductivities reaching up to 1.44 × 10-2 S cm-1 at 80 °C and 98% RH, with promising features for proton conductivity materials.
Collapse
Affiliation(s)
- Kangcai Wang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, P. R. China.
| | | | | | | | | |
Collapse
|
30
|
Shetti NP, Bukkitgar SD, Reddy KR, Reddy CV, Aminabhavi TM. Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications. Colloids Surf B Biointerfaces 2019; 178:385-394. [DOI: 10.1016/j.colsurfb.2019.03.013] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/20/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022]
|
31
|
He C, Peng L, Lv L, Cao Y, Tu J, Huang W, Zhang K. In situ growth of carbon dots on TiO2 nanotube arrays for PEC enzyme biosensors with visible light response. RSC Adv 2019; 9:15084-15091. [PMID: 35516318 PMCID: PMC9064225 DOI: 10.1039/c9ra01045a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/07/2019] [Indexed: 12/23/2022] Open
Abstract
Carbon dots (CDs) were grown in situ on secondary anodized TiO2 nanotube arrays (TiO2 NTAs) via a hydrothermal method. The combination of CDs and TiO2 NTAs enhanced the photoelectrochemical performance. Morphology, structure, and elemental composition of the CDs were characterized. No simple physical adsorption was found between the CDs and TiO2, but chemical bonds were formed. UV-vis absorption and fluorescence spectroscopy showed that the CDs could enhance the absorption of TiO2 in the visible and near-infrared regions. Owing to their up-conversion fluorescence properties, the CDs could convert low-energy photon absorption into high-energy photons, which may be used to excite TiO2 to produce a stronger photoelectric response. Moreover, the CDs could effectively transport electrons and accept holes, thus contributing to the effective separation of electrons and holes during photoexcitation. Finally, the PEC biosensor was prepared by immobilizing glucose oxidase (GOx) on the surface of the composite. The PEC biosensor exhibited a broad range of 0.1–18 mM with a detection limit of 0.027 mM under visible irradiation because the composite material reflected strong light absorption for visible light, good conductivity, and good biocompatibility. Carbon dots (CDs) were grown in situ on secondary anodized TiO2 nanotube arrays (TiO2 NTAs) via a hydrothermal method.![]()
Collapse
Affiliation(s)
- Cheng He
- State Key Laboratory of Marine Resource Utilization in South China Sea
- Key Laboratory of Tropical Biological Resources of Ministry of Education Hainan University
- Haikou 570228
- P. R. China
| | - Linkai Peng
- State Key Laboratory of Marine Resource Utilization in South China Sea
- Key Laboratory of Tropical Biological Resources of Ministry of Education Hainan University
- Haikou 570228
- P. R. China
| | - Linzhe Lv
- State Key Laboratory of Marine Resource Utilization in South China Sea
- Key Laboratory of Tropical Biological Resources of Ministry of Education Hainan University
- Haikou 570228
- P. R. China
| | - Yang Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea
- Key Laboratory of Tropical Biological Resources of Ministry of Education Hainan University
- Haikou 570228
- P. R. China
- Qiongtai Normal University
| | - Jinchun Tu
- State Key Laboratory of Marine Resource Utilization in South China Sea
- Key Laboratory of Tropical Biological Resources of Ministry of Education Hainan University
- Haikou 570228
- P. R. China
| | - Wei Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea
- Key Laboratory of Tropical Biological Resources of Ministry of Education Hainan University
- Haikou 570228
- P. R. China
| | - Kexi Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea
- Key Laboratory of Tropical Biological Resources of Ministry of Education Hainan University
- Haikou 570228
- P. R. China
| |
Collapse
|
32
|
Tang J, Liu X, Yang C, Zhang Z, Sun R, Li H, Li C, Wang F. A carbon-rich nanofiber framework based on a conjugated arylacetylene polymer for photocathodic enzymatic bioanalysis. RSC Adv 2019; 9:42533-42542. [PMID: 35542846 PMCID: PMC9076658 DOI: 10.1039/c9ra09157b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/06/2019] [Indexed: 01/11/2023] Open
Abstract
The metal-free photocathode fabricated by porous carbon-rich nanofiber framework of PTEB film realized “signal-off” photocathodic bioanalysis of glucose.
Collapse
Affiliation(s)
- Junyan Tang
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Xiaoya Liu
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Chengwei Yang
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Zhening Zhang
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Rui Sun
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Hongmei Li
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Caolong Li
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Fei Wang
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- P. R. China
| |
Collapse
|
33
|
A self-powered photoelectrochemical glucose biosensor based on supercapacitor Co3O4-CNT hybrid on TiO2. Biosens Bioelectron 2018; 119:34-41. [DOI: 10.1016/j.bios.2018.07.049] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
|
34
|
Atchudan R, Muthuchamy N, Edison TNJI, Perumal S, Vinodh R, Park KH, Lee YR. An ultrasensitive photoelectrochemical biosensor for glucose based on bio-derived nitrogen-doped carbon sheets wrapped titanium dioxide nanoparticles. Biosens Bioelectron 2018; 126:160-169. [PMID: 30399518 DOI: 10.1016/j.bios.2018.10.049] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/12/2018] [Accepted: 10/23/2018] [Indexed: 02/08/2023]
Abstract
In this work, an ultra-sensing photoelectrochemical (PEC) glucose biosensor has been constructed from the bio-derived nitrogen-doped carbon sheets (NDC) wrapped titanium dioxide nanoparticles (NDC-TiO2 NPs) followed by the covalent immobilization of glucose oxidase (GODx) on them (designated as a GODx/NDC-TiO2NPs/ITO biosensor). Initially, the TiO2 NPs was synthesized by sol-gel method and then NDC-TiO2 NPs was synthesized utilizing a green source of Prunus persica (peach fruit) through a simple hydrothermal process. The synthesized NDC-TiO2 NPs composite was characterized by FESEM, HRTEM, Raman spectroscopy, XRD, ATR-FTIR spectroscopy and XPS to determine composition and phase purity. These fabricated GODx/NDC-TiO2NPs/ITO biosensor exhibited a good charge separation, highly enhanced and stable photocurrent responses with switching PEC behavior under the light (λ > 400 nm). As a result, GODx/NDC-TiO2NPs/ITO PEC glucose sensor exhibits a good photocurrent response to detection of glucose concentrations (0.05-10 μM) with an ultra-low detection limit of 13 nM under optimized PEC experimental conditions. Also, the PEC glucose sensor revealed a high selectivity, good stability, long time durability, and capability to analyze the glucose levels in real human serum. Also, the further development of this work may provide new insights into preparing other bio-derived carbon nanostructure-based photocatalysts for PEC applications.
Collapse
Affiliation(s)
- Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Nallal Muthuchamy
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | | | - Suguna Perumal
- Department of Applied Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Rajangam Vinodh
- Department of Chemical Engineering, Hanseo University, Seosan 360-706, Republic of Korea
| | - Kang Hyun Park
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
35
|
Zang Y, Fan J, Ju Y, Xue H, Pang H. Current Advances in Semiconductor Nanomaterial‐Based Photoelectrochemical Biosensing. Chemistry 2018; 24:14010-14027. [DOI: 10.1002/chem.201801358] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Yang Zang
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Jing Fan
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Yun Ju
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| |
Collapse
|
36
|
Liu X, Liu P, Tang Y, Yang L, Li L, Qi Z, Li D, Wong DK. A photoelectrochemical aptasensor based on a 3D flower-like TiO2-MoS2-gold nanoparticle heterostructure for detection of kanamycin. Biosens Bioelectron 2018; 112:193-201. [DOI: 10.1016/j.bios.2018.04.041] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 12/30/2022]
|
37
|
Jiang D, Du X, Zhou L, Li H, Wang K. TiO2 nanoparticles embedded in borocarbonitrides nanosheets for sensitive and selective photoelectrochemical aptasensing of bisphenol A. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.04.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|