1
|
Chen CY, Li YH, Li Z, Lee MR. Characterization of effective phytochemicals in traditional Chinese medicine by mass spectrometry. MASS SPECTROMETRY REVIEWS 2022:e21782. [PMID: 35638257 DOI: 10.1002/mas.21782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/23/2021] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Traditional Chinese medicines (TCMs) have been widely used in clinical and healthcare applications around the world. The characterization of the phytochemical components in TCMs is very important for studying the therapeutic mechanism of TCMs. In the analysis process, sample preparation and instrument analysis are key steps to improve analysis performance and accuracy. In recent years, chromatography combined with mass spectrometry (MS) has been widely used for the separation and detection of trace components in complex TCM samples. This article reviews various sample preparation techniques and chromatography-MS techniques, including the application of gas chromatography-MS and liquid chromatography-MS and other MS techniques in the characterization of phytochemicals in TCM materials and Chinese medicine products. This article also describes a new ambient ionization MS method for rapid and high-throughput analysis of TCM components.
Collapse
Affiliation(s)
- Chung-Yu Chen
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan, ROC
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Yen-Hsien Li
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Zuguang Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Maw-Rong Lee
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan, ROC
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung, Taiwan, ROC
| |
Collapse
|
2
|
Hu B, Yao ZP. Electrospray ionization mass spectrometry with wooden tips: A review. Anal Chim Acta 2022; 1209:339136. [PMID: 35569859 DOI: 10.1016/j.aca.2021.339136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022]
Abstract
Electrospray ionization (ESI) is a powerful ionization technique in mass spectrometry (MS). There has been an increasing interest for the new development of ESI technique to extend its applications. ESI-MS with wooden tips (wooden-tip ESI-MS), an ESI technique invented in 2011, enabled not only new applications but also new insights into the ESI mechanism. In this review, the technical aspects of wooden-tip ESI-MS are described, the new features of wooden-tip ESI-MS for sampling and ionization of analytes are highlighted, and the important applications of wooden-tip ESI-MS in various fields in the past 10 years, including food safety, forensic investigation, environmental analysis, biomedical analysis and protein study, are summarized. The perspectives on the further development and applications of wooden-tip ESI-MS are also discussed.
Collapse
Affiliation(s)
- Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China.
| | - Zhong-Ping Yao
- State Key Laboratory for Chemical Biology and Drug Discovery, Research Institute for Future Food and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, 518057, China.
| |
Collapse
|
3
|
Simple and robust differentiation of Ganoderma species by high performance thin-layer chromatography coupled with single quadrupole mass spectrometry QDa. Chin J Nat Med 2021; 19:295-304. [PMID: 33875169 DOI: 10.1016/s1875-5364(21)60030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Indexed: 11/21/2022]
Abstract
In this study, a high performance thin-layer chromatography/single quadrupole mass spectrometry QDa (HPTLC-QDa) method for robust authentication of Ganoderma lucidum, a popular and valuable herbal medicine, has been developed. This method is simple and practical, which allows direct generation of characteristic mass spectra from the HPTLC plates automatically with the application of in situ solvent desorption interface. The HPTLC silica gel plates were developed with toluene-ethyl formate-formic acid (5 : 5 : 0.2, V/V) and all bands were transferred to QDa system directly in situ using 80% methanol with 0.1% formic acid as desorption solvent. The acquired HPTLC-QDa spectra showed that luminous yellow band b3, containing ganoderic acid B/G/H and ganodeneric acid B, the major active components of Ganoderma, could be found only in G. lucidum and G. lucidum (Antler-shaped), but not in G. sinense and G. applanatum. Moreover, bands b13 and b14 with m/z 475/477 and m/z 475/491/495, respectively, could be detected in G. lucidum (Antler-shaped), but not in G. lucidum, thus allowing simple and robust authentication of G. lucidum with confused species. This method is proved to be simple, practical and reproducible, which can be extended to analyze other herbal medicines.
Collapse
|
4
|
Hu B, Zheng B, Rickert D, Gómez-Ríos GA, Bojko B, Pawliszyn J, Yao ZP. Direct coupling of solid phase microextraction with electrospray ionization mass spectrometry: A Case study for detection of ketamine in urine. Anal Chim Acta 2019; 1075:112-119. [PMID: 31196416 DOI: 10.1016/j.aca.2019.05.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/28/2022]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) is a commonly used technique for analysis of various samples. Solid phase microextraction (SPME) is a simple and efficient technique that combines both sampling and sample preparation into one consolidated step, preconcentrating extracted analytes for ultra-sensitive analysis. Historically, SPME has been coupled with chromatography-based techniques for sample separation prior to analysis, however more recently, the chromatographic step has been omitted, with the SPME device directly coupled with the mass spectrometer. In this study, direct coupling of SPME with ESI-MS was developed, and extensively validated to quantitate ketamine from human urine, employing a practical experimental workflow and no extensive hardware modification to the equipment. Among the different fibers evaluated, SPME device coated with C18/benzenesulfonic acid particles was selected for the analysis due to its good selectivity and signal response. Different approaches, including desorption spray, dripping, desorption ESI and nano-ESI were attempted for elution and ionization of the analytes extracted using the SPME fibers. The results showed that the desorption spray and nano-ESI methods offered better signal response and signal duration than the others that were evaluated. The analytical performance of the SPME-nano-ESI-MS setup was excellent, including limit of detection (LOD) of 0.027 ng/mL, limit of quantitation (LOQ) of 0.1 ng/mL, linear range of 0.1-500.0 ng/mL (R2 = 0.9995) and recoveries of 90.8-109.4% with RSD 3.4-10.6% for three validation points at 4.0, 40.0 and 400.0 ng/mL, far better than the performance of conventional methods. The results herein presented, demonstrated that the direct coupling of SPME fibers with ESI-MS-based systems allowed for the simple and ultra-sensitive determination of analytes from raw samples such as human urine.
Collapse
Affiliation(s)
- Bin Hu
- State Key Laboratory of Chemical Biology and Drug Discovery, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, 518057, China; Institute of Mass Spectrometer and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Bo Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, 518057, China
| | - Daniel Rickert
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | | | - Barbara Bojko
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Zhong-Ping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, 518057, China.
| |
Collapse
|
5
|
Li W, Yao YN, Wu L, Hu B. Detection and Seasonal Variations of Huanglongbing Disease in Navel Orange Trees Using Direct Ionization Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2265-2271. [PMID: 30735376 DOI: 10.1021/acs.jafc.8b06427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Citrus greening disease [Huanglongbing (HLB)] is the most destructive disease of citrus. In this work, we have established a metabolite-based mass spectrometry (MS) method for rapid detection of HLB in navel orange trees. Without sample pretreatment, characteristic mass spectra can be directly obtained from the raw plant samples using the direct MS method. The whole detection process can be accomplished within 1 min. By monitoring and comparisons of the healthy and infected plants throughout a whole year, characteristic MS peaks of metabolites are found to be specific responses from infected plants and, thus, could be used as biomarkers for detection of HLB. Therefore, HLB could be directly detected in the asymptomatic samples, such as stems, using this metabolite-based direct MS method. In addition, principal component analysis and partial least squares discriminant analysis modes of metabolites from healthy and infected trees were established for investigating differentiation and seasonal variations of HLB in leaves, veins, and stems, providing valuable information for understanding the HLB in different seasons.
Collapse
|
6
|
Li L, Li W, Hu B. Electrostatic field-induced tip-electrospray ionization mass spectrometry for direct analysis of raw food materials. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:73-80. [PMID: 30422380 DOI: 10.1002/jms.4309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 06/09/2023]
Abstract
Rapid characterization of metabolites and risk compounds such as chemical residues and natural toxins in raw food materials such as vegetables, meats, and edible living plants and animals plays an important part in ensuing food quality and safety. To rapidly characterize the analytes in raw food materials, it is essential to develop in situ method for directly analyzing raw food materials. In this work, raw food materials including biological tissues and living samples were placed between an electrode and mass spectrometric (MS) inlet under a strong electrostatic field; analytes were rapidly induced to generate electrospray ionization (ESI) from the sample tip by adding a drop of solvent onto the sample. Therefore, the electrostatic field-induced tip-ESI-MS allows raw samples to avoid contacting high voltage, and thus this method has the advantage for in vivo analysis of food living plants and animals. Metabolite profiling, residues of pesticides and veterinary drugs, and natural toxins from raw food materials have been successfully detected. The analytical performances, including the linear ranges, sensitivity, and reproducibility, were investigated for direct sample analysis. The ionization mechanism of electrostatic field-induced tip-ESI was also discussed in this work.
Collapse
Affiliation(s)
- Lei Li
- Institute of Mass Spectrometer and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Wen Li
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, 510632, China
| | - Bin Hu
- Institute of Mass Spectrometer and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
7
|
Yao YN, Hu B. Analyte-substrate interactions at functionalized tip electrospray ionization mass spectrometry: Molecular mechanisms and applications. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:1222-1229. [PMID: 30300951 DOI: 10.1002/jms.4300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/22/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
Conventional electrospray ionization mass spectrometry (ESI-MS) commonly uses capillary tip for sample introduction and ionization. In recent years, ESI-MS using noncapillary substrate tips has attracted growing interest as it allows separation and enrichment of analytes from complex samples due to analytes-substrate interactions. In this work, model mixtures and functionalized tips were employed to investigate the molecular mechanism of the analyte-substrate interactions. The mixtures were directly loaded on substrate tips, and then temporal responses of analytes were investigated by monitoring selected ion chromatogram (SIC) responses of each analyte. It is found that all analytes are sprayed out together when bulk solution loaded substrate surface and then sequential ionization of analytes were observed. Sequential ionization of analytes was affected by the analytes-substrate interactions which caused analytes of weaker-interaction to be faster moved and the analytes of stronger-interactions to be retained on the substrate. The main molecular mechanisms of analyte-substrate interactions were revealed to be hydrophobic interactions and electrostatic interactions. Furthermore, based on the mechanistic insights, functionalized tips were further applied for rapid extractive sampling of target analytes from complex samples with good analytical performances. Overall, this study on the mechanism and applications of analyte-substrate interactions is useful for understanding the fundamental principles and further developments of functionalized tip electrospray ionization (TESI).
Collapse
Affiliation(s)
- Ya-Nan Yao
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou, 510632, China
| | - Bin Hu
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| |
Collapse
|