1
|
Wang Y, Zhang Q, Huang M, Ai G, Liu X, Zhang Y, Li R, Wu J. A colorimetric and SERS-based LFIA for sensitive and simultaneous detection of three stroke biomarkers: An ultra-fast and sensitive point-of-care testing platform. Talanta 2025; 283:127166. [PMID: 39509900 DOI: 10.1016/j.talanta.2024.127166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Stroke ranks as the second leading cause of disability and mortality globally. Biomarker detection represents a promising avenue for predicting disease severity and prognosis. The expression levels of metalloproteinase-9 (MMP-9), neuron-specific enolase (NSE), and N-terminal pro-brain natriuretic peptide (NT-pro BNP) in blood correlate with stroke severity. Hence, monitoring these biomarkers is crucial for stroke diagnosis and management. Point-of-care testing (POCT) offers on-site diagnostic capabilities, with lateral flow immunoassay (LFIA) being the most widely used method currently. However, traditional LFIA sensitivity requires enhancement. This study introduces an ultra-sensitive surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-based LFIA) strip for simultaneous detection of the three stroke biomarkers using SERS immune tags. Bimetallic core-shell structured SERS immune tags leverage the advantages of two metals, ensuring stability and enhancing Raman signals through plasmon resonance. This development of a POCT based on SERS-based LFIA strips offers rapid, sensitive, and multiplex detection of stroke biomarkers. The limits of detection (LODs) for MMP-9, NSE, and NT-pro BNP were 0.00020 ng mL-1, 0.00016 ng mL-1, and 0.00012 ng mL-1, respectively. Furthermore, enzyme-linked immunosorbent assay (ELISA) validated the accuracy of SERS-based LFIA. Clinical sample analysis demonstrated consistency between outcomes obtained by SERS-based LFIA and ELISA. Thus, SERS-based LFIA presents a novel POCT approach for stroke diagnosis.
Collapse
Affiliation(s)
- Yutong Wang
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, National Center for Quality supervision and Inspection of Oil and Gas products (Yan'an), College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, China
| | - Qianchun Zhang
- School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qianxinan, Xingyi Normal University for Nationalities, Xingyi, 562400, China
| | - Mengping Huang
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, National Center for Quality supervision and Inspection of Oil and Gas products (Yan'an), College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, China
| | - Ganggang Ai
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, National Center for Quality supervision and Inspection of Oil and Gas products (Yan'an), College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, China
| | - Xiaofeng Liu
- Guangxi Key Laboratory of Urban Water Environment, Baise University, Baise, 533000, China
| | - Yuqi Zhang
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, National Center for Quality supervision and Inspection of Oil and Gas products (Yan'an), College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, China.
| | - Ran Li
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, National Center for Quality supervision and Inspection of Oil and Gas products (Yan'an), College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, China.
| | - Jie Wu
- School of Public Health, Shenyang Medical College, Liaoning Medical Functional Food Professional Technology Innovation Center, Shenyang, 110034, China.
| |
Collapse
|
2
|
Wang Z, Guo L, Tian J, Han Y, Zhai D, Cui L, Zhang P, Zhang X, Yang S, Zhang L. Aversatile MOF as an electrochemical/fluorescence/colorimetric signal probe for the tri-modal detection of MMP-9 secretion in the extracellular matrix to identify the efficacy of chemotherapeutic drugs. Anal Chim Acta 2024; 1315:342798. [PMID: 38879217 DOI: 10.1016/j.aca.2024.342798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND MMP-9 plays a crucial role in regulating the degradation of proteins within the extracellular matrix (ECM). This process closely correlates with the occurrence, development, invasion, and metastasis of various tumors, each exhibiting diverse levels of MMP-9 expression. However, the accuracy of detection results using the single-mode method is compromised due to the coexistence of multiple biologically active substances in the ECM. RESULTS Therefore, in this study, a tri-modal detection system is proposed to obtain more accurate information by cross-verifying the results. Herein, we developed a tri-modal assay using the ZIF-8@Au NPs@S QDs composite as a multifunctional signal probe, decorated with DNA for the specific capture of MMP9. Notably, the probe demonstrated high conductivity, fluorescence response and mimicked enzyme catalytic activity. The capture segments of hybrid DNA specifically bind to MMP9 in the presence of MMP9, causing the signal probe to effortlessly detach the sensor interface onto the sample solution. Consequently, the sensor current performance is weakened, with the colorimetric and fluorescent signals becoming stronger with increasing MMP9 concentration. Notably, the detection range of the tri-modal sensor platform spans over 10 orders of magnitude, verifying notable observations of MMP-9 secretion in four tumor cell lines with chemotherapeutic drugs. Furthermore, the reliability of the detection results can be enhanced by employing pairwise comparative analysis. SIGNIFICANCE This paper presents an effective strategy for detecting MMP9, which can be utilized for both the assessment of MMP-9 in cell lines and for analyzing the activity and mechanisms involved in various tumors.
Collapse
Affiliation(s)
- Zihua Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China.
| | - Lulu Guo
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Jing Tian
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Yue Han
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Dandan Zhai
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Lan Cui
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Pengshuai Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Xiwei Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Shuoye Yang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China.
| | - Lu Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China.
| |
Collapse
|
3
|
Li J, Guo Y. A sandwich chemiluminescent magnetic microparticle immunoassay for cryptococcal antigen detection. Expert Rev Mol Diagn 2024; 24:533-540. [PMID: 38879820 DOI: 10.1080/14737159.2024.2369243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/03/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Cryptococcosis is a global invasive mycosis associated with significant morbidity and mortality. Cryptococcal antigen (CrAg) testing from serum and cerebrospinal fluid (CSF) has been regarded as a gold standard for early diagnosis. This study aimed to develop and validate a rapid and sensitive sandwich chemiluminescent magnetic microparticle immunoassay (CMIA) for quantitative detection of CrAg in sera. RESEARCH DESIGN AND METHODS CMIA is based on magnetic beads modified with capture antibodies and biotinylated antibodies and Streptavidin-polyHRP, where biotinylated antibodies functioned as the recognition element and Streptavidin-polyHRP as the signal component. Assay parameters were first optimized, and then assay performances were evaluated. RESULTS Under optimized conditions, the total runtime of the CMIA was 22 min. The assay had a wide linear range (2 -10,000 ng/mL) and high analytical sensitivity (0.24 ng/mL), together with acceptable reproducibility, accuracy, and stability. Besides, it exhibited no cross-reactivity with other pathogens. Importantly, the assay showed 92.91% (95% CI, 80.97-93.02%) overall qualitative agreement with a commercial ELISA kit in a retrospective cohort of 55 cases with confirmed cryptococcal infection, and 72 controls without evidence of invasive fungal disease (IFD). CONCLUSION These results demonstrated that the present study paved a novel strategy for reliable quantitative detection of CrAg in sera.
Collapse
Affiliation(s)
- Junpu Li
- The Clinical Laboratory of Tianjin Chest Hospital, Tianjin, P.R. China
| | - Yan Guo
- Department of Medical Ultrasound, Tianjin Medical University General Hospital, Tianjin, P.R. China
| |
Collapse
|
4
|
Zeng Y, Qian M, Yang X, Gao Q, Zhang C, Qi H. Electrochemiluminescence bioassay with anti-fouling ability for determination of matrix metalloproteinase 9 secreted from living cells under external stimulation. Mikrochim Acta 2023; 190:422. [PMID: 37775573 DOI: 10.1007/s00604-023-05996-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
An electrochemiluminescence (ECL) bioassay with high sensitivity and anti-fouling ability was developed for determination of matrix metalloproteinase 9 (MMP-9) secreted from living cells under external stimulation. A peptide with sequence of CLGRMGLPGK and a new cyclometalated iridium(III) complex bearing carboxyl group, (pq)2Ir(dcbpy) (pq = 2-phenylquinoline, dcbpy = 2,2'-bipyridyl-4,4'-dicarboxyli acid, abbreviated as Ir) were employed as molecular recognition substrate and ECL emitter, respectively. The peptide was labelled with the Ir to form Ir-peptide as ECL probe. Ir-peptide was self-assembled onto Nafion and gold nanoparticles (AuNPs) modified glassy carbon electrode (AuNPs/Nafion/GCE) and then both of 6-mercapto-1-hexanol (MCH) and zwitterionic peptide as blocking reagents were co-assembled on Ir-peptide/AuNPs/Nafion/GCE to form an anti-fouling ECL peptide-based biosensor. MMP-9 can be quantified in the range 1.0-50 ng·mL-1 with a detection limit of 0.50 ng·mL-1 based on the decreased ECL intensity. Relative standard derivation was 2.3% for six fabricated anti-fouling ECL peptide-based biosensors after reaction with 50 ng·mL-1 MMP-9. The anti-fouling ECL peptide-based biosensor can be used to monitor MMP-9 secreted from living cells under external stimulation. 96.0%-108.0% of recoveries were obtained in 60-diluted cell culture media. This study demonstrates that the ECL biosensor by the combination of iridium(III) complex-based sensitive ECL method and the anti-fouling interface provides a promising way for the determination of MMP-9 in biological sample, which is viable in clinical diagnosis and point-of-care test of protease.
Collapse
Affiliation(s)
- Yu Zeng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Manping Qian
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China.
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China.
| |
Collapse
|
5
|
Ghosh TN, Rotake D, Kumar S, Kaur I, Singh SG. Tear-based MMP-9 detection: A rapid antigen test for ocular inflammatory disorders using vanadium disulfide nanowires assisted chemi-resistive biosensor. Anal Chim Acta 2023; 1263:341281. [PMID: 37225335 DOI: 10.1016/j.aca.2023.341281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/02/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
A sensitive, non-invasive, and biomarker detection in tear fluids for inflammation in potentially blinding eye diseases could be of great significance as a rapid diagnostic tool for quick clinical decisions. In this work, we propose a tear-based MMP-9 antigen testing platform using hydrothermally synthesized vanadium disulfide nanowires. Also, various factors contributing to baseline drifts of the chemiresistive sensor including nanowire coverage on the interdigitated microelectrode of the sensor, sensor response duration, and effect of MMP-9 protein in different matrix solutions were identified. The drifts on the sensor baseline due to nanowire coverage on the sensor were corrected using substrate thermal treatment providing a more uniform distribution of nanowires on the electrode which brought the baseline drift to 18% (coefficient of variations, CV = 18%). This biosensor exhibited sub-femto level limits of detection (LODs) of 0.1344 fg/mL (0.4933 fmoL/l) and 0.2746 fg/mL (1.008 fmoL/l) in 10 mM phosphate buffer saline (PBS) and artificial tear solution, respectively. For a practical tear MMP-9 detection, the proposed biosensor response was validated with multiplex ELISA using tear samples from five healthy controls which showed excellent precision. This label-free and non-invasive platform can serve as an efficient diagnostic tool for the early detection and monitoring of various ocular inflammatory diseases.
Collapse
Affiliation(s)
- Tanmoya Nemai Ghosh
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| | - Dinesh Rotake
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| | - Saurabh Kumar
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, 500034, India; Manipal Academy of Higher Education, Manipal, 576104, India
| | - Inderjeet Kaur
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, 500034, India
| | - Shiv Govind Singh
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India.
| |
Collapse
|
6
|
Yu SS, Shi YJ, Wang D, Qiang TT, Zhao YQ, Wang XY, Zhao JM, Dong LY, Huang YJ, Wang XH. Linking peptide-oriented surface imprinting magnetic nanoparticle with carbon nanotube-based fluorescence signal output device for ultrasensitive detection of glycoprotein. Anal Chim Acta 2023; 1259:341202. [PMID: 37100478 DOI: 10.1016/j.aca.2023.341202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023]
Abstract
Determination of trace glycoprotein has important guiding significance in clinical diagnosis and is usually achieved by immunoaffinity. However, immunoaffinity possesses inherent drawbacks, such as poor probability of high-quality antibodies, instability of biological reagents, and harmfulness of chemical labels to the body. Herein, we propose an innovative method of peptide-oriented surface imprinting to fabricate artificial antibody for recognition of glycoprotein. By integrating peptide-oriented surface imprinting and PEGylation, an innovative hydrophilic peptide-oriented surface imprinting magnetic nanoparticle (HPIMN) was successfully fabricated with human epidermal growth factor receptor-2 (HER2) as a model glycoprotein template. In addition, we further prepared a novel boronic acid-modified/fluorescein isothiocyanate-loaded/polyethylene glycol-covered carbon nanotube (BFPCN) as fluorescence signal output device, which was loaded with numerous fluorescent molecules could specifically label the cis-diol of glycoprotein at physiological pH via boronate-affinity interaction. To prove the practicability, we proposed a HPIMN-BFPCN strategy, in which the HPIMN first selectively captured the HER2 due to the molecular imprinted recognition and then the BFPCN specific labeled the exposed cis-diol of HER2 based on the boronate-affinity reaction. The HPIMN-BFPCN strategy exhibited ultrahigh sensitivity with limit of detection of 14 fg mL-1 and was successfully used in the determination of HER2 in spiked sample with recovery and relative standard deviation in the range of 99.0%-103.0% and 3.1%-5.6%, respectively. Therefore, we believe that the novel peptide-oriented surface imprinting has great potential to become an universal strategy for fabrication of recognition units for other protein biomarkers, and the synergy sandwich assay could become a powerful tool in prognosis evaluation and clinical diagnosis of glycoprotein-related diseases.
Collapse
Affiliation(s)
- Shi-Song Yu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yu-Jun Shi
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Di Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Ti-Ti Qiang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Ya-Qi Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xin-Yu Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Jia-Meng Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Lin-Yi Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Ya-Jie Huang
- Jiangsu East-Mab Biomedical Technology Co. Ltd., Nantong, 226400, China.
| | - Xian-Hua Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
7
|
Yi JY, Kim M, Ahn JH, Kim BG, Son J, Sung C. CRISPR/deadCas9-based high-throughput gene doping analysis (HiGDA): A proof of concept for exogenous human erythropoietin gene doping detection. Talanta 2023; 258:124455. [PMID: 36933297 DOI: 10.1016/j.talanta.2023.124455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
A genetic approach targeted toward improving athletic performance is called gene doping and is prohibited by the World Anti-Doping Agency. Currently, the clustered regularly interspaced short palindromic repeats-associated protein (Cas)-related assays have been utilized to detect genetic deficiencies or mutations. Among the Cas proteins, deadCas9 (dCas9), a nuclease-deficient mutant of Cas9, acts as a DNA binding protein with a target-specific single guide RNA. On the basis of the principles, we developed a dCas9-based high-throughput gene doping analysis for exogenous gene detection. The assay comprises two distinctive dCas9s, a magnetic bead immobilized capture dCas9 for exogenous gene isolation and a biotinylated dCas9 with streptavidin-polyHRP that enables rapid signal amplification. For efficient biotin labeling via maleimide-thiol chemistry, two cysteine residues of dCas9 were structurally validated, and the Cys574 residue was identified as an essential labeling site. As a result, we succeeded in detecting the target gene in a concentration as low as 12.3 fM (7.41 × 105 copies) and up to 10 nM (6.07 × 1011 copies) in a whole blood sample within 1 h with HiGDA. Assuming an exogenous gene transfer scenario, we added a direct blood amplification step to establish a rapid analytical procedure while detecting target genes with high sensitivity. Finally, we detected the exogenous human erythropoietin gene at concentrations as low as 2.5 copies within 90 min in 5 μL of the blood sample. Herein, we propose that HiGDA is a very fast, highly sensitive, and practical detection method for actual doping field in the future.
Collapse
Affiliation(s)
- Joon-Yeop Yi
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea; Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, 08826, South Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, South Korea
| | - Minyoung Kim
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Jung Ho Ahn
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Byung-Gee Kim
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, 08826, South Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, South Korea; Bio-Max/N-Bio Institute, Seoul National University, Seoul, 08826, South Korea; School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, South Korea; Institute for Sustainable Development (ISD), Seoul National University, Seoul, 08826, South Korea
| | - Junghyun Son
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Changmin Sung
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
| |
Collapse
|
8
|
Lu X, Ding L, Song H, Yu W, Dong C, Ren J. In situ quantitative measurements on MMP-9 activity in single living cells by single molecule fluorescence correlation spectroscopy. Analyst 2023; 148:752-761. [PMID: 36633105 DOI: 10.1039/d2an01925f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) plays an important role in tumor progression. It is of great significance to establish a sensitive in situ assay strategy for MMP-9 activity in single living cells. Here a novel in situ single molecule spectroscopy method based on the fluorescence correlation spectroscopy (FCS) technique was proposed for measuring the MMP-9 activity at different locations within single living cells, using a fluorescent specific peptide and a reference dye as dual probes. The measurement principle is based on the decrease of the ratiometric translational diffusion time of dual probes in the detection volume due to the peptide cleavage caused by MMP-9. The peptide probe was designed to be composed of an MMP-9 cleavage and cell-penetrating peptide sequence that was labeled with a fluorophore and conjugated with a streptavidin (SAV) molecule. The ratiometric translational diffusion time was used as the measurement parameter to eliminate the effect of intracellular uncertain viscosity. The linear relationship between the ratiometric diffusion time and MMP-9 activity was established, and applied to the determination of enzymatic activity in cell lysates as well as the evaluation of the inhibitory effects of different inhibitors on MMP-9. More importantly, the method was successfully used to dynamically determine MMP-9 activity in single living cells or under the stimulation with phorbol 12-myristate 13-acetate (PMA) and inhibitors.
Collapse
Affiliation(s)
- Xintong Lu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
| | - Luoyu Ding
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
| | - Haohan Song
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
| | - Wenxin Yu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
| | - Chaoqing Dong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
| |
Collapse
|
9
|
Mok J, Kim E, Kang M, Jeon J, Ban C. Development of an optical sandwich ELONA using a pair of DNA aptamers for yellow fever virus NS1. Talanta 2023; 253:123979. [PMID: 36208558 DOI: 10.1016/j.talanta.2022.123979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 12/13/2022]
Abstract
Here, we proposed an enzyme-linked oligonucleotide assay (ELONA) for yellow fever (YF) diagnosis that uses a pair of aptamers, YFns1-4 and YFns1-31. The aptamers were selected to specifically bind to nonstructural protein 1 (NS1), which is secreted at a high concentration after YF infection. We applied the aptamers which did not interfere with each other on binding to the NS1 in a sandwich ELONA. In the assay, the best detection sensitivity was obtained when the combination of YFns1-31 as a capture aptamer and YFns1-4 as a detect aptamer was used. The sensitivity could be attributed to the results of the direct ELONA with each YFns1-4 and YFns1-31; a great absorbance intensity and a broad detectable range of NS1, respectively. The sandwich ELONA achieved a low detection limit of 0.85 nM in buffer and was highly specific to the YFV-NS1 as its detection signals were significantly distinct from those of other flavivirus-derived NS1. In addition, the assay showed a desirable sensitivity in serum-spiked condition. Our developed sandwich ELONA can be a new practical and applicable serological diagnostics in YF endemic regions where other flaviviruses coexist and facilities for complex diagnostic tests are lacking.
Collapse
Affiliation(s)
- Jihyun Mok
- Department of Chemistry, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeong-buk, 790-784, Republic of Korea
| | - Eunseon Kim
- Department of Chemistry, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeong-buk, 790-784, Republic of Korea
| | - Minji Kang
- Department of Chemistry, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeong-buk, 790-784, Republic of Korea
| | - Jinseong Jeon
- POSTECH Biotech Center, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeong-buk, 790-784, Republic of Korea
| | - Changill Ban
- Department of Chemistry, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeong-buk, 790-784, Republic of Korea.
| |
Collapse
|
10
|
Nisiewicz MK, Kowalczyk A, Sikorska M, Kasprzak A, Bamburowicz-Klimkowska M, Koszytkowska-Stawińska M, Nowicka AM. Poly(amidoamine) dendrimer immunosensor for ultrasensitive gravimetric and electrochemical detection of matrix metalloproteinase-9. Talanta 2022; 247:123600. [PMID: 35659686 DOI: 10.1016/j.talanta.2022.123600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Monitoring the level of matrix metalloproteinase-9 (MMP-9) and inhibiting its expression is important for the diagnosis and treatment of various diseases. However, the analysis of MMP-9 is challenging owing to its very low content in the blood, especially at the early stages of diseases. Therefore, we developed an ultrasensitive and easy-to-use immunosensor based on a three-dimensional (3D) bioplatform for the determination of the total MMP-9 concentration in plasma. The used 3D bioplatform (G2 poly(amidoamine) dendrimer; PAMAM) improved the sensitivity of the determination by significantly expanding the surface area of the receptor layer. The antigen-antibody recognition process was controlled by quartz crystal microbalance with dissipation (QCM-D) and electrochemical impedance spectroscopy (EIS). The effect of the orientation of antibody molecules in the sensing layer on the work parameters of the immunosensor was analyzed using unmodified PAMAM (PAMAM-NH2) and PAMAM functionalized with -COOH groups (PAMAM-COOH). The developed immunosensor based on PAMAM-NH2 was characterized by a lower detection limit (LOD = 2.0 pg⋅mL-1) and wider analytical range (1·10-4 - 5 μg⋅mL-1 for EIS and QCM-D) compared to PAMAM-COOH immunosensor (EIS: 1·10-4 - 0.5 μg⋅mL-1; QCM-D: 5·10-4 - 0.5 μg⋅mL-1). The functionality of the proposed device was verified in spiked plasma. The recoveries determined in commercial human and rat plasma and noncommercial rat plasma were very close to the value of 100% and in the range of 96-120% for Au/PAMAM-NH2/Ab and Au/PAMAM-COOH/Ab immunosensors, respectively. The designed analytical devices showed high selectivity and sensitivity without the use of any amplifiers such as metal nanoparticles or enzymes.
Collapse
Affiliation(s)
- Monika K Nisiewicz
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093 Warsaw, Poland; Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, PL 00-664 Warsaw, Poland
| | - Agata Kowalczyk
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093 Warsaw, Poland
| | - Małgorzata Sikorska
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093 Warsaw, Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, PL 00-664 Warsaw, Poland
| | | | | | - Anna M Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093 Warsaw, Poland.
| |
Collapse
|
11
|
Parent C, Laurent P, Goujon CE, Mermet X, Keiser A, Boizot F, Charles R, Audebert L, Fouillet Y, Cubizolles M. A versatile and automated microfluidic platform for a quantitative magnetic bead based protocol: application to gluten detection. LAB ON A CHIP 2022; 22:3147-3156. [PMID: 35678256 DOI: 10.1039/d2lc00328g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A microfluidic platform for the integration of multi-step biological assays has been developed. The presented system is a unique instrument compatible with microfluidic chips for various applications based on bead manipulation. Two examples of microfluidic cartridges are presented here. The first one contains two rows of eight chambers (40 and 80 μL), six reagent inlets, eight testing solution (calibrators and samples) inlets and eight outlets to reproduce precisely each step of a biological assay. This configuration is versatile enough to integrate many different biological assays and save a lot of development time. The second architecture is dedicated to one specific protocol and is completely automated from the standard and sample dilutions to the optical detection. Linear dilutions have been integrated to prepare automatically a range of standard concentrations and outlets have been modified for integrated colorimetric detection. The technology uses pneumatically collapsible chambers to perform all the fluidic operations for a fully automated protocol such as volume calibrations, fluid transport, mixing, and washing steps. A programmable instrument with a software interface has been developed to adapt rapidly a protocol to this cartridge. As an example, these new microfluidic cartridges have been used to successfully perform an immunoassay for gluten detection in the dynamic range of 10-30 ppm with good sensitivity (2 ppm) and specificity.
Collapse
Affiliation(s)
- Charlotte Parent
- CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, Univ. Grenoble Alpes, F-38000 Grenoble, France.
| | - Patricia Laurent
- CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, Univ. Grenoble Alpes, F-38000 Grenoble, France.
| | | | - Xavier Mermet
- CEA, LETI, Technologies for Healthcare and Biology Division, Univ. Grenoble Alpes, LSIV, F-38000 Grenoble, France
| | - Armelle Keiser
- CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, Univ. Grenoble Alpes, F-38000 Grenoble, France.
| | - François Boizot
- CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, Univ. Grenoble Alpes, F-38000 Grenoble, France.
| | - Raymond Charles
- CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, Univ. Grenoble Alpes, F-38000 Grenoble, France.
| | - Lucas Audebert
- CEA, LETI, Technologies for Healthcare and Biology Division, Univ. Grenoble Alpes, LS2P, F-38000 Grenoble, France
| | - Yves Fouillet
- CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, Univ. Grenoble Alpes, F-38000 Grenoble, France.
| | - Myriam Cubizolles
- CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, Univ. Grenoble Alpes, F-38000 Grenoble, France.
| |
Collapse
|
12
|
Gou X, Nawaz MAH, Liu C, Yang N, Ren J, Zhou H, Li Y, Zhu J, Han W, Yu C. Polypeptide induced perylene probe excimer formation and its application in the noncovalent ratiometric detection of matrix metalloproteinase activity. J Mater Chem B 2022; 10:5774-5783. [PMID: 35856878 DOI: 10.1039/d2tb00416j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Matrix metalloproteinases (MMPs) are important biomarkers for a number of diseases. Thus, the precise determination of MMP activity is of crucial importance. Herein, we report a ratiometric fluorescence method for the sensitive and selective sensing of MMP activity. A number of positively charged MMP substrates (polypeptides) were designed and prepared. These polypeptides could induce aggregation of a negatively charged perylene diimide derivative (PC1). As a result, excimer fluorescence of PC1 was observed. Addition of the corresponding MMP resulted in cleavage of the polypeptide chain and dis-aggregation of PC1, which led to turning on of the PC1 monomer fluorescence. Based on the ratio of the monomer (545 nm, IM) and the excimer (680 nm, IM) fluorescence intensity changes, a ratiometric method I545/I680) was established to detect MMP activity. The enzymatic activity of a number of MMPs (MMP-1, 2, 3, 7, 9 and 13) could be determined with a limit of detection of 4.8, 2.2, 16, 6.0, 1.7 and 5.5 ng mL-1, respectively. Using MMP-2 and MMP-9 as examples, flavonoid herbal extracts as potential inhibitors were studied. It was observed that mangiferin, apigenin, quercetin and isoliquiritigenin had significant inhibiting effects on the enzyme activity. And these herbal extracts also inhibited tumor cell metastasis. Moreover, the developed strategy was also employed to determine the concentration of MMP-9 in human saliva samples. Since the method relies on only noncovalent interactions between the polypeptide and PC1, no covalent labeling of fluorescence dye on the polypeptide substrate is required, and the method is thus simple, broad-spectrum inexpensive and effective. It has the potential to be developed into a clinical test kit.
Collapse
Affiliation(s)
- Xiaoyu Gou
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Muhammad Azhar Hayat Nawaz
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.,Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University, Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Chaoyi Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Na Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jia Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Huipeng Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yunhui Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China.,Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, 528400, China
| | - Jianwei Zhu
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, 528400, China
| | - Wenzhao Han
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
13
|
Aptamer-antibody hybrid ELONA that uses hybridization chain reaction to detect a urinary biomarker EN2 for bladder and prostate cancer. Sci Rep 2022; 12:11523. [PMID: 35798816 PMCID: PMC9263169 DOI: 10.1038/s41598-022-15556-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
We report an EN2-specific (Kd = 8.26 nM) aptamer, and a sensitive and specific enzyme-linked oligonucleotide assay (ELONA) for rapid and sensitive colorimetric detection of bladder and prostate cancer biomarker EN2 in urine. The assay relies on an aptamer-mediated hybridization chain reaction (HCR) to generate DNA nanostructures that bind to EN2 and simultaneously amplify signals. The assay can be performed within 2.5 h, and has a limit of detection of 0.34 nM in buffer and 2.69 nM in artificial urine. Moreover, this assay showed high specificity as it did not detect other urinary proteins, including biomarkers of other cancers. The proposed ELONA is inexpensive, highly reproducible, and has great chemical stability, so it may enable development of a simple, sensitive and accurate diagnostic tool to detect bladder and prostate cancers early.
Collapse
|
14
|
Bai CC, Chen MY, Zhou TC, Jiang RL, Dong LY, Wei HW, Kong XJ, Wang XH. Hydrophilic rhodamine B-loaded / boronic acid-modified graphene oxide nanocomposite as a substitute of enzyme-labeled second antibody for ultrasensitive detection of antibodies. J Pharm Biomed Anal 2022; 216:114804. [DOI: 10.1016/j.jpba.2022.114804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 11/16/2022]
|
15
|
He T, Cui PL, Liu J, Feng C, Wang JP. Production of a Natural Dihydropteroate Synthase and Development of a Signal-Amplified Pseudo-Immunoassay for the Determination of Sulfonamides in Pork. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3023-3032. [PMID: 35225617 DOI: 10.1021/acs.jafc.2c00337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, a type of magnetic photoaffinity-labeled activity-based protein profiling probe for sulfonamide drugs was first synthesized for the purpose of capturing the natural dihydropteroate synthase of Escherichia coli by using simple incubation and magnetic separation. After characterization of its identity with LC-ESI-MS/MS, this enzyme was used as a recognition reagent to develop a direct competitive pseudo-ELISA for the determination of the residues of 40 sulfonamides in pork. Because of the use of streptavidin-horseradish peroxidase and biotinylated horseradish peroxidase as a signal-amplified system, the limits of detection for the 40 drugs were in the range of 0.001-0.016 ng/mL. Compared to the steps in a conventional assay formation, the operation steps were the same, but the sensitivities increased 32-88-fold. Furthermore, the assay performances were better than the previously reported immunoassays performances for sulfonamides. Therefore, this method could be used as a practical tool for multiscreening the trace levels of sulfonamides residues in food samples.
Collapse
Affiliation(s)
- Tong He
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Peng Lei Cui
- College of Science, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Jing Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Cheng Feng
- College of Science, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Jian Ping Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
- Veterinary Biological Technology Innovation Center of Hebei Province, Baoding, Hebei 071000, China
| |
Collapse
|
16
|
Zhu J, Dou L, Shao S, Kou J, Yu X, Wen K, Wang Z, Yu W. An Automated and Highly Sensitive Chemiluminescence Immunoassay for Diagnosing Mushroom Poisoning. Front Chem 2022; 9:813219. [PMID: 35004629 PMCID: PMC8733245 DOI: 10.3389/fchem.2021.813219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/08/2021] [Indexed: 11/21/2022] Open
Abstract
Mushrooms containing Amanita peptide toxins are the major cause of mushroom poisoning, and lead to approximately 90% of deaths. Phallotoxins are the fastest toxin causing poisoning among Amanita peptide toxins. Thus, it is imperative to construct a highly sensitive quantification method for the rapid diagnosis of mushroom poisoning. In this study, we established a highly sensitive and automated magnetic bead (MB)-based chemiluminescence immunoassay (CLIA) for the early, rapid diagnosis of mushroom poisoning. The limits of detection (LODs) for phallotoxins were 0.010 ng/ml in human serum and 0.009 ng/ml in human urine. Recoveries ranged from 81.6 to 95.6% with a coefficient of variation <12.9%. Analysis of Amanita phalloides samples by the automated MB-based CLIA was in accordance with that of HPLC-MS/MS. The advantages the MB-based CLIA, high sensitivity, repeatability, and stability, were due to the use of MBs as immune carriers, chemiluminescence as a detection signal, and an integrated device to automate the whole process. Therefore, the proposed automated MB-based CLIA is a promising option for the early and rapid clinical diagnosis of mushroom poisoning.
Collapse
Affiliation(s)
- Jianyu Zhu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.,School of Basic Medicine, Beihua University, Jilin, China
| | - Leina Dou
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shibei Shao
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiaqian Kou
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xuezhi Yu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kai Wen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenbo Yu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Sánchez-Cano A, Ruiz-Vega G, Vicente-Gómez S, de la Serna E, Sulleiro E, Molina I, Sánchez-Montalvá A, Baldrich E. Development of a Fast Chemiluminescent Magneto-Immunoassay for Sensitive Plasmodium falciparum Detection in Whole Blood. Anal Chem 2021; 93:12793-12800. [PMID: 34496566 DOI: 10.1021/acs.analchem.1c03242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The World Health Organization (WHO) estimates that over three billion people are at risk of acquiring malaria, a parasitic infection that produces more than 200 million new infections and nearly half a million deaths each year. Expanding the access to early diagnosis and treatment is one of the most effective ways to prevent disease complications, reduce patient mortality, and curb the community transmission. However, none of the diagnostic methods used currently for malaria detection, including light microscopy, polymerase chain reaction (PCR), and rapid diagnostic tests (RDTs), can provide simultaneously fast results, high sensitivity, and parasitaemia quantitation with minimal user intervention. Here, we present a magneto-immunoassay that, based on the unique combination of magnetic beads (MB), an enzymatic signal amplifier (Poly-HRP), and chemiluminescence detection, provides fast, sensitive, and quantitative malaria diagnosis with easy user manipulation. This assay quantifies Plasmodium falciparum lactate dehydrogenase (PfLDH) in lysed whole blood samples in <15 min, exhibiting a limit of detection (LOD) of 0.02 ng mL-1 and providing patient stratification consistent with the reference methods. These figures of merit surpass the performance of the magneto-immunoassays reported previously for Plasmodium detection and demonstrate for the first time that the proposed combination of MB, Poly-HRP, and chemiluminescence detection produces extremely fast, simple, and efficient assays that approach the requirements of point-of-care (POC) malaria surveillance.
Collapse
Affiliation(s)
- Ana Sánchez-Cano
- Diagnostic Nanotools Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona 08035, Spain.,Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain
| | - Gisela Ruiz-Vega
- Diagnostic Nanotools Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Sergi Vicente-Gómez
- Diagnostic Nanotools Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Erica de la Serna
- Diagnostic Nanotools Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Elena Sulleiro
- Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain.,Microbiology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona 08035, Spain.,PROSICS (Catalan International Health Program), Barcelona 08035, Spain
| | - Israel Molina
- PROSICS (Catalan International Health Program), Barcelona 08035, Spain.,Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Adrián Sánchez-Montalvá
- Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain.,PROSICS (Catalan International Health Program), Barcelona 08035, Spain.,Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Eva Baldrich
- Diagnostic Nanotools Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| |
Collapse
|
18
|
Deshmukh KP, Rahmani Dabbagh S, Jiang N, Tasoglu S, Yetisen AK. Recent Technological Developments in the Diagnosis and Treatment of Cerebral Edema. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Karthikeya P. Deshmukh
- Department of Chemical Engineering Imperial College London Imperial College Road, Kensington London SW7 2AZ UK
| | - Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering Koc University Rumelifeneri Yolu, Sariyer Istanbul 34450 Turkey
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu 610041 China
| | - Savas Tasoglu
- Department of Mechanical Engineering Koc University Rumelifeneri Yolu, Sariyer Istanbul 34450 Turkey
- Boğaziçi Institute of Biomedical Engineering Boğaziçi University Istanbul 34684 Turkey
| | - Ali K. Yetisen
- Department of Chemical Engineering Imperial College London Imperial College Road, Kensington London SW7 2AZ UK
| |
Collapse
|
19
|
Johannsen B, Karpíšek M, Baumgartner D, Klein V, Bostanci N, Paust N, Früh SM, Zengerle R, Mitsakakis K. One-step, wash-free, bead-based immunoassay employing bound-free phase detection. Anal Chim Acta 2021; 1153:338280. [DOI: 10.1016/j.aca.2021.338280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/14/2021] [Accepted: 01/31/2021] [Indexed: 12/28/2022]
|
20
|
Lei Z, Jian M, Li X, Wei J, Meng X, Wang Z. Biosensors and bioassays for determination of matrix metalloproteinases: state of the art and recent advances. J Mater Chem B 2021; 8:3261-3291. [PMID: 31750853 DOI: 10.1039/c9tb02189b] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are closely associated with various physiological and pathological processes, and have been regarded as potential biomarkers for severe diseases including cancer. Accurate determination of MMPs would advance our understanding of their roles in disease progression, and is of great significance for disease diagnosis, treatment and prognosis. In this review, we present a comprehensive overview of the developed bioassays/biosensors for detection of MMPs, and highlight the recent advancement in nanomaterial-based immunoassays for MMP abundance measurements and nanomaterial-based biosensors for MMP activity determination. Enzyme-linked immunosorbent assay (ELISA)-based immunoassays provide information about total levels of MMPs with high specificity and sensitivity, while target-based biosensors measure the amounts of active MMPs, and allow imaging of MMP activities in vivo. For multiplex and high-throughput analysis of MMPs, microfluidics and microarray-based assays are described. Additionally, we put forward the existing challenges and future prospects from our perspective.
Collapse
Affiliation(s)
- Zhen Lei
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | | | | | | | | | | |
Collapse
|
21
|
de la Serna E, Arias-Alpízar K, Borgheti-Cardoso LN, Sanchez-Cano A, Sulleiro E, Zarzuela F, Bosch-Nicolau P, Salvador F, Molina I, Ramírez M, Fernàndez-Busquets X, Sánchez-Montalvá A, Baldrich E. Detection of Plasmodium falciparum malaria in 1 h using a simplified enzyme-linked immunosorbent assay. Anal Chim Acta 2021; 1152:338254. [PMID: 33648654 DOI: 10.1016/j.aca.2021.338254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 12/21/2022]
Abstract
Malaria is a parasitic disease caused by protists of the genus Plasmodium, which are transmitted to humans through the bite of infected female Anopheles mosquitoes. Analytical methodologies and efficient drugs exist for the early detection and treatment of malaria, and yet this disease continues infecting millions of people and claiming several hundred thousand lives each year. One of the reasons behind this failure to control the disease is that the standard method for malaria diagnosis, microscopy, is time-consuming and requires trained personnel. Alternatively, rapid diagnostic tests, which have become common for point-of-care testing thanks to their simplicity of use, tend to be insufficiently sensitive and reliable, and PCR, which is sensitive, is too complex and expensive for massive population screening. In this work, we report a sensitive simplified ELISA for the quantitation of Plasmodium falciparum lactate dehydrogenase (Pf-LDH), which is capable of detecting malaria in 45-60 min. Assay development was founded in the selection of high-performance antibodies, implementation of a poly-horseradish peroxidase (polyHRP) signal amplifier, and optimization of whole-blood sample pre-treatment. The simplified ELISA achieved limits of detection (LOD) and quantification (LOQ) of 0.11 ng mL-1 and 0.37 ng mL-1, respectively, in lysed whole blood, and an LOD comparable to that of PCR in Plasmodium in vitro cultures (0.67 and 1.33 parasites μL-1 for ELISA and PCR, respectively). Accordingly, the developed immunoassay represents a simple and effective diagnostic tool for P. falciparum malaria, with a time-to-result of <60 min and sensitivity similar to the reference PCR, but easier to implement in low-resource settings.
Collapse
Affiliation(s)
- Erica de la Serna
- Diagnostic Nanotools Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Kevin Arias-Alpízar
- Diagnostic Nanotools Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Livia Neves Borgheti-Cardoso
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Ana Sanchez-Cano
- Diagnostic Nanotools Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Elena Sulleiro
- Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain; Microbiology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; PROSICS (Catalan International Health Program), Barcelona, Spain
| | - Francesc Zarzuela
- Microbiology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; PROSICS (Catalan International Health Program), Barcelona, Spain
| | - Pau Bosch-Nicolau
- PROSICS (Catalan International Health Program), Barcelona, Spain; Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Fernando Salvador
- PROSICS (Catalan International Health Program), Barcelona, Spain; Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Israel Molina
- PROSICS (Catalan International Health Program), Barcelona, Spain; Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Miriam Ramírez
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain; Nanoscience and Nanotechnology Institute, Universitat de Barcelona (IN2UB), Barcelona, Spain
| | - Adrián Sánchez-Montalvá
- Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain; PROSICS (Catalan International Health Program), Barcelona, Spain; Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Eva Baldrich
- Diagnostic Nanotools Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
22
|
Adeniyi OK, Ngqinambi A, Mashazi PN. Ultrasensitive detection of anti-p53 autoantibodies based on nanomagnetic capture and separation with fluorescent sensing nanobioprobe for signal amplification. Biosens Bioelectron 2020; 170:112640. [DOI: 10.1016/j.bios.2020.112640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/28/2022]
|
23
|
Chang YJ, Yang HW, Yao LH, Yang WT. Droplet-Based Immunosensor for Simultaneous Immunoassays of Multiplex Histidine-Tagged Proteins. SLAS Technol 2020; 25:132-139. [DOI: 10.1177/2472630319879647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Tomita S, Sugai H, Mimura M, Ishihara S, Shiraki K, Kurita R. Optical Fingerprints of Proteases and Their Inhibited Complexes Provided by Differential Cross-Reactivity of Fluorophore-Labeled Single-Stranded DNA. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47428-47436. [PMID: 31747245 DOI: 10.1021/acsami.9b17829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The detection of proteases and their complexes with inhibitor proteins is of great importance for diagnosis and medical-treatment applications. In this study, we report a fingerprint-based sensor using an array of single-stranded DNAs (ssDNAs) labeled with environment-responsive 3'-carboxytetramethylrhodamine (TAMRA) for the identification of proteases. Four TAMRA-modified ssDNAs with different sequences solubilized in two different buffer solutions were incorporated in an array that was capable of generating fluorescent fingerprints unique to the proteases through diverse cross-reactive interactions, allowing the discrimination of (i) 8 proteases and (ii) 12 different mixtures of trypsin and its inhibitor protein (α1-antitrypsin) by multivariate analysis. Constructing an array with TAMRA-modified DNA aptamers that bind to different sites of human thrombin provides fluorescence fingerprints that reflect a reduction of the exposed surface area of thrombin upon complexation with antithrombin III, even in the presence of human serum. We finally demonstrate the potential of hybridization with complementary DNAs as an effective means to easily double the fingerprint information for proteases. Our approach based on the cross-reactive capability of ssDNAs enables high-throughput fingerprint-based sensing that can be flexibly designed and easily constructed, not only for the identification of a variety of proteins including proteases but also for the evaluation of their complexation ability.
Collapse
Affiliation(s)
- Shunsuke Tomita
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology , 1-1-1 Higashi , Tsukuba , Ibaraki 305-8566 , Japan
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), DBT-AIST International Center for Translational & Environmental Research (DAICENTER) , National Institute of Advanced Industrial Science and Technology , 1-1-1 Higashi , Tsukuba , Ibaraki 305-8566 , Japan
| | - Hiroka Sugai
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology , 1-1-1 Higashi , Tsukuba , Ibaraki 305-8566 , Japan
| | - Masahiro Mimura
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology , 1-1-1 Higashi , Tsukuba , Ibaraki 305-8566 , Japan
- Faculty of Pure and Applied Sciences , University of Tsukuba , 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8573 , Japan
| | - Sayaka Ishihara
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology , 1-1-1 Higashi , Tsukuba , Ibaraki 305-8566 , Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences , University of Tsukuba , 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8573 , Japan
| | - Ryoji Kurita
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology , 1-1-1 Higashi , Tsukuba , Ibaraki 305-8566 , Japan
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), DBT-AIST International Center for Translational & Environmental Research (DAICENTER) , National Institute of Advanced Industrial Science and Technology , 1-1-1 Higashi , Tsukuba , Ibaraki 305-8566 , Japan
- Faculty of Pure and Applied Sciences , University of Tsukuba , 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8573 , Japan
| |
Collapse
|
25
|
Ruiz-Vega G, Arias-Alpízar K, de la Serna E, Borgheti-Cardoso LN, Sulleiro E, Molina I, Fernàndez-Busquets X, Sánchez-Montalvá A, Del Campo FJ, Baldrich E. Electrochemical POC device for fast malaria quantitative diagnosis in whole blood by using magnetic beads, Poly-HRP and microfluidic paper electrodes. Biosens Bioelectron 2019; 150:111925. [PMID: 31818756 DOI: 10.1016/j.bios.2019.111925] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/16/2019] [Accepted: 11/25/2019] [Indexed: 01/16/2023]
Abstract
Malaria, a parasitic infection caused by Plasmodium parasites and transmitted through the bite of infected female Anopheles mosquitos, is one of the main causes of mortality in many developing countries. Over 200 million new infections and nearly half a million deaths are reported each year, and more than three billion people are at risk of acquiring malaria worldwide. Nevertheless, most malaria cases could be cured if detected early. Malaria eradication is a top priority of the World Health Organisation. However, achieving this goal will require mass population screening and treatment, which will be hard to accomplish with current diagnostic tools. We report an electrochemical point-of-care device for the fast, simple and quantitative detection of Plasmodiumfalciparum lactate dehydrogenase (PfLDH) in whole blood samples. Sample analysis includes 5-min lysis to release intracellular parasites, and stirring for 5 more min with immuno-modified magnetic beads (MB) along with an immuno-modified signal amplifier. The rest of the magneto-immunoassay, including sample filtration, MB washing and electrochemical detection, is performed at a disposable paper electrode microfluidic device. The sensor provides PfLDH quantitation down to 2.47 ng mL-1 in spiked samples and for 0.006-1.5% parasitemias in Plasmodium-infected cultured red blood cells, and discrimination between healthy individuals and malaria patients presenting parasitemias >0.3%. Quantitative malaria diagnosis is attained with little user intervention, which is not achieved by other diagnostic methods.
Collapse
Affiliation(s)
- Gisela Ruiz-Vega
- Diagnostic Nanotools Group, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Kevin Arias-Alpízar
- Diagnostic Nanotools Group, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Erica de la Serna
- Diagnostic Nanotools Group, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Livia Neves Borgheti-Cardoso
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Elena Sulleiro
- Microbiology Department, Vall d'Hebron University Hospital (VHUH), UAB, Barcelona, Spain; PROSICS (Catalan International Health Program), Barcelona, Spain
| | - Israel Molina
- PROSICS (Catalan International Health Program), Barcelona, Spain; Infectious Diseases Department, VHUH, UAB, PROSICS (Catalan International Health Program), Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), Barcelona, Spain
| | - Adrián Sánchez-Montalvá
- PROSICS (Catalan International Health Program), Barcelona, Spain; Infectious Diseases Department, VHUH, UAB, PROSICS (Catalan International Health Program), Barcelona, Spain
| | | | - Eva Baldrich
- Diagnostic Nanotools Group, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
26
|
Assessment of immunoglobulin capture in immobilized protein A through automatic bead injection. Talanta 2019; 204:542-547. [DOI: 10.1016/j.talanta.2019.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022]
|
27
|
Naked eye detection of an amplified gene using metal particle-based DNA transport within functionalized porous interfaces. Talanta 2019; 195:97-102. [DOI: 10.1016/j.talanta.2018.11.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 11/17/2022]
|
28
|
Ruiz-Vega G, García-Robaina A, Ben Ismail M, Pasamar H, García-Berrocoso T, Montaner J, Zourob M, Othmane A, del Campo FJ, Baldrich E. Detection of plasma MMP-9 within minutes. Unveiling some of the clues to develop fast and simple electrochemical magneto-immunosensors. Biosens Bioelectron 2018; 115:45-52. [DOI: 10.1016/j.bios.2018.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/27/2018] [Accepted: 05/10/2018] [Indexed: 01/19/2023]
|