1
|
Scroccarello A, Della Pelle F, Di Giulio T, Mazzotta E, Mancini A, Mascini M, Oliva E, Malitesta C, Compagnone D. Bimetallic nanocolloidal plasmonic array for polyphenol characterization and calibration-free antioxidant capacity evaluation. Mikrochim Acta 2024; 191:623. [PMID: 39322852 DOI: 10.1007/s00604-024-06709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
A bimetallic plasmonic nanoparticles-based approach for the untargeted evaluation of phenolic compounds (PC)-pattern and antioxidant capacity (AoC) is proposed. The rationale relies on the PC's ability to drive the formation of bimetallic silver/gold nanocolloidal 'probes' with different conformations. Ag/Au bimetallic nanostructures, according to the PCs' amount and class, return characteristic plasmonic and colorimetric tags. Plasmonic indexes are proposed to assess the dominant PC classes, while the colorimetric response, analyzed simply by a smartphone, is employed to obtain an AoC score, without calibration. The methods were tested with PCs belonging to different chemical classes, and challenged to classify different food samples. The proposed approach allows PC-dominant class identification and AoC-evaluation consistent with HPLC-MS/MS and conventional photometric assays.
Collapse
Affiliation(s)
- Annalisa Scroccarello
- Department of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100, Teramo, TE, Italy
| | - Flavio Della Pelle
- Department of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100, Teramo, TE, Italy.
| | - Tiziano Di Giulio
- Laboratorio Di Chimica Analitica, Dipartimento Di Scienze E Tecnologie Biologiche E Ambientali (Di.S.Te.B.A.), Università del Salento, Via Monteroni, 73100, Lecce, LE, Italy
| | - Elisabetta Mazzotta
- Laboratorio Di Chimica Analitica, Dipartimento Di Scienze E Tecnologie Biologiche E Ambientali (Di.S.Te.B.A.), Università del Salento, Via Monteroni, 73100, Lecce, LE, Italy
| | - Alessandra Mancini
- Department of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100, Teramo, TE, Italy
| | - Marcello Mascini
- Department of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100, Teramo, TE, Italy
| | - Eleonora Oliva
- Department of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100, Teramo, TE, Italy
| | - Cosimino Malitesta
- Laboratorio Di Chimica Analitica, Dipartimento Di Scienze E Tecnologie Biologiche E Ambientali (Di.S.Te.B.A.), Università del Salento, Via Monteroni, 73100, Lecce, LE, Italy
| | - Dario Compagnone
- Department of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100, Teramo, TE, Italy.
| |
Collapse
|
2
|
Li D, Tang N, Tian X. Synthesis of Boronate Affinity-Based Oriented Dummy Template-Imprinted Magnetic Nanomaterials for Rapid and Efficient Solid-Phase Extraction of Ellagic Acid from Food. Molecules 2024; 29:2500. [PMID: 38893376 PMCID: PMC11173610 DOI: 10.3390/molecules29112500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/05/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Ellagic acid (EA) is a natural polyphenol and possesses excellent in vivo bioactivity and antioxidant behaviors, which play an important role in the treatment of oxidative stress-related diseases, such as cancer. Additionally, EA is also known as a skin-whitening ingredient. The content of EA would determine its efficacy. Therefore, the accurate analysis of EA content can provide more information for the scientific consumption of EA-rich foods and cosmetics. Nevertheless, the analysis of EA in these samples is challenging due to the low concentration level and the presence of interfering components with high abundance. Molecularly imprinted polymers are highly efficient pretreatment materials in achieving specific recognition of target molecules. However, the traditional template molecule (EA) could not be absolutely removed. Hence, template leakage continues to occur during the sample preparation process, leading to a lack of accuracy in the quantification of EA in actual samples, particularly for trace analytes. In addition, another drawback of EA as an imprinting template is that EA possesses poor solubility and a high price. Gallic acid (GA), called dummy templates, was employed for the synthesis of MIPs as a solution to these challenges. The approach used in this study was boronate affinity-based oriented surface imprinting. The prepared dummy-imprinted nanoparticles exhibited several significant advantages, such as good specificity, high binding affinity ((4.89 ± 0.46) × 10-5 M), high binding capacity (6.56 ± 0.35 mg/g), fast kinetics (6 min), and low binding pH (pH 5.0) toward EA. The reproducibility of the dummy-imprinted nanoparticles was satisfactory. The dummy-imprinted nanoparticles could still be reused even after six adsorption-desorption cycles. In addition, the recoveries of the proposed method for EA at three spiked levels of analysis in strawberry and pineapple were 91.0-106.8% and 93.8-104.0%, respectively, which indicated the successful application to real samples.
Collapse
Affiliation(s)
- Daojin Li
- Henan Key Laboratory of Fuction-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (N.T.); (X.T.)
| | | | | |
Collapse
|
3
|
Zhao Z, Li Z, Huang J, Deng X, Jiang F, Han RPS, Tao Y, Xu S. A portable intelligent hydrogel platform for multicolor visual detection of HAase. Mikrochim Acta 2024; 191:101. [PMID: 38231363 DOI: 10.1007/s00604-024-06181-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024]
Abstract
Hyaluronidase (HAase) is an important endoglycosidase involved in numerous physiological and pathological processes, such as apoptosis, senescence, and cancer progression. Simple, convenient, and sensitive detection of HAase is important for clinical diagnosis. Herein, an easy-to-operate multicolor visual sensing strategy was developed for HAase determination. The proposed sensor was composed of an enzyme-responsive hydrogel and a nanochromogenic system (gold nanobipyramids (AuNBPs)). The enzyme-responsive hydrogel, formed by polyethyleneimine-hyaluronic acid (PEI-HA), was specifically hydrolyzed with HAase, leading to the release of platinum nanoparticles (PtNPs). Subsequently, PtNPs catalyzed the mixed system of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2 to produce TMB2+ under acidic conditions. Then, TMB2+ effectively etched the AuNBPs and resulted in morphological changes in the AuNBPs, accompanied by a blueshift in the localized surface plasmon resonance peak and vibrant colors. Therefore, HAase can be semiquantitatively determined by directly observing the color change of AuNBPs with the naked eye. On the basis of this, the method has a linear detection range of HAase concentrations between 0.6 and 40 U/mL, with a detection limit of 0.3 U/mL. In addition, our designed multicolor biosensor successfully detected the concentration of HAase in human serum samples. The results showed no obvious difference between this method and enzyme-linked immunosorbent assay, indicating the good accuracy and usability of the suggested method.
Collapse
Affiliation(s)
- Zhe Zhao
- Cancer Research Center& Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Zhixin Li
- Institute for Advanced Study, Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Jiahui Huang
- Cancer Research Center& Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Xiaoyu Deng
- Ministry of Education Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Fan Jiang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Ray P S Han
- Cancer Research Center& Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| | - Yingzhou Tao
- Cancer Research Center& Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| | - Shaohua Xu
- Cancer Research Center& Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| |
Collapse
|
4
|
Gao H, Bi S, Chai J, Tong Y, Tian M. ZIF-based boronic acid modified molecular imprinted polymers in combination with silver nanoparticles/glutathione coated graphene oxide adsorbent for the selective enrichment of ellagic acid. J Chromatogr A 2024; 1714:464579. [PMID: 38113580 DOI: 10.1016/j.chroma.2023.464579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
This study focuses on the extraction of ellagic acid (EA), a valued phenolic compound, from agricultural waste chestnut shell samples. A novel approach is introduced using a combination of boronic acid-modified molecularly imprinted polymer (ZIF@B@MIP) and a nanocomposite of graphene oxide-coated silver nanoparticles (GO@Ag@GSH) to enhance EA enrichment. ZIF@B@MIP precisely captured EA through boronate affinity-based molecular imprinting recognition. ZIF@B@MIP employs boronate affinity-based molecular imprinting recognition to precisely capture EA, while GO@Ag@GSH provides ample adsorption sites. The synergistic effect of ZIF@B@MIP and GO@Ag@GSH demonstrates excellent enrichment capability and selectivity for EA. High-performance liquid chromatography (HPLC) is employed for sensitive EA detection, achieving a maximum adsorption capacity of 46.25 mg g-1 and an imprinting factor of 3.01. The adsorption capacity to different structural analogue was investigated, and the selectivity coefficient was used to evaluate the selectivity, and its value was 1.16-3.01. The method successfully enriches EA in chestnut shell samples with a recovery rate of 95.6 %-110.1 %. This research presents an innovative approach for effective phenolic components enrichment from natural resources for pharmaceutical and biochemical applications.
Collapse
Affiliation(s)
- Haifeng Gao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China
| | - Sheng Bi
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China
| | - Jinyue Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China
| | - Yukui Tong
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China.
| | - Miaomiao Tian
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China.
| |
Collapse
|
5
|
Bao Y, Oluwafemi A. Recent advances in surface modified gold nanorods and their improved sensing performance. Chem Commun (Camb) 2024; 60:469-481. [PMID: 38105689 DOI: 10.1039/d3cc04056a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Gold nanorods (AuNRs) have received tremendous attention recently in the fields of sensing and detection applications due to their unique characteristic of surface plasmon resonance. Surface modification of the AuNRs is a necessary path to effectively utilize their properties for these applications. In this Article, we have focused both on demonstrating the recent advances in methods for surface functionalization of AuNRs as well as their use for improved sensing performance using various techniques. The main surface modification methods discussed include ligand exchange with the assistance of a thiol-group, the layer by layer assembly method, and depositing inorganic materials with the desired surface and morphology. Covered techniques that can then be applied for using these functionalized AuNRs include colourimetric sensing, refractive index sensing and surface enhance Raman scattering sensing. Finally, the outlook on the future development of surface modified AuNRs for improved sensing performance is considered.
Collapse
Affiliation(s)
- Ying Bao
- Department of Chemistry, Western Washington University, Bellingham, Washington, 98225, USA.
| | - Ayomide Oluwafemi
- Department of Chemistry, Western Washington University, Bellingham, Washington, 98225, USA.
| |
Collapse
|
6
|
Chen J, Lin H, Cao L, Sui J, Wang L, Fang X, Wang K. On-site detection of chloramphenicol in fish using SERS-based magnetic aptasensor coupled with a handheld Raman spectrometer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123211. [PMID: 37531680 DOI: 10.1016/j.saa.2023.123211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
In recent years, the rapid detection of chloramphenicol (CAP) has become a market demand due to its high toxicity. In this study, for the first time, a portable surface-enhanced Raman scattering (SERS) aptasensor for the rapid and on-site detection of chloramphenicol (CAP) residues in fish was developed. Fe3O4@Au nanoflowers combined with sulfhydryl (SH)-CAP aptamer complementary DNA acted as capture probes. SH-CAP aptamer modified Au@Ag nanoparticles (Au@Ag NPs) embedded with 4-mercaptobenzoic acid (4-MBA) were served as reporter probes. The strongest Raman intensity was produced due to the coupling of Fe3O4@Au nanoflowers (Fe3O4@Au NFs) and Au@Ag NPs. For CAP detection, a wide linear range from 0.001 to 1000 μg/L, with an R2 of 0.9805, was obtained. The limit of detection was determined to be 0.87 ng/L. The SERS aptasensor showed excellent performance for analytical applications for real fish samples. Compared with the conventional HPLC method, the developed SERS aptasensor coupled with a handheld Raman spectrometer had flexible application and avoided the limitations of complex operating conditions. It should be a promising portable analytical tool for analysis of drug residues in the field.
Collapse
Affiliation(s)
- Junlin Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Limin Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiu Fang
- Fujian Provincial Key Laboratory of Breeding Lateolabrax Japonicus, Ningde, Fujian 355299, China
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
7
|
Zhang M, Zhang Y, Cai ZF. Selective determination of ellagic acid in aqueous solution using blue-green emissive copper nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122597. [PMID: 36930836 DOI: 10.1016/j.saa.2023.122597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Development of beneficial sensors to analyze ellagic acid concentrations is of great importance for food safety and human health. Herein, a facile and fast fluorescent probe was carried out for the excellently selective and sensitive measurement of ellagic acid in real samples through histidine protected copper nanoclusters (histidine@Cu NCs) as a nanosensor. This as-developed histidine@Cu NCs were performed through UV-vis absorption spectroscopy, fluorescence spectroscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy and fluorescence lifetime analysis. The TEM image revealed that this nanomaterial had spherical features with the average diameter of 2.5 ± 0.05 nm. The blue-green fluorescence of this Cu NCs was found under the UV light. Meanwhile, the maximum excitation and emission wavelength were located at 387 nm and 488 nm. After addition of ellagic acid, the fluorescence of histidine@Cu NCs was slowly weakened with excellent linear range of 0.5-300 μM and detection limit of 0.077 μM. The fluorescence weakening mechanism of this nanosensor were attributed to the inner filter effect (IFE) and static quenching. Finally, this as-established analysis platform was successfully employed to measure ellagic acid in real samples.
Collapse
Affiliation(s)
- Minglu Zhang
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, 441053, Hubei Province, P.R. China
| | - Yi Zhang
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, 441053, Hubei Province, P.R. China.
| | - Zhi-Feng Cai
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, P.R. China.
| |
Collapse
|
8
|
Fahes A, En Naciri A, Shoker MB, Akil S. Self-assembly-based integration of Ag@Au oligomers and core/shell nanoparticles on polymer chips for efficient sensing devices. SOFT MATTER 2023; 19:321-330. [PMID: 36524592 DOI: 10.1039/d2sm00769j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two distinct Ag/Au nanocomposites, namely, hetero-oligomers and eccentric core/shells were obtained by one-step polymer self-assembly-based fabrication. The Ag concentration-dependent, facet-specific passivation, and presence or absence of anisotropic facets were the main factors responsible for controlling the structures of the final products. Based on an understanding of the role of Ag+ ions in controlling the shape of anisotropic gold nanoparticles (AuNPs), tailored concentrations of Ag+ were applied to design nanoparticles with desired anisotropic surface facets to allow site-specific Ag coatings on AuNPs. The Ag additives acted as shape-directing agents due to an underpotential deposition (UPD) that was responsible for stabilizing the various surface facets that enclose the AuNPs. The morphology differences between the substrate samples resulted in discrete plasmonic and sensing features. In surface-enhanced Raman spectroscopy (SERS) studies, we showed that the site-selective deposition of Ag on anisotropic gold nanohexagons (AuNHs) delivers more advantages as compared to their hetero-oligomer nanostructured counterparts due to synergistic effects.
Collapse
Affiliation(s)
- Abeer Fahes
- LCP-A2MC, Jean Barriol Institute, Lorraine University, 1 Arago Avenue, 57070 Metz, France.
| | - Aotmane En Naciri
- LCP-A2MC, Jean Barriol Institute, Lorraine University, 1 Arago Avenue, 57070 Metz, France.
| | - Mohamad Baker Shoker
- LCP-A2MC, Jean Barriol Institute, Lorraine University, 1 Arago Avenue, 57070 Metz, France.
| | - Suzanna Akil
- LCP-A2MC, Jean Barriol Institute, Lorraine University, 1 Arago Avenue, 57070 Metz, France.
| |
Collapse
|
9
|
Deepika, Maurya PK. Ellagic acid: insight into its protective effects in age-associated disorders. 3 Biotech 2022; 12:340. [PMID: 36340805 PMCID: PMC9633905 DOI: 10.1007/s13205-022-03409-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
The disparity in the free radical generation and the production of antioxidants to counteract its effect is known as oxidative stress. Oxidative stress causes damage to the macromolecules such as lipids, carbohydrates, proteins, and DNA and RNA. The oxidative damage to the cellular components leads to a process of aging and various age-associated disorders. The literature survey for this review was done using PubMed, Google Scholar, and Science Direct. The papers showing the studies related to aging and age-associated disorders have been selected for reviewing this paper. Ellagic acid has been used as the keyword, and more emphasis has been put on papers from the last 10 years. However, some papers with significant studies prior to 10 years have also been considered. Almost 250 papers have been studied for reviewing this paper, and about 135 papers have been cited. Ellagic acid (EA) is present in high quantities in pomegranate and various types of berries. It is known to possess the antioxidant potential and protects from the harmful effects of free radicals. Various studies have shown its effect to protect cardiovascular, neurodegenerative, cancer, and diabetes. The present review focuses on the protective effect of ellagic acid in age-associated disorders. The effect of EA has been studied in various chronic disorders but the scope of this review is limited to cancer, diabetes, cardiovascular and neurodegenerative disorders. All the disease aspects have not been addressed in this particular review.
Collapse
Affiliation(s)
- Deepika
- Department of Biochemistry, Central University of Haryana, Mahendragarh, 123031 India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendragarh, 123031 India
| |
Collapse
|
10
|
Yenil N, Yemiş F, Sabikoglu İ, Memon N, Güler A. Comparative Analyses of Few West Turkish Varieties of Pomegranate ( Punica granatum L.) Peels for Phenolic Content Using Liquid Chromatography. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2080727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nilgün Yenil
- Chemistry Department, Sciences and Arts Faculty, Celal Bayar University, Muradiye-Manisa, Turkey
| | - Fadim Yemiş
- Chemistry Department, Sciences and Arts Faculty, Celal Bayar University, Muradiye-Manisa, Turkey
| | - İsrafil Sabikoglu
- Physic Department, Sciences and Arts Faculty, Celal Bayar University, Muradiye-Manisa, Turkey
| | - Najma Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Ali Güler
- Food Technologies Department, Viticulture Research Institute, Manisa, Turkey
| |
Collapse
|
11
|
Abstract
In the last few decades, plasmonic colorimetric biosensors raised increasing interest in bioanalytics thanks to their cost-effectiveness, responsiveness, and simplicity as compared to conventional laboratory techniques. Potential high-throughput screening and easy-to-use assay procedures make them also suitable for realizing point of care devices. Nevertheless, several challenges such as fabrication complexity, laborious biofunctionalization, and poor sensitivity compromise their technological transfer from research laboratories to industry and, hence, still hamper their adoption on large-scale. However, newly-developing plasmonic colorimetric biosensors boast impressive sensing performance in terms of sensitivity, dynamic range, limit of detection, reliability, and specificity thereby continuously encouraging further researches. In this review, recently reported plasmonic colorimetric biosensors are discussed with a focus on the following categories: (i) on-platform-based (localized surface plasmon resonance, coupled plasmon resonance and surface lattice resonance); (ii) colloid aggregation-based (label-based and label free); (iii) colloid non-aggregation-based (nanozyme, etching-based and growth-based).
Collapse
|
12
|
Wang X, Xiong T, Cui M, Li N, Li Q, Zhu L, Duan S, Wang Y, Guo Y. A novel targeted co-delivery nanosystem for enhanced ovarian cancer treatment via multidrug resistance reversion and mTOR-mediated signaling pathway. J Nanobiotechnology 2021; 19:444. [PMID: 34949180 PMCID: PMC8697442 DOI: 10.1186/s12951-021-01139-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Multidrug resistance (MDR) is the main challenge of successful chemotherapy for ovarian cancer patients, with 50% to 75% of ovarian cancer patients eventually relapsed due to it. One of the effective strategies for treating MDR and improving therapeutic efficiency of ovarian cancer is to use nanotechnology-based targeted drug delivery systems. In this study, a novel nano targeted co-delivery system modified by hyaluronic acid (HA) was developed by using gold nanorods coated with functionalized mesoporous silica nanoparticles (HA-PTX/let-7a-GNR@MSN) for combined delivery of hydrophobic chemotherapy drug Paclitaxel (PTX) and lethal-7a (let-7a), a microRNA (miR), to overcome MDR in ovarian cancer. Furthermore, we also analyzed the molecular mechanism of this nanotherapeutic system in the treatment of ovarian cancer. RESULTS HA-modified nanocomplexes can specifically bind to the CD44 receptor, which is highly expressed in SKOV3/SKOV3TR cells, achieving effective cell uptake and 150% enhancement of tumor site permeability. The nanosystem realized the stable combination and protective transportation of PTX and miRs. Analysis of drug-resistant SKOV3TR cells and an SKOV3TR xenograft model in BALB/c-nude mice showed significant downregulation of P-glycoprotein in heterogeneous tumor sites, PTX release, and subsequent induction of apoptosis. More importantly, this nanosystem could synergistically inhibit the growth of ovarian tumors. Further studies suggest that mTOR-mediated signaling pathways play an important role in reversing drug resistance and inducing apoptosis. CONCLUSIONS To sum up, these data provide a model for overcoming PTX resistance in ovarian cancer.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Apoptosis/drug effects
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Female
- Gold/chemistry
- Humans
- Mice
- Mice, Nude
- MicroRNAs/chemistry
- Nanoparticles/chemistry
- Nanostructures/chemistry
- Nanotubes/chemistry
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/pathology
- Paclitaxel/chemistry
- Paclitaxel/pharmacology
- Paclitaxel/therapeutic use
- Signal Transduction/drug effects
- Silicon Dioxide/chemistry
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Xueqin Wang
- Henan Provincial People's Hospital, Zhengzhou, 450003, China
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Tiandi Xiong
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Miao Cui
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Na Li
- Henan Provincial People's Hospital, Zhengzhou, 450003, China
- People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Qin Li
- Henan Provincial People's Hospital, Zhengzhou, 450003, China
- People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Li Zhu
- Henan Provincial People's Hospital, Zhengzhou, 450003, China
- People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Shaofeng Duan
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, 475004, China.
- Henan International Joint Laboratory of Chinese Medicine Efficacy, Henan University, Kaifeng, 475004, China.
| | - Yunlong Wang
- Henan Bioengineering Research Center, Zhengzhou, 450046, China.
| | - Yuqi Guo
- Henan Provincial People's Hospital, Zhengzhou, 450003, China.
- People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
- Henan International Joint Laboratory for Gynecological Oncology and Nanomedicine, Zhengzhou, 450003, China.
| |
Collapse
|
13
|
Morsin M, Nafisah S, Sanudin R, Razali NL, Mahmud F, Soon CF. The role of positively charge poly-L-lysine in the formation of high yield gold nanoplates on the surface for plasmonic sensing application. PLoS One 2021; 16:e0259730. [PMID: 34748606 PMCID: PMC8575294 DOI: 10.1371/journal.pone.0259730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
An anisotropic structure, gold (Au) nanoplates was synthesized using a two-step wet chemical seed mediated growth method (SMGM) directly on the substrate surface. Prior to the synthesis process, poly-l-lysine (PLL) as a cation polymer was used to enhance the yield of grown Au nanoplates. The electrostatic interaction of positive charged by PLL with negative charges from citrate-capped gold nanoseeds contributes to the yield increment. The percentage of PLL was varied from 0% to 10% to study the morphology of Au nanoplates in term of shape, size and surface density. 5% PLL with single layer treatment produce a variety of plate shapes such as hexagonal, flat rod and triangular obtained over the whole substrate surface with the estimated maximum yield up to ca. 48%. The high yield of Au nanoplates exhibit dual plasmonic peaks response that are associated with transverse and longitudinal localized surface plasmon resonance (TSPR and LSPR). Then, the PLL treatment process was repeated twice resulting the increment of Au nanoplates products to ca. 60%. The thin film Au nanoplates was further used as sensing materials in plasmonic sensor for detection of boric acid. The anisotropic Au nanoplates have four sensing parameters being monitored when the medium changes, which are peak position (wavelength shift), intensity of TSPR and LSPR, and the changes on sensing responses. The sensor responses are based on the interaction of light with dielectric properties from surrounding medium. The resonance effect produces by a collection of electron vibration on the Au nanoparticles surface after hit by light are captured as the responses. As a conclusion, it was found that the PLL treatment is capable to promote high yield of Au nanoplates. Moreover, the high yield of the Au nanoplates is an indication as excellent candidate for sensing material in plasmonic sensor.
Collapse
Affiliation(s)
- Marlia Morsin
- Microelectronics & Nanotechnology—Shamsuddin Research Centre (MiNT-SRC), Institute of Integrated Engineering (IIE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
- Faculty of Electronic and Electrical Engineering (FKEE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
| | - Suratun Nafisah
- Department of Electrical Engineering, Institut Teknologi Sumatera (ITERA), Lampung Selatan, Indonesia
| | - Rahmat Sanudin
- Microelectronics & Nanotechnology—Shamsuddin Research Centre (MiNT-SRC), Institute of Integrated Engineering (IIE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
- Faculty of Electronic and Electrical Engineering (FKEE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
| | - Nur Liyana Razali
- Microelectronics & Nanotechnology—Shamsuddin Research Centre (MiNT-SRC), Institute of Integrated Engineering (IIE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
- Faculty of Electronic and Electrical Engineering (FKEE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
| | - Farhanahani Mahmud
- Microelectronics & Nanotechnology—Shamsuddin Research Centre (MiNT-SRC), Institute of Integrated Engineering (IIE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
- Faculty of Electronic and Electrical Engineering (FKEE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
| | - Chin Fhong Soon
- Microelectronics & Nanotechnology—Shamsuddin Research Centre (MiNT-SRC), Institute of Integrated Engineering (IIE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
- Faculty of Electronic and Electrical Engineering (FKEE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
| |
Collapse
|
14
|
Gold and Silver Nanoparticle-Based Colorimetric Sensors: New Trends and Applications. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9110305] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Gold and Silver nanoparticles (AuNPs and AgNPs) are perfect platforms for developing sensing colorimetric devices thanks to their high surface to volume ratio and distinctive optical properties, particularly sensitive to changes in the surrounding environment. These characteristics ensure high sensitivity in colorimetric devices. Au and Ag nanoparticles can be capped with suitable molecules that can act as specific analyte receptors, so highly selective sensors can be obtained. This review aims to highlight the principal strategies developed during the last decade concerning the preparation of Au and Ag nanoparticle-based colorimetric sensors, with particular attention to environmental and health monitoring applications.
Collapse
|
15
|
Khanal BP, Zubarev ER. Synthesis of Asymmetric One-Dimensional Pd on Au Bimetallic Nanostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9901-9909. [PMID: 34369149 DOI: 10.1021/acs.langmuir.1c01640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanostructures composed of a gold nanorod (AuNR) core and a Pd/Pt shell are of great interest due to their potential application as plasmon resonance-enhanced catalysts. However, the synthesis of well-defined one-dimensional bimetallic nanostructures with precise control over shell thickness and length remains a challenge. In this study, we report a detailed and systematic study on the chemical synthesis of a uniform Pd shell on single crystalline and pentahedrally twinned (PHT) AuNRs of various lengths. AuNRs were used as a template, and the slow and controlled reduction of Pd(II) ions on preformed AuNRs was carried out for the formation of rectangular-shaped Au@Pd bimetallic nanorods. The Pd shell thickness around the AuNRs was controlled by the supply of Pd(II) ions in the growth solution. We were able to grow a ∼20 nm uniform Pd shell around the AuNR, keeping the rod-like morphology intact without local nucleation to form irregular shapes and randomly overgrown nanostructures. The formation of bimetallic nanorods was also extended beyond typical single crystalline nanorods to PHT high aspect ratio gold nanorods and nanowires, using them as templates. To our surprise, unusually curved asymmetric nanorods were formed when the Pd deposition was carried out on AuNRs longer than ∼800 nm which could be possibly due to a Pd and Au lattice mismatch at the interface and higher flexibility of the nanorods when they exceeded certain lengths.
Collapse
Affiliation(s)
- Bishnu P Khanal
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Eugene R Zubarev
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
16
|
Qin X, Yuan C, Shi R, Wang Y. A double signal optical probe composed of carbon quantum dots and Au@Ag nanoparticles grown in situ for the high sensitivity detection of ellagic acid. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
An JY, Wang LT, Lv MJ, Wang JD, Cai ZH, Wang YQ, Zhang S, Yang Q, Fu YJ. An efficiency strategy for extraction and recovery of ellagic acid from waste chestnut shell and its biological activity evaluation. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105616] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Lin C, Zou Z, Lei Z, Wang L, Song Y. Fluorescent metal-organic frameworks MIL-101(Al)-NH 2 for rapid and sensitive detection of ellagic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118739. [PMID: 32717527 DOI: 10.1016/j.saa.2020.118739] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Ellagic acid (EA) is a symmetric natural phenol bioactive compound present in fruits and nuts, and has attracted substantial interest worldwide owing to its beneficial health effects. Here, the exploration of luminescent metal-organic frameworks (MOFs) of MIL-101(Al)-NH2 (MIL = Materials of Institute Lavoisier) for rapid and sensitive sensing of EA in aqueous solution was reported initially. The porous MIL-101(Al)-NH2 MOFs was synthesized by solvent-thermal method with inexpensive 2-aminoterephthalic acid and aluminum salt, which exhibited uniform spherical crystals (~340 nm) and specific mesoporous structure (3.2 nm). The fluorescence intensity of MIL-101(Al)-NH2 at 425 nm showed a good linear relationship with EA concentration in the range of 0.15-100 μM. The detection limit was as low as 43.8 nM, the rapid response time was within 2 min, and the cost of detection was low. In addition, the "turn off" fluorescence probe could be utilized for visual detection of EA according to the color change under the UV lamp. Based on the Stern-Volmer equation, the quenching constants was decreased with the rise of temperature, which indicated that the probable quenching mechanism was static quenching. The nanoprobe was successfully used to detect EA in the cherry and serum samples. MIL-101(Al)-NH2 represents the first instance of MOFs-based fluorescent probe in EA detection. This work not only enriches the detection method of EA, but also expands the potential application of MIL MOFs in small molecules.
Collapse
Affiliation(s)
- Chunhua Lin
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China; National Monosaccharide Chemical Synthesis Engineering Research Center, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China.
| | - Zhifeng Zou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Zhiwei Lei
- National Monosaccharide Chemical Synthesis Engineering Research Center, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Li Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Yonghai Song
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| |
Collapse
|
19
|
Guo Y, Zhao W. Hydrothermal synthesis of highly fluorescent nitrogen-doped carbon quantum dots with good biocompatibility and the application for sensing ellagic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118580. [PMID: 32554263 DOI: 10.1016/j.saa.2020.118580] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 05/25/2023]
Abstract
Blue emissive nitrogen-doped carbon quantum dots (N-CQDs) with a high quantum yield as high as 84.79% were successfully synthesized via the hydrothermal treatment of citric acid and diethylenetriamine in one pot. The as-prepared N-CQDs displayed excellent stability in high-salt conditions, good photostability, promising the N-CQDs as potential probes for selectively detecting ellagic acid with a linear range of 0.01-50 μM on the basis of inner filter effect. And the hydroponics experiment of gardenia with N-CQDs suggested the good biocompatibility of the N-CQDs, indicating the potential applications in biomedical fields.
Collapse
Affiliation(s)
- Yongming Guo
- Reading Academy, NUIST-UoR International Research Institute, Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Wei Zhao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
20
|
Yu L, Song Z, Peng J, Yang M, Zhi H, He H. Progress of gold nanomaterials for colorimetric sensing based on different strategies. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115880] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Min Y, Wang Y. Manipulating Bimetallic Nanostructures With Tunable Localized Surface Plasmon Resonance and Their Applications for Sensing. Front Chem 2020; 8:411. [PMID: 32509732 PMCID: PMC7248169 DOI: 10.3389/fchem.2020.00411] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/20/2020] [Indexed: 12/24/2022] Open
Abstract
Metal nanocrystals with well-controlled shape and unique localized surface plasmon resonance (LSPR) properties have attracted tremendous attention in both fundamental studies and applications. Compared with monometallic counterparts, bimetallic nanocrystals endow scientists with more opportunities to precisely tailor their LSPR and thus achieve excellent performances for various purposes. The aim of this mini review is to present the recent process in manipulating bimetallic nanostructures with tunable LSPR and their applications for sensing. We first highlight several significant strategies in controlling the elemental ratio and spatial arrangement of bimetallic nanocrystals, followed by discussing on the relationship between their composition/morphology and LSPR properties. We then focus on the plasmonic sensors based on the LSPR peak shift, which can be well-controlled by seed-mediated growth and selective etching. This review provides insights of understanding the “rules” involving in the formation of bimetallic nanocrystals with different structures and desired LSPR properties, and also forecasts the development directions of plasmonic sensors in the future.
Collapse
Affiliation(s)
- Yuanhong Min
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, China
| | - Yi Wang
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, China
| |
Collapse
|
22
|
Amjadi M, Hallaj T, Nasirloo E. In situ formation of Ag/Au nanorods as a platform to design a non-aggregation colorimetric assay for uric acid detection in biological fluids. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104642] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Ali S, Sharma AS, Ahmad W, Zareef M, Hassan MM, Viswadevarayalu A, Jiao T, Li H, Chen Q. Noble Metals Based Bimetallic and Trimetallic Nanoparticles: Controlled Synthesis, Antimicrobial and Anticancer Applications. Crit Rev Anal Chem 2020; 51:454-481. [PMID: 32233874 DOI: 10.1080/10408347.2020.1743964] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Noble bimetallic and trimetallic nanoparticles (NBT-NPs) have superior biomedical applications as compared to their monometallic counterparts. The performance of these nanomaterials depends on their composition, shape and size. Hence, the controlled-synthesis of these nanomaterials is a hot area of research. Till date, no review article in the literature accounts regarding the controlled-synthesis and biomedical applications related to morphology, optimum composition, biocompatibility and versatile chemistry of NBT-NPs. Taking this into contemplation, an effort was made to provide a clear insight into the morphology-controlled synthesis and size/shape-dependent anticancer and bactericidal applications of NBT-NPs. Chemical reduction method for the controlled-synthesis of NBT-NPs is reviewed critically. Furthermore, the potential role of various reaction parameters such as time, reducing agents, stabilizing/capping agents, nature/concentration of precursors, temperature and pH in the shape/size-controlled synthesis of these nanomaterials are discussed. In the second part of this article, anticancer and bactericidal applications of the NBT-NPs are reviewed and the influences of optimum composition, size, surface structure, versatile chemistry and synergism are studied. Finally, the current challenges in the controlled-synthesis and biomedical applications of these nanomaterials, and prospects to resolve related issues are discussed. HighlightsChemical reduction method for the synthesis of NBT-NPs is reviewed.The influences of parameters on the control synthesis of NBT-NPs are discussed.Antibacterial and anticancer applications and cytotoxicity of NBT-NPs are reviewed.Possible solutions for the key challenges are discussed.Outlooks about the synthesis and biomedical applications of NBT-NPs are discussed.
Collapse
Affiliation(s)
- Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Arumugam Selva Sharma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Md Mehdi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | | | - Tianhui Jiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
24
|
Pan M, Yang J, Liu K, Yin Z, Ma T, Liu S, Xu L, Wang S. Noble Metal Nanostructured Materials for Chemical and Biosensing Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E209. [PMID: 31991797 PMCID: PMC7074850 DOI: 10.3390/nano10020209] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/26/2022]
Abstract
Nanomaterials with unique physical and chemical properties have attracted extensive attention of scientific research and will play an increasingly important role in the future development of science and technology. With the gradual deepening of research, noble metal nanomaterials have been applied in the fields of new energy materials, photoelectric information storage, and nano-enhanced catalysis due to their unique optical, electrical and catalytic properties. Nanostructured materials formed by noble metal elements (Au, Ag, etc.) exhibit remarkable photoelectric properties, good stability and low biotoxicity, which received extensive attention in chemical and biological sensing field and achieved significant research progress. In this paper, the research on the synthesis, modification and sensing application of the existing noble metal nanomaterials is reviewed in detail, which provides a theoretical guidance for further research on the functional properties of such nanostructured materials and their applications of other nanofields.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zongjia Yin
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tianyu Ma
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shengmiao Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Longhua Xu
- School of Food Science and Engineering, Shandong Agricultural University, Shandong 271018, China;
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
25
|
Chakraborty D, Venkatesan M, Ethiraj K, Chandrasekaran N, Mukherjee A. Development of thickness-tunable gold nanorods for anti-oxidant detection. MATERIALS CHEMISTRY AND PHYSICS 2020; 239:122295. [DOI: 10.1016/j.matchemphys.2019.122295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
|
26
|
Jiang X, Fan X, Xu W, Zhang R, Wu G. Biosynthesis of Bimetallic Au–Ag Nanoparticles Using Escherichia coli and its Biomedical Applications. ACS Biomater Sci Eng 2019; 6:680-689. [DOI: 10.1021/acsbiomaterials.9b01297] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xinglu Jiang
- Medical School of Southeast University, Nanjing 210009, People’s Republic of China
| | - Xiaobo Fan
- Medical School of Southeast University, Nanjing 210009, People’s Republic of China
| | - Wei Xu
- Medical School of Southeast University, Nanjing 210009, People’s Republic of China
| | - Rui Zhang
- Medical School of Southeast University, Nanjing 210009, People’s Republic of China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, People’s Republic of China
| |
Collapse
|
27
|
Wang H, Rao H, Luo M, Xue X, Xue Z, Lu X. Noble metal nanoparticles growth-based colorimetric strategies: From monocolorimetric to multicolorimetric sensors. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
28
|
Peixoto LPF, Santos JFL, Andrade GFS. Plasmonic nanobiosensor based on Au nanorods with improved sensitivity: A comparative study for two different configurations. Anal Chim Acta 2019; 1084:71-77. [PMID: 31519236 DOI: 10.1016/j.aca.2019.07.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 11/28/2022]
Abstract
Biosensors presenting high sensitivity for the detection of biomolecules are very promising for diseases diagnosis. Nowadays, there is a need for the development of biosensors with fast, trustworthy diagnosis and mostly with low cost, mainly for applications in developing countries. Label-free plasmonic biosensors are good candidates to reach out all these characteristics due to the possibility of spectral tunability, fast sensor response, real-time detection, strong enhancement of the local electric field and excellent adaptability to assemble different nanobiotechnology architectures. In this paper, two different configurations for LSPR based biosensor were developed by using solution-phase gold nanorods (S-P-AuNRs) and AuNRs-chip. The LSPR sensitivities were evaluated by monitoring shifts in the longitudinal plasmon band with changes in the refractive index of the medium surrounding the nanoparticles. AuNRs-chip presented higher sensitivity of 297 nm RIU-1 (refractive index unit) against 196 nm RIU-1 for S-P-AuNRs. Figure of merit (FOM) for AuNRs-chip and S-P-AuNRs were 3.0 and 2.2 RIU-1, respectively. This result was assigned to the coupling of the lower energy longitudinal LSPR mode of propagation for AuNRs-chip among nearby nanoparticles in the film. In addition, an improvement of at least 18% in sensitivity was obtained comparing to others AuNRs based assay with similar aspect ratio. FOM is more appropriate to compare different approaches, in this case, the proposed biosensor reached improvements of at least 114%, presenting higher values even when compared to AuNRs of higher aspect ratio. As a proof of concept, AuNRs surface was chemically modified using mercaptoundecanoic acid followed activation with ethylcarbodiimide and N-hidroxysuccinimide to allow the interaction between Bovine Serum Albumin (BSA) antibody and correspondent antigen. Both configurations studied resulted in efficient plasmonic biosensors, presenting high sensitivity for changes in the refractive index and for surface binding with anti-BSA.
Collapse
Affiliation(s)
- Linus Pauling F Peixoto
- Laboratório de Nanoestruturas Plasmônicas, Núcleo de Espectroscopia e Estrutura Molecular, Centro de Estudos em Materiais, Departamento de Química, Universidade Federal de Juiz de Fora, 36036-900, Juiz De Fora, MG, Brazil
| | - Jacqueline F L Santos
- Laboratório de Materiais Aplicados e Interfaces, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Gustavo F S Andrade
- Laboratório de Nanoestruturas Plasmônicas, Núcleo de Espectroscopia e Estrutura Molecular, Centro de Estudos em Materiais, Departamento de Química, Universidade Federal de Juiz de Fora, 36036-900, Juiz De Fora, MG, Brazil.
| |
Collapse
|
29
|
Liao G, Fang J, Li Q, Li S, Xu Z, Fang B. Ag-Based nanocomposites: synthesis and applications in catalysis. NANOSCALE 2019; 11:7062-7096. [PMID: 30931457 DOI: 10.1039/c9nr01408j] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ag-Based nanocomposites, including supported Ag nanocomposites and bimetallic Ag nanocomposites, have been intensively investigated as highly efficient catalysts because of their high activity and stability, easy preparation, low cost, and low toxicity. Herein, we systematically summarize and comprehensively evaluate versatile synthetic strategies for the preparation of Ag-based nanocomposites, and outline their recent advances in catalytic oxidation, catalytic reduction, photocatalysis and electrocatalysis. In addition, the challenges and prospects related to Ag-based nanocomposites for various catalytic applications are also discussed. In light of the most recent advances in Ag-based nanocomposites for catalysis applications, this review provides a comprehensive assessment on the material selection, synthesis and catalytic characteristics of these catalysts, which offers a strategic guide to build a close connection between Ag nanocomposites and catalysis applications.
Collapse
Affiliation(s)
- Guangfu Liao
- School of Environment and Civil Engineering, Dongguan University of Technology, Guangdong 523808, China.
| | | | | | | | | | | |
Collapse
|
30
|
Hallaj T, Amjadi M. A sensitive plasmonic probe based on in situ growth of a Ag shell on a Au@N-CD nanocomposite for detection of isoniazid in environmental and biological samples. NEW J CHEM 2019. [DOI: 10.1039/c8nj06502k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a new plasmonic probe based on the wavelength shift of the surface plasmon resonance band of a Au@N-CD nanocomposite was introduced for the determination of isoniazid.
Collapse
Affiliation(s)
- Tooba Hallaj
- Department of Analytical Chemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz
- Iran
| | - Mohammad Amjadi
- Department of Analytical Chemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz
- Iran
| |
Collapse
|
31
|
Prabhawathi V, Sivakumar PM, Boobalan T, Manohar CM, Doble M. Design of antimicrobial polycaprolactam nanocomposite by immobilizing subtilisin conjugated Au/Ag core-shell nanoparticles for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:656-665. [DOI: 10.1016/j.msec.2018.10.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/16/2018] [Accepted: 10/03/2018] [Indexed: 02/03/2023]
|
32
|
Krejcova L, Novotny F, Pumera M. Observed Dramatically Improved Catalysis of Ag Shell on Au/Ag Core‐shell Nanorods is Due to Silver Impurities Released During Etching Process. ELECTROANAL 2018. [DOI: 10.1002/elan.201800668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ludmila Krejcova
- Center for Advanced Functional Nanorobots, Department of Inorganic ChemistryUniversity of Chemistry and Technology Prague Technicka 5 Praha CZ-16628 Czech Republic
| | - Filip Novotny
- Center for Advanced Functional Nanorobots, Department of Inorganic ChemistryUniversity of Chemistry and Technology Prague Technicka 5 Praha CZ-16628 Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic ChemistryUniversity of Chemistry and Technology Prague Technicka 5 Praha CZ-16628 Czech Republic
| |
Collapse
|
33
|
Zhao L, Song J, Xue Y, Zhao X, Deng Y, Li Q, Xia Y. Green Synthesis of Ag–Au Bimetallic Nanoparticles with Alginate for Sensitive Detection of H2O2. Catal Letters 2018. [DOI: 10.1007/s10562-018-2522-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|