1
|
Galata DL, Domokos A, Démuth B, Záhonyi P, Fülöp G, Nagy ZK, Nagy B. In-line indirect concentration measurement of ultralow dose API during twin-screw wet granulation based on NIR and Raman spectroscopy. Int J Pharm 2024; 664:124650. [PMID: 39214433 DOI: 10.1016/j.ijpharm.2024.124650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Twin-screw wet granulation (TWSG) is a promising continuous alternative of pharmaceutical wet granulation. One of its benefits is that the components dissolved in the granulation liquid are distributed homogeneously in the granules. This provides an elegant way to manufacture products with ultralow drug doses. Near-infrared (NIR) and Raman spectroscopy are well-established process analytical technology (PAT) tools that can be used for the in-line monitoring of TSWG. However, their detection limit does not enable the measurement of components in the ultralow (i.e., ppm) range. In this paper, an indirect approach is presented that enables the real-time determination of the concentration of a drug in concentrations between 40 and 100 ppm by using the signal of an excipient, in this case, the polyvinylpyrrolidone (PVP). This component is also dissolved in the granulation liquid; therefore, it is distributed in the same way as the active ingredient. Results of HPLC measurements have proved that the models trained to quantify the concentration of PVP in real-time gave an accurate determination for the active ingredient as well (root mean squared error was 7.07 ppm for Raman and 5.31 ppm for NIR spectroscopy, respectively). These findings imply that it is possible to indirectly predict the concentration of ultralow dose drugs with in-line analytical techniques based on the concentration of an excipient.
Collapse
Affiliation(s)
- Dorián László Galata
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - András Domokos
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Balázs Démuth
- SeraNovo B.V., J.H. Oortweg 21, 2333 CH Leiden, the Netherlands
| | - Petra Záhonyi
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Gergő Fülöp
- Gedeon Richter Plc., Formulation R&D, Gyömrői u. 19-21, H-1103 Budapest, Hungary
| | - Zsombor Kristóf Nagy
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| | - Brigitta Nagy
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| |
Collapse
|
2
|
Feng Báez JP, George De la Rosa MV, Alvarado-Hernández BB, Romañach RJ, Stelzer T. Evaluation of a compact composite sensor array for concentration monitoring of solutions and suspensions via multivariate analysis. J Pharm Biomed Anal 2023; 233:115451. [PMID: 37182364 PMCID: PMC10330539 DOI: 10.1016/j.jpba.2023.115451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/24/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Compact composite probes were identified as a priority to alleviate space constraints in miniaturized unit operations and pharmaceutical manufacturing platforms. Therefore, in this proof of principle study, a compact composite sensor array (CCSA) combining ultraviolet and near infrared features at four different wavelengths (280, 340, 600, 860 nm) in a 380 × 30 mm housing (length x diameter, 7 mm diameter at the probe head), was evaluated for its capabilities to monitor in situ concentration of solutions and suspensions via multivariate analysis using partial least squares (PLS) regression models. Four model active pharmaceutical ingredients (APIs): warfarin sodium isopropanol solvate (WS), lidocaine hydrochloride monohydrate (LID), 6-mercaptopurine monohydrate (6-MP), and acetaminophen (ACM) in their aqueous solution and suspension formulation were used for the assessment. The results demonstrate that PLS models can be applied for the CCSA prototype to measure the API concentrations with similar accuracy (validation samples within the United States Pharmacopeia (USP) limits), compared to univariate CCSA models and multivariate models for an established Raman spectrometer. Specifically, the multivariate CCSA models applied to the suspensions of 6-MP and ACM demonstrate improved accuracy of 63% and 31%, respectively, compared to the univariate CCSA models [1]. On the other hand, the PLS models for the solutions WS and LID showed a reduced accuracy compared to the univariate models [1].
Collapse
Affiliation(s)
- Jean P Feng Báez
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| | - Mery Vet George De la Rosa
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| | | | - Rodolfo J Romañach
- Department of Chemistry, University of Puerto Rico, Mayagüez Campus, Mayagüez, PR 00681, USA
| | - Torsten Stelzer
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA.
| |
Collapse
|
3
|
Vijayakumar J, Goudarzi NM, Eeckhaut G, Schrijnemakers K, Cnudde V, Boone MN. Characterization of Pharmaceutical Tablets by X-ray Tomography. Pharmaceuticals (Basel) 2023; 16:ph16050733. [PMID: 37242516 DOI: 10.3390/ph16050733] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Solid dosage forms such as tablets are extensively used in drug administration for their simplicity and large-scale manufacturing capabilities. High-resolution X-ray tomography is one of the most valuable non-destructive techniques to investigate the internal structure of the tablets for drug product development as well as for a cost effective production process. In this work, we review the recent developments in high-resolution X-ray microtomography and its application towards different tablet characterizations. The increased availability of powerful laboratory instrumentation, as well as the advent of high brilliance and coherent 3rd generation synchrotron light sources, combined with advanced data processing techniques, are driving the application of X-ray microtomography forward as an indispensable tool in the pharmaceutical industry.
Collapse
Affiliation(s)
- Jaianth Vijayakumar
- Centre for X-ray Tomography (UGCT), Ghent University, Proeftuinstraat 86/N3, 9000 Gent, Belgium
- Department of Physics and Astronomy, Radiation Physics, Ghent University, Proeftuinstraat 86/N12, 9000 Gent, Belgium
| | - Niloofar Moazami Goudarzi
- Centre for X-ray Tomography (UGCT), Ghent University, Proeftuinstraat 86/N3, 9000 Gent, Belgium
- Department of Physics and Astronomy, Radiation Physics, Ghent University, Proeftuinstraat 86/N12, 9000 Gent, Belgium
| | - Guy Eeckhaut
- Janssen Pharmaceutica, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | - Veerle Cnudde
- Centre for X-ray Tomography (UGCT), Ghent University, Proeftuinstraat 86/N3, 9000 Gent, Belgium
- Pore-Scale Processes in Geomaterials Research (PProGRess), Department of Geology, Ghent University, Krijgslaan 281/S8, 9000 Gent, Belgium
- Environmental Hydrogeology, Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8A, 3584 CD Utrecht, The Netherlands
| | - Matthieu N Boone
- Centre for X-ray Tomography (UGCT), Ghent University, Proeftuinstraat 86/N3, 9000 Gent, Belgium
- Department of Physics and Astronomy, Radiation Physics, Ghent University, Proeftuinstraat 86/N12, 9000 Gent, Belgium
| |
Collapse
|
4
|
Metilli L, Morris L, Lazidis A, Marty-Terrade S, Holmes M, Povey M, Simone E. Real-time monitoring of fat crystallization using pulsed acoustic spectroscopy and supervised machine learning. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Ohashi R, Fujii A, Fukui K, Koide T, Fukami T. Non-destructive quantitative analysis of pharmaceutical ointment by transmission Raman spectroscopy. Eur J Pharm Sci 2021; 169:106095. [PMID: 34906685 DOI: 10.1016/j.ejps.2021.106095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/24/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022]
Abstract
Transmission Raman spectroscopy was used to develop a non-destructive quantitative analytical model for the assay of a crystal dispersion-type ointment containing acyclovir as a model drug with a concentration of 3% w/w. The obtained Raman spectra were pre-processed by applying multiplicative scatter correction, standard normal variate, and first or second derivative by the Savitzky-Golay method to optimize the partial least squares (PLS) regression model. The optimized PLS model showed good prediction performance for 85%, 100%, and 115% label claims, with average recovery values of 100.7%, 99.3%, and 99.8%, respectively. Although the material properties and manufacturing method of acyclovir and white petrolatum were expected to be different from those of the calibration set, the mean recovery value of the commercial product was 104.2%. These results indicate that transmission Raman spectroscopy is a useful process analytical technology tool for product development and quality control of a crystal dispersion-type ointment with low drug concentration.
Collapse
Affiliation(s)
- Ryo Ohashi
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 Japan; Formulation R&D Laboratory, CMC R&D Division, SHIONOGI & CO., LTD., Hyogo 660-0813, Japan.
| | - Aria Fujii
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 Japan.
| | - Kanako Fukui
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 Japan.
| | - Tatsuo Koide
- Division of Drugs, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan.
| | - Toshiro Fukami
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 Japan.
| |
Collapse
|
6
|
Qwist PK, Sander C, Bostijn N, Jessen V, Rantanen J, De Beer T. Continuous Manufacturing of a Polymer Stabilized Emulsion Monitored with Process Analytical Technology. AAPS PharmSciTech 2020; 21:154. [PMID: 32449146 DOI: 10.1208/s12249-020-01704-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/03/2020] [Indexed: 12/24/2022] Open
Abstract
Moving from batch to continuous manufacturing (CM) requires implementation of process analytical technology (PAT), as it is crucial to monitor and control these processes. CM of semi-solids has been demonstrated but implementation of a broader range of PAT tools with in- or on-line process interfacing at the end of the CM line has not been demonstrated. The goal of this work was to continuously manufacture creams and to investigate whether in- and on-line measurement of viscosity, changes in the concentration of active pharmaceutical ingredient (API), and pH could be used to support optimization of a model cream product. Additionally, the torque of the mixers was assessed for determination of the physical properties of the cream. Two Raman probes with different probe optics were compared for characterization of the API concentration. The API concentration, amount of neutralizer, and mixing speed of the CM line were systematically varied. Both the PhAT probe with a larger sampling volume and immersion Raman probe with a smaller sampling volume could detect the step changes in the API concentration. The torque from the mixer was compared with the viscosity measurements, but the torque signal could not be correlated with the viscosity due to the dynamic nature of the polymer conformation and the time-dependency of this property. Adjustment of pH of the cream could be monitored with the current installation. The investigated PAT tools could be implemented into a continuous line and, further, be used to support the optimization of a model cream composition and related process parameters.
Collapse
|
7
|
Brangule A, Šukele R, Bandere D. Herbal Medicine Characterization Perspectives Using Advanced FTIR Sample Techniques - Diffuse Reflectance (DRIFT) and Photoacoustic Spectroscopy (PAS). FRONTIERS IN PLANT SCIENCE 2020; 11:356. [PMID: 32362902 PMCID: PMC7182013 DOI: 10.3389/fpls.2020.00356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
This study demonstrates the significant potential of the Fourier transform infrared spectroscopy (FTIR) sampling methods: cantilever-enhanced Fourier transform infrared photoacoustic spectroscopy (FTIR PAS) and diffuse reflectance infrared spectroscopy (FTIR DRIFT) in the field of herbal medicines (HM). In the present work we investigated DRIFT and PAS sampling methods because they do not require sample preparation, samples may be opaque or dark, require small amounts, both liquid and solid samples can be measured, and solid samples can be analyzed on a small scale. Experiments conducted prove high sensitivity, reproducibility and capability in combination with an unsupervised multivariate analysis technique to discriminate important characteristics of HM, such as the identification of plant parts, differentiation of samples by types, and determination of the concentration of extractable compounds in HM.
Collapse
Affiliation(s)
- Agnese Brangule
- Department of Human Physiology and Biochemistry, Riga Stradiņš, University, Riga, Latvia
| | - Renāte Šukele
- Department of Pharmaceutical Chemistry, Riga Stradiņš, University, Riga, Latvia
| | - Dace Bandere
- Department of Pharmaceutical Chemistry, Riga Stradiņš, University, Riga, Latvia
| |
Collapse
|
8
|
PAT-based batch statistical process control of a manufacturing process for a pharmaceutical ointment. Eur J Pharm Sci 2019; 136:104946. [PMID: 31170525 DOI: 10.1016/j.ejps.2019.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/25/2019] [Accepted: 05/31/2019] [Indexed: 11/21/2022]
Abstract
In this study, a process analytical technology (PAT)-based batch statistical process control (BSPC) model was developed for the laboratory-scale manufacturing process of a commercially available pharmaceutical ointment. The multivariate BSPC model was developed based on the in-line measured viscosity (viscometer), product temperature (viscometer), particle size distribution (PSD) (focused beam reflectance measurement (FBRM)) and active pharmaceutical ingredient (API) concentration (Raman spectroscopy) of four reference batches using a partial least squares (PLS) approach. From this in-line collected data, the characteristic trajectory of the batch process under normal operating conditions was acquired. To assess the capability of the process analyzers and BSPC model to detect deviations from the expected batch trajectory, two test batches with induced process and formulation disturbances were monitored in-line. The elevated process temperature in test batch 1 resulted in a deviating viscosity, product temperature and number of small particles (<100 μm). After correcting the process temperature, the viscosity and product temperature were within the control interval, while the particle size was smaller compared to the reference batches. For test batch 2, API was added at three different time points, whereas the same amount of API was added in one step during manufacturing of the reference batches. The induced disturbance was reflected in the in-line measured viscosity, PSD and API concentration. The combination of process analyzers and multivariate batch modelling enabled early fault detection and real-time process adjustments, thereby preventing batch loss or reprocessing. In addition, the feasibility of the investigated process analyzers to measure certain quality attributes in-line during manufacturing of an ointment was demonstrated.
Collapse
|
9
|
Qwist PK, Sander C, Okkels F, Jessen V, Baldursdottir S, Rantanen J. On-line rheological characterization of semi-solid formulations. Eur J Pharm Sci 2018; 128:36-42. [PMID: 30447283 DOI: 10.1016/j.ejps.2018.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/13/2018] [Indexed: 11/16/2022]
Abstract
The rheological profile of a semi-solid product is a critical quality attribute. To monitor changes of this attribute during manufacturing, it would be beneficial to measure the rheological parameters in an on-line or in-line mode and implement this as a part of a control strategy for manufacturing of semi-solids. None of the process analytical technology (PAT) tools for measuring the rheological parameters have yet been widely accepted in the pharmaceutical area, as most of the equipment can only measure viscosity. Therefore, an automated system based on the measurement of pressure difference across both a topology optimized channel and a tube geometry (capillary viscometer) was investigated. The Pressure Difference Apparatus (PDA) can sample from the bulk intermediate/product stream and press the sample through the apparatus at different flow rates to yield a frequency sweep (G' and G″) and a flow curve (viscosity). A calibration model was successfully prepared and verified with hydroxyethyl cellulose gels with polymer content varying from 1.0 to 1.5% (w/w) resulting in gels of different viscosities. The calibration model was used on-line during manufacturing of a gel and manufacturing changes related to dilution of the product were clearly reflected in the batch evolution profiles. The measurements with the PDA reflected the shear rate and frequency ranges relevant for manufacturing and thereby complemented the rheology measurements obtained with a standard rheometer with real time data.
Collapse
Affiliation(s)
- Pernille Kjærgaard Qwist
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark; LEO Pharma A/S, Industriparken 55, Ballerup, Denmark
| | | | - Fridolin Okkels
- Fluidan ApS, Diplomvej building 381, Kongens Lyngby, Denmark
| | - Vibeke Jessen
- LEO Pharma A/S, Industriparken 55, Ballerup, Denmark
| | - Stefania Baldursdottir
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark.
| |
Collapse
|