1
|
Dargah MM, Youseftabar-Miri L, Divsar F, Hosseinjani-Pirdehi H, Mahani M, Bakhtiari S, Montazar L. Triplex hairpin oligosensor for ultrasensitive determination of miRNA-155 as a cancer marker using Si quantum dots and Au nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124750. [PMID: 39003825 DOI: 10.1016/j.saa.2024.124750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
In this study, a new triplex hairpin oligosensor was developed for the determination of a breast cancer biomarker using silicon quantum dots (Si QD) (λex = 370 nm, λem = 482 nm) as donor and gold nanoparticles (GNP) as an acceptor in a FRET (fluorescence resonance energy transfer) mechanism. In the triplex hairpin oligosensor, a triplex-forming oligonucleotide (TFO) labeled with Si QD and a single-strand DNA labeled with GNP form a hairpin shape with a triplex structure at the hairpin stem. In a turn-on mechanism, the triplex hairpin stem is opened in the presence of sequence-specific miRNA-155 which leads to the release of the Si QD-labeled TFO probe and recovery of the fluorescence signal. About 80 % of the fluorescence intensity of the Si QD-TFO is quenched in the triplex hairpin structure of the oligosensor and in the presence of 800 pM miRNA-155, the fluorescence signal recovered to 57.7 % of its initial value. The LOD of about 10 pM was obtained. The designed triplex-based biosensor can discriminate concentrations of breast cancer biomarkers with high selectivity.
Collapse
Affiliation(s)
- Maryam Mohamadi Dargah
- Active Pharmaceutical Ingredients Research Center (APIRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Leila Youseftabar-Miri
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Faten Divsar
- Department of Chemistry, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran.
| | | | - Mohamad Mahani
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, Iran
| | - Shadi Bakhtiari
- Active Pharmaceutical Ingredients Research Center (APIRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Leila Montazar
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
2
|
Kumar MS, S V, Dolai M, Nag A, Bylappa Y, Das AK. Viscosity-sensitive and AIE-active bimodal fluorescent probe for the selective detection of OCl - and Cu 2+: a dual sensing approach via DFT and biological studies using green gram seeds. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:676-685. [PMID: 38189149 DOI: 10.1039/d3ay01971c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
A novel dual-mode viscosity-sensitive and AIE-active fluorescent chemosensor based on the naphthalene coupled pyrene (NCP) moiety was designed and synthesized for the selective detection of OCl- and Cu2+. In non-viscous media, NCP exhibited weak fluorescence; however, with an increase in viscosity using various proportions of glycerol, the fluorescence intensity was enhanced to 461 nm with a 6-fold increase in fluorescence quantum yields, which could be utilized for the quantitative determination of viscosity. Interestingly, NCP exhibited novel AIE characteristics in terms of size and growth in H2O-CH3CN mixtures with high water contents and different volume percentage of water, which was investigated using fluorescence, DLS study and SEM analysis. Interestingly, this probe can also be effectively employed as a dual-mode fluorescent probe for light up fluorescent detection of OCl- and Cu2+ at different emission wavelengths of 439 nm and 457 nm via chemodosimetric and chelation pathways, respectively. The fast-sensing ability of NCP towards OCl- was shown by a low detection limit of 0.546 μM and the binding affinity of NCP with Cu2+ was proved by a low detection limit of 3.97 μM and a high binding constant of 1.66 × 103 M-1. The sensing mechanism of NCP towards OCl- and Cu2+ was verified by UV-vis spectroscopy, fluorescence analysis, 1H-NMR analysis, mass spectroscopy, DFT study and Job plot analysis. For practical applications, the binding of NCP with OCl- and Cu2+ was determined using a dipstick method and a cell imaging study in a physiological medium using green gram seeds.
Collapse
Affiliation(s)
- Malavika S Kumar
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India.
| | - Vishnu S
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India.
| | - Malay Dolai
- Department of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur 721404, W.B., India
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India
| | - Yatheesharadhya Bylappa
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India
| | - Avijit Kumar Das
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India.
| |
Collapse
|
3
|
Luo Q, Zhang C, Deng X, Liu D, Pan X, Gong Y, Tang Q, Zhang K, Liao X. A CRISPR-Cas12a-based electrochemical biosensor for the detection of microphthalmia-associated transcription factor. Mikrochim Acta 2024; 191:73. [PMID: 38170285 DOI: 10.1007/s00604-023-06164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
A novel electrochemical biosensor that combines the CRISPR-Cas12a system with a gold electrode is reported for the rapid and sensitive detection of microphthalmia-associated transcription factor (MITF). The biosensor consists of a gold electrode modified with DNA1, which contains the target sequence of MITF and is labeled with ferrocene, an electroactive molecule. The biosensor also includes hairpin DNA, which has a binding site for MITF and can hybridize with helper DNA to form a double-stranded complex that activates CRISPR-Cas12a. When MITF is present, it binds to hairpin DNA and prevents its hybridization with helper DNA, thus inhibiting CRISPR-Cas12a activity and preserving the DPV signal of ferrocene. When MITF is absent, hairpin DNA hybridizes with helper DNA and activates CRISPR-Cas12a, which cleaves DNA1 and releases ferrocene, thus reducing the DPV signal. The biosensor can detect MITF with high sensitivity (with an LOD of 8.14 fM), specificity, and accuracy in various samples, such as cell nuclear extracts and human serum. The biosensor can also diagnose and monitor melanocyte-related diseases and melanin production. This work provides a simple, fast, sensitive, and cost-effective biosensor for MITF detection and a valuable tool for applications in genetic testing, disease diagnosis, and drug screening.
Collapse
Affiliation(s)
- Qisheng Luo
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Chunyuan Zhang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Xiandong Deng
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Dongyuan Liu
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Xingchen Pan
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Yuanxun Gong
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Qianli Tang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Kai Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, People's Republic of China.
| | - Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, China.
| |
Collapse
|
4
|
Chamorro A, Rossetti M, Bagheri N, Porchetta A. Rationally Designed DNA-Based Scaffolds and Switching Probes for Protein Sensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:71-106. [PMID: 38273204 DOI: 10.1007/10_2023_235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The detection of a protein analyte and use of this type of information for disease diagnosis and physiological monitoring requires methods with high sensitivity and specificity that have to be also easy to use, rapid and, ideally, single step. In the last 10 years, a number of DNA-based sensing methods and sensors have been developed in order to achieve quantitative readout of protein biomarkers. Inspired by the speed, specificity, and versatility of naturally occurring chemosensors based on structure-switching biomolecules, significant efforts have been done to reproduce these mechanisms into the fabrication of artificial biosensors for protein detection. As an alternative, in scaffold DNA biosensors, different recognition elements (e.g., peptides, proteins, small molecules, and antibodies) can be conjugated to the DNA scaffold with high accuracy and precision in order to specifically interact with the target protein with high affinity and specificity. They have several advantages and potential, especially because the transduction signal can be drastically enhanced. Our aim here is to provide an overview of the best examples of structure switching-based and scaffold DNA sensors, as well as to introduce the reader to the rational design of innovative sensing mechanisms and strategies based on programmable functional DNA systems for protein detection.
Collapse
Affiliation(s)
| | - Marianna Rossetti
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy
| | - Neda Bagheri
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
5
|
Ge M, Zhu J, Yi K, Chen Y, Cao W, Wang M, Xie C, Li X, Geng S, Wu J, Zhong C, Cao H, Jiang Z, Han H. Diallyl trisulfide inhibits gastric cancer stem cell properties through ΔNp63/sonic hedgehog pathway. Mol Carcinog 2023; 62:1673-1685. [PMID: 37477518 DOI: 10.1002/mc.23607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/30/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023]
Abstract
Gastric cancer is one of the deadliest malignant tumors, and half of the patients develop recurrences or metastasis within 5 years after eradication therapy. Cancer stem cells (CSCs) are considered to be important in this progress. The sonic hedgehog (SHH) pathway plays an important role in the maintenance of gastric CSCs characteristics. The p63 proteins are vital transcription factors belonging to the p53 family, while their functions in regulating CSCs remain unclear. The preventive effects of dietary diallyl trisulfide (DATS) against human gastric cancer have been verified. However, whether DATS can target gastric CSCs are poorly understood. Here, we investigated the role of ΔNp63/SHH pathway in gastric CSCs and the inhibitory effect of DATS on gastric CSCs via ΔNp63/SHH pathway. We found that ΔNp63 was upregulated in serum-free medium cultured gastric tumorspheres compared with the parental cells. Overexpression of ΔNp63 elevated the self-renewal capacity and CSC markers' levels in gastric sphere-forming cells. Furthermore, we found that ΔNp63 directly bound to the promoter region of Gli1, the key transcriptional factor of SHH pathway, to enhance its expression and to activate SHH pathway. In addition, it was revealed that DATS effectively inhibited gastric CSC properties both in vitro and in vivo settings. Activation of SHH pathway attenuated the suppressive effects of DATS on the stemness of gastric cancer. Moreover, DATS suppression of gastric CSC properties was also diminished by ΔNp63 upregulation through SHH pathway activation. These findings illustrated the role of ΔNp63/SHH pathway in DATS inhibition of gastric cancer stemness. Taken together, the present study suggested for the first time that DATS inhibited gastric CSCs properties by ΔNp63/SHH pathway.
Collapse
Affiliation(s)
- Miaomiao Ge
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Nutrition, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianyun Zhu
- Department of Nutrition, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Division of Nutrition, Suzhou Digestive Diseases and Nutrition Research Center, North District of Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Kefan Yi
- Department of Nutrition, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Chen
- Department of Nutrition, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wanshuang Cao
- Department of Nutrition, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Menghuan Wang
- Department of Nutrition, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunfeng Xie
- Department of Nutrition, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoting Li
- Department of Nutrition, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shanshan Geng
- Department of Nutrition, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jieshu Wu
- Department of Nutrition, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Caiyun Zhong
- Department of Nutrition, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Division of Cancer Research, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Cao
- Department of Thoracic Surgery, The affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiwei Jiang
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongyu Han
- Department of Clinical Nutrition, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
6
|
Cheng HB, Cao X, Zhang S, Zhang K, Cheng Y, Wang J, Zhao J, Zhou L, Liang XJ, Yoon J. BODIPY as a Multifunctional Theranostic Reagent in Biomedicine: Self-Assembly, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207546. [PMID: 36398522 DOI: 10.1002/adma.202207546] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Indexed: 05/05/2023]
Abstract
The use of boron dipyrromethene (BODIPY) in biomedicine is reviewed. To open, its synthesis and regulatory strategies are summarized, and inspiring cutting-edge work in post-functionalization strategies is highlighted. A brief overview of assembly model of BODIPY is then provided: BODIPY is introduced as a promising building block for the formation of single- and multicomponent self-assembled systems, including nanostructures suitable for aqueous environments, thereby showing the great development potential of supramolecular assembly in biomedicine applications. The frontier progress of BODIPY in biomedical application is thereafter described, supported by examples of the frontiers of biomedical applications of BODIPY-containing smart materials: it mainly involves the application of materials based on BODIPY building blocks and their assemblies in fluorescence bioimaging, photoacoustic imaging, disease treatment including photodynamic therapy, photothermal therapy, and immunotherapy. Lastly, not only the current status of the BODIPY family in the biomedical field but also the challenges worth considering are summarized. At the same time, insights into the future development prospects of biomedically applicable BODIPY are provided.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xiaoqiao Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Keyue Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Yang Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jing Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| |
Collapse
|
7
|
Cai S, Guo R, Liu Q, Gong X, Li X, Yang Y, Lin W. A novel mitochondria-targeted fluorescent probe for detecting viscosity in living cells and zebrafishes†. NEW J CHEM 2022. [DOI: 10.1039/d2nj00402j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the twisted intramolecular charge transfer (TICT) mechanism, a new mitochondria-targeted fluorescent probe CSS-1 for detection of viscosity variations was developed. The probe featured in a strong response to...
Collapse
|
8
|
Mahani M, Taheri M, Divsar F, Khakbaz F, Nomani A, Ju H. Label-free triplex DNA-based biosensing of transcription factor using fluorescence resonance energy transfer between N-doped carbon dot and gold nanoparticle. Anal Chim Acta 2021; 1181:338919. [PMID: 34556210 DOI: 10.1016/j.aca.2021.338919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/21/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Herein, a new turn-on fluorescent assay was established as a platform for the sensing of transcription factor NF-kB p50 based on triplex DNA labeled with N-doped carbon dots (NCDs) and gold nanoparticles (AuNPs) as donors and acceptors, respectively in the fluorescence resonance energy transfer (FRET) system. The synthetized nanoparticles were studied by different characterization techniques. A labeled DNA molecule was designed to form a triplex when no target protein existence and reported its formation by the change in FRET efficiency. While the triplex DNA was formed, the fluorescence of carbon dots at 503 nm (excitation at 460 nm) was quenched by FRET between NCD and AuNP. However, presence of NF-kB p50 followed by the considerable enhancement in the fluorescence intensity caused by the release of AuNPs labeled single stranded DNA from the triplex DNA structure, used for sensitive determination of the transcription factor. This technique showed a linearity (R2 = 0.9943) in the range of 20-150 pM with a limit of detection of 9 pM for the determination of NF-kB p50. Moreover, the sequence-specific triplex-based biosensor could discriminate NF-kB p50 from the other proteins with high selectively. Our results suggest that the biosensor provides a generalizable platform for rapid detection of NF-kB p50 in synthetic medium, promising in prevention and early diagnosis of cancer.
Collapse
Affiliation(s)
- Mohamad Mahani
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, 7631818356, Iran.
| | - Maryam Taheri
- Department of Nanotechnology, Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology, Kerman, 7631818356, Iran
| | - Faten Divsar
- Department of Chemistry, Payame Noor Universtiy (PNU), P. O. BOX 19395-3697, Tehran, Iran
| | - Faeze Khakbaz
- Department of NanoChemistry, Faculty of Chemistry, Shahid Bahonar University, Kerman, Iran
| | - Alireza Nomani
- Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
9
|
Nanoparticle-based fluorescence probe for detection of NF-κB transcription factor in single cell via steric hindrance. Mikrochim Acta 2021; 188:226. [PMID: 34106343 DOI: 10.1007/s00604-021-04878-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
A novel nanoparticle-based fluorescence probe was developed for NF-κB transcription factor detection and in situ imaging via steric hindrance. The probe contains gold nanoparticles (AuNPs) to quench fluorescence, and nucleic acids immobilized on the surface of AuNPs to output fluorescence. In the basal state, Cy5 labeled DNA1 folds its long chain into a hairpin structure and quenches fluorescence by forcing the Cy5 fluorophore close to the surface of AuNPs. After the probe enters the cell, the NF-κB transcription factor can bind to the κB site in the DNA duplex of the nucleic acids. The steric hindrance caused by NF-κB leads to the extension of the long chain of DNA1 and the removal of the Cy5 fluorophore from the surface of AuNPs, thereby restoring the fluorescence of the probe. By measuring NF-κB in cell lysis in vitro, the probe obtains a detection limit of 0.38 nM and the linear range from 0.5 to 16 nM. Repeated measurements showed the recovery in the cell nuclear extract was between 93.38 and 109.32%, with relative standard deviation less than 5%. By monitoring the sub-localization of the Cy5 fluorophore in single cell, the probe system can effectively distinguish active NF-κB (nucleus) and inactive NF-κB (cytoplasm) through in situ imaging. The well-designed probe will make up for the shortcomings of the existing technology, and reveal the regulatory role of transcription factors in many disease processes.
Collapse
|
10
|
Nguyen VT, Tran TTN, Van TK, Tran T. DNA-Templated Silver Nanoclusters Used as a Label-Free Fluorescent Probe for the Detection of O6-Methyltransferase Activity. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821050130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Ji Z, Ji Y, Ding R, Lin L, Li B, Zhang X. DNA-templated silver nanoclusters as an efficient catalyst for reduction of nitrobenzene derivatives: a systematic study. NANOTECHNOLOGY 2021; 32:195705. [PMID: 33545692 DOI: 10.1088/1361-6528/abe3b4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nitrobenzene compounds are highly toxic pollutants with good stability, and they have a major negative impact on both human health and the ecological environment. Herein, it was found for the first time that fluorescent DNA-silver nanoclusters (DNA-AgNCs) can catalyze the reduction of toxic and harmful nitro compounds into less toxic amino compounds with excellent tolerance to high temperature and organic solvents. In this study, the reduction of p-nitrophenol (4-NP) as a model was systematically investigated, followed by expending the substrate to disclose the versatility of this reaction. This report not only expanded the conditions for utilizing catalytic reduction conditions of DNA-AgNCs as an efficient catalyst in the control of hazardous chemicals but also widened the substrate range of DNA-AgNCs reduction, providing a new angle for the application of noble metal nanoclusters.
Collapse
Affiliation(s)
- Zhirun Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, People's Republic of China
| | - Yuan Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, People's Republic of China
| | - Rui Ding
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, People's Republic of China
| | - Lei Lin
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, People's Republic of China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, People's Republic of China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, People's Republic of China
| |
Collapse
|
12
|
Huang C, Xu X, Jiang D, Jiang W. Binding mediated MNAzyme signal amplification strategy for enzyme-free and label-free detection of DNA-binding proteins. Anal Chim Acta 2021; 1166:338560. [PMID: 34022996 DOI: 10.1016/j.aca.2021.338560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
A novel MNAzyme signal amplification strategy was developed for enzyme-free and label-free detection of DNA-binding proteins. This strategy relied on the binding-mediated MNAzyme cleavage and G-quadruplex-based light-up fluorescence switch. Three DNA sequences were designed to construct the MNAzyme in which DNA1 (including half binding site of the target protein and a toehold sequence) and DNA2 (including another half binding site of the target protein and one MNAzyme partzyme) firstly hybridized. The target protein recognized the binding sites on DNA1-DNA2 hybrid to form a stable protein-DNA1-DNA2 conjugates. Then, the MNAzyme was assembled with the presence of DNA3 which contained another MNAzyme partzyme and the complementary sequence of DNA1. The active MNAzyme cleaved DNA4 to release the G-quadruplex that was locked in the stem of DNA4. Finally, N-methyl mesoporphyrin IX (NMM) was inserted into the released G-quadruplex structure and the fluorescence signal was turned on. Taking nuclear factor-κB p50 (NF-κB p50) as the model, the limit of detection was low to 0.14 nM. Furthermore, the sequence-specific recognition of NF-κB p50 with DNA displayed excellent selectivity and specificity. The results in present work showed that this strategy will be a promising tool for DNA-binding proteins analysis in biomedical exploration and clinical diagnosis.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Xiaowen Xu
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China
| | - Dafeng Jiang
- Department of Physical and Chemical Testing, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, 250014, Jinan, PR China.
| | - Wei Jiang
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China; School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China.
| |
Collapse
|
13
|
An exonuclease protection and CRISPR/Cas12a integrated biosensor for the turn-on detection of transcription factors in cancer cells. Anal Chim Acta 2021; 1165:338478. [PMID: 33975701 DOI: 10.1016/j.aca.2021.338478] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Transcription factors (TFs) are critical proteins that regulate the expression of genes, and the abnormal change of TFs levels is directly related to physical dysfunctions. Herein, we developed a clustered regularly interspaced short palindromic repeats (CRISPR)-based biosensor for the measurement of TFs level with the assistance of exonuclease protection assay. A dsDNA (activator) with the ability to activate Cas12a was engineered to contain TFs binding domain, and the binding between TFs and the activator can protect the dsDNA from being digested by exonuclease III (Exo III). The reserved activator then triggered a CRISPR/Cas12a reporting reaction to produce fluorescent signal for detection. In the detection of nuclear factor-kappa B (NF-κB) p50 subunit, the limit of detection of 0.2 pM and limit of quantification of 0.6 pM were obtained respectively, and the performance of this biosensor has been challenged by cell nucleoprotein extracts. Additionally, this method can be applied in the screening and evaluation of TFs inhibitors, calculating the IC50 of oridonin. Integrating merits including high sensitivity, low cost, and good portability, this method may enrich the arsenal for TFs-related applications.
Collapse
|
14
|
Gambucci M, Zampini G, Quaglia G, Vosch T, Latterini L. Probing the Fluorescence Behavior of DNA‐Stabilized Silver Nanoclusters in the Presence of Biomolecules. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202000262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marta Gambucci
- Department of Chemistry, Biology and Biotechnology University of Perugia Via Elce di Sotto, 8 06123 Perugia Italy
| | - Giulia Zampini
- Department of Chemistry, Biology and Biotechnology University of Perugia Via Elce di Sotto, 8 06123 Perugia Italy
| | - Giulia Quaglia
- Department of Chemistry, Biology and Biotechnology University of Perugia Via Elce di Sotto, 8 06123 Perugia Italy
| | - Tom Vosch
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Loredana Latterini
- Department of Chemistry, Biology and Biotechnology University of Perugia Via Elce di Sotto, 8 06123 Perugia Italy
| |
Collapse
|
15
|
Ma C, Sun W, Xu L, Qian Y, Dai J, Zhong G, Hou Y, Liu J, Shen B. A minireview of viscosity-sensitive fluorescent probes: design and biological applications. J Mater Chem B 2021; 8:9642-9651. [PMID: 32986068 DOI: 10.1039/d0tb01146k] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microenvironment-related parameters like viscosity, polarity, and pH play important roles in controlling the physical or chemical behaviors of local molecules, which determine the physical or chemical behaviors of surrounding molecules. In general, changes of the internal microenvironment will usually lead to cellular malfunction or the occurrence of relevant diseases. In the last few decades, the field of chemicobiology has received great attention. Also, remarkable progress has been made in developing viscosity-sensitive fluorescent probes. These probes were particularly efficient for imaging viscosity in biomembranes as well as lighting up specific organelles, such as mitochondria and lysosome. Besides, there are some fluorescent probes that can be used to quantify intracellular viscosity when combined with fluorescence lifetime (FLIM) and ratiometric imaging under water-free conditions. In this review, we summarized the majority of viscosity-sensitive chemosensors that have been reported thus far.
Collapse
Affiliation(s)
- Chenggong Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Wen Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Limin Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Ying Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jianan Dai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Guoyan Zhong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Yadan Hou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Jialong Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Baoxing Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
16
|
Sun Y, Zang L, Lau C, Zhang X, Lu J. Sensitive detection of transcription factor by coupled fluorescence-encoded microsphere with exonuclease protection. Talanta 2021; 229:122272. [PMID: 33838774 DOI: 10.1016/j.talanta.2021.122272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 01/05/2023]
Abstract
Aberrant transcription factors (TFs) activities are closely related to the occurrence and development of various diseases. Herein, we presented a fluorescence-encoded microsphere-based approach for TFs detection coupling with common DNA footprinting assay. Target TFs specifically bound the binding sites of double-stranded DNA (dsDNA) probes which were conjugated to microspheres. Thus, the probes were protected from being hydrolyzed by exonuclease III (Exo III). Afterwards, biotins labeled on the probes reacted with streptavidin-phycoerythrin (SA-PE) to produce fluorescent signal; however, in the absence of target TFs, the dsDNA probes would be hydrolyzed by Exo III resulting in biotins falling off and thus fluorescence signal was not generated. This strategy can be used to detect nuclear factor-kappa B p50 (NF-κB p50) with a detection limit of 0.2 nM. The steric hindrance of microspheres overcome the disadvantage of Exo III that can nibble into the protein-bound DNA region. Meanwhile, the fluorescent label of microsphere was specific to each TF, enabling multiplex detection could be achieved by changing specific protein binding site of corresponding dsDNA probe. This method has been successfully applied for simultaneous detection of NF-κB p50, AP-1 and CREB in nuclear extract isolated from HeLa cells stimulated or unstimulated by TNF-α, showing great potential for biomedical researches and precise disease diagnosis.
Collapse
Affiliation(s)
- Yue Sun
- School of Biomedical Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China; School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Liu Zang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Choiwan Lau
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Xueji Zhang
- School of Biomedical Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Jianzhong Lu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
17
|
Fluorometric detection of cancer marker FEN1 based on double-flapped dumbbell DNA nanoprobe functionalized with silver nanoclusters. Anal Chim Acta 2021; 1148:238194. [DOI: 10.1016/j.aca.2020.12.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023]
|
18
|
Shen B, Ma C, Ji Y, Dai J, Li B, Zhang X, Huang H. Detection of Carboxylesterase 1 and Chlorpyrifos with ZIF-8 Metal-Organic Frameworks Using a Red Emission BODIPY-Based Probe. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8718-8726. [PMID: 33569946 DOI: 10.1021/acsami.0c19811] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In this work, a red emission fluorescent probe CBZ-BOD@zeolitic imidazolate framework-8 (ZIF-8) was fabricated based on metal-organic frameworks (MOFs) for detecting carboxylesterase 1 (CES1). The small molecule probe CBZ-BOD was first synthesized and then used to prepare the functionalized MOF material. ZIF-8 was chosen as an encapsulation shell to improve the detection properties of CBZ-BOD. Using this unique porous materials, ultrasensitive quantification of CES1 and chlorpyrifos was successfully realized. The low detection limit and high fluorescence quantum yield were calculated as 1.15 ng/mL and 0.65 for CBZ-BOD@ZIF-8, respectively. CBZ-BOD@ZIF-8 has good biocompatibility and was successfully applied to monitor the activity of CES1 in living cells. A molecular docking study was used to explore the binding of CES1 and CBZ-BOD, finding that CES1 can bind with the probe before and after hydrolysis. This type of materialized probe can inspire the development of fluorescent tools for further exploration of many pathological processes.
Collapse
Affiliation(s)
- Baoxing Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Chenggong Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Yuan Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jianan Dai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
19
|
Li B, Xia A, Xie S, Lin L, Ji Z, Suo T, Zhang X, Huang H. Signal-Amplified Detection of the Tumor Biomarker FEN1 Based on Cleavage-Induced Ligation of a Dumbbell DNA Probe and Rolling Circle Amplification. Anal Chem 2021; 93:3287-3294. [PMID: 33529005 DOI: 10.1021/acs.analchem.0c05275] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Flap endonuclease 1 (FEN1), an endogenous nuclease with the ability to cleave the 5' overhang of branched dsDNA, is of significance in DNA replication and repair. The overexpression of FEN1 is common in cancer because of the ubiquitous upregulation of DNA replication; thus, FEN1 has been recognized as a potential biomarker in oncological investigations. However, few analytical methods targeting FEN1 with high sensitivity and simplicity have been developed. This work developed a signal-amplified detection of FEN1 based on the cleavage-induced ligation of a dumbbell DNA probe and rolling circle amplification (RCA). A flapped dumbbell DNA probe (FDP) was rationally designed with a FEN1 cleavable flap at the 5' end. The cleavage generated a nick site with juxtaposed 5' phosphate and 3' hydroxyl ends, which were linkable by T4 DNA ligase to form a closed dumbbell DNA probe (CDP) with a circular conformation. The CDP functioned as a template for RCA, which produced abundant DNA that could be probed using SYBR Green I. The highly sensitive detection of FEN1 with a limit of detection of 15 fM was achieved, and this method showed high specificity, which enabled the quantification of FEN1 in real samples. The inhibitory effects of chemicals on FEN1 were also evaluated. This study represents the first attempt to develop an FEN1 assay that involves signal amplification, and the novel biosensor method enriches the tools for FEN1-based diagnostics.
Collapse
Affiliation(s)
- Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Anqi Xia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Siying Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Lei Lin
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Zhirun Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Tiying Suo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
20
|
Li B, Xie S, Xia A, Suo T, Huang H, Zhang X, Chen Y, Zhou X. Recent advance in the sensing of biomarker transcription factors. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
TAp63α targeting of Lgr5 mediates colorectal cancer stem cell properties and sulforaphane inhibition. Oncogenesis 2020; 9:89. [PMID: 33040081 PMCID: PMC7548006 DOI: 10.1038/s41389-020-00273-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) have an established role in cancer progression and therapeutic resistance. The p63 proteins are important transcription factors which belong to the p53 family, but their function and mechanism in CSCs remain elusive. Here, we investigated the role of TAp63α in colorectal CSCs and the effects of sulforaphane on TAp63α. We found that TAp63α was upregulated in spheres with stem cell properties compared to the parental cells. Overexpression of TAp63α promoted self-renewal capacity and enhanced CSC markers expression in colorectal sphere-forming cells. Furthermore, we showed that TAp63α directly bound to the promoter region of Lgr5 to enhance its expression and activate its downstream β-catenin pathway. Functional experiments revealed that sulforaphane suppressed the stemness of colorectal CSCs both in vitro and in vivo. Upregulation of TAp63α attenuated the inhibitory effect of sulforaphane on colorectal CSCs, indicating the role of TAp63α in sulforaphane suppression of the stemness in colorectal cancer. The present study elucidated for the first time that TAp63α promoted CSCs through targeting Lgr5/β-catenin axis and participated in sulforaphane inhibition of the stem cell properties in colorectal cancer.
Collapse
|
22
|
Chen Y, Yan X, Yang W, Wang J, Lu Q, Li B, Zhu W, Zhou X. A signal transduction approach for multiplexed detection of transcription factors by integrating DNA nanotechnology, multi-channeled isothermal amplification, and chromatography. J Chromatogr A 2020; 1624:461148. [PMID: 32376029 DOI: 10.1016/j.chroma.2020.461148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/16/2022]
Abstract
The variation patterns of transcription factors (TFs) provide direct information for the states of cell populations, which is of significance for biomedical research and clinical diagnostics. Herein, we show that through multi-channeled isothermal amplification, it is feasible to connect DNA-based signal transduction with chromatography for multiplexed detection of TFs. The described system is referred to as "PAC" which includes three major steps: (i) Protection, which uses DNA-modified magnetic beads to capture TFs and converts the capturing event into triggering signal; (ii) Amplification, which receives the triggering signal and generate DNA reporters through multi-channeled extension and nicking of oligonucleotides; and (iii) Chromatography, which separates and detects the DNA reporters in liquid chromatography. The quantitative detection of five essential TFs includes p50, p53, AP-1, MITF, and c-Myc is realized in a multiplexed manner, with the lowest detection limit of 0.5 pM. PAC can also provide effective means to measure the above five TFs in real samples, including cultured cells, xenograft tumors, and blood-based liquid biopsy. This study not only established a solution for multiplexed measurement of TFs for molecular diagnostics, but also paved avenue for bridging the gap between DNA nanotechnology and chromatography.
Collapse
Affiliation(s)
- Yue Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoqiang Yan
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Wei Yang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jing Wang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qiaoyun Lu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Wanying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Xuemin Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
23
|
Duan X, Chen Z, Tang S, Ge M, Wei H, Guan Y, Zhao G. A Strategy Employing a TF-Splinting Duplex Nanoswitch to Achieve Single-Step, Enzyme-Free, Signal-On Detection of l-Tryptophan. ACS Sens 2020; 5:837-844. [PMID: 32096406 DOI: 10.1021/acssensors.0c00002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transcription factor (TF)-based metabolite detection mainly depends on TF-regulated gene expression in cells. From TF activation to gene transcription and translation, the signal travels a relatively long way before it is received. Here, we propose a TF-splinting duplex DNA nanoswitch to detect metabolites. We show its feasibility using tryptophan repressor (TrpR) to detect l-tryptophan as a model. The assay has been optimized and characterized after obtaining a proof of concept, and the detection of l-tryptophan in complex biological samples is feasible. Unlike an equivalent gene expression approach, the whole process is a single-step, enzyme-free, and signal-on method. It can be completed within 20 min. This proposed TF-splinting duplex has the potential to be applied to the quick and convenient detection of other metabolites or even TFs.
Collapse
Affiliation(s)
- Xuying Duan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110001, China
| | - Ziwei Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110001, China
| | - Suming Tang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110001, China
| | - Meiqiong Ge
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110001, China
| | - Hua Wei
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110001, China
- Animal Science and Veterinary Medicine College, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yifu Guan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110001, China
| | - Guojie Zhao
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
24
|
Determination of the concentration of transcription factor by using exonuclease III-aided amplification and gold nanoparticle mediated fluorescence intensity: A new method for gene transcription related enzyme detection. Anal Chim Acta 2020; 1104:132-139. [PMID: 32106944 DOI: 10.1016/j.aca.2019.12.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 12/31/2019] [Indexed: 01/20/2023]
Abstract
Herein, we report a new probe for the determination of the concentration of NF-κB p50, one kind of DNA-binding transcription factors (TFs), by using Exonuclease III (Exo III)-aided amplification and gold nanoparticle mediated fluorescence intensity. Since TFs play critical roles in various biological processes, the detection of TFs can provide a lot of useful biological information for studding gene expression regulation related disease. In our system, in the presence of transcription factor, Exo III based amplification reaction was trigged. This enzymatic digestion results in the release of intermediate DNA and ultimately liberating the fluorophore (which, separated from the quencher of AuNP and BHQ2, now fluoresces). The released intermediate DNA then hybridizes with another strand3, whence the cycle starts anew. So, the fluorescence intensity reflects the NF-κB p50 concentration with a detection limit of 1.32 pM. Importantly, this method might be further extended to selectively detect various dsDNA-binding proteins by simply changing the binding-site sequences of strand1/strand2 duplex probes.
Collapse
|
25
|
Sun Y, Li Z, Lau C, Lu J. Antibody free ELISA-like assay for the detection of transcription factors based on double-stranded DNA thermostability. Analyst 2020; 145:3339-3344. [DOI: 10.1039/c9an02631b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transcription factors (TFs) play critical roles in gene expression regulation and disease development. Herein we report a chemiluminescence assay for the detection of transcription factor based on double-stranded DNA thermostability.
Collapse
Affiliation(s)
- Yue Sun
- School of Pharmacy
- Fudan University
- Shanghai 201203
- P.R. China
| | - Zhiyan Li
- School of Pharmacy
- Fudan University
- Shanghai 201203
- P.R. China
| | - Choiwan Lau
- School of Pharmacy
- Fudan University
- Shanghai 201203
- P.R. China
| | - Jianzhong Lu
- School of Pharmacy
- Fudan University
- Shanghai 201203
- P.R. China
| |
Collapse
|
26
|
Guo Y, Pan X, Zhang W, Hu Z, Wong KW, He Z, Li HW. Label-free probes using DNA-templated silver nanoclusters as versatile reporters. Biosens Bioelectron 2019; 150:111926. [PMID: 31929081 DOI: 10.1016/j.bios.2019.111926] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
DNA-templated silver nanoclusters (DNA-AgNCs) have demonstrated pervasive applications in analytical chemistry recently. As a way of signal output in DNA-based detection methods, DNA-AgNCs have prominent advantages: first, the recognition and synthesizing sequences are naturally integrated in one DNA probe without any chemical modification or connection; second, the emissive wavelength of DNA-AgNCs can be adjusted in a wide range by employing different sequences; third, DNA-AgNCs can be utilized for producing not only fluorescence, also electrochemiluminescence and electrochemical signals. Besides, they also show potential applications for cell imaging, and are considered to be one of the most ideal nanomaterials for in-vivo imaging due to their ultra-small particle size. In this review, a brief and comprehensive introduction of DNA-AgNCs is firstly given, then label-free probes using DNA-AgNCs are classified and summarized, lastly concluding perspectives are provided on the defects and application potentials.
Collapse
Affiliation(s)
- Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xinyue Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wenya Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhigang Hu
- Wuxi Children's Hospital, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ka-Wang Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|