1
|
Koziol-Bohatkiewicz P, Liberda-Matyja D, Wrobel TP. Fast cancer imaging in pancreatic biopsies using infrared imaging. Analyst 2024; 149:1799-1806. [PMID: 38385553 DOI: 10.1039/d3an01555f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Pancreatic cancer, particularly Pancreatic ductal adenocarcinoma, remains a highly lethal form of cancer with limited early diagnosis and treatment options. Infrared (IR) spectroscopy, combined with machine learning, has demonstrated great potential in detecting various cancers. This study explores the translation of a diagnostic model from Fourier Transform Infrared to Quantum Cascade Laser (QCL) microscopy for pancreatic cancer classification. Furthermore, QCL microscopy offers faster measurements with selected frequencies, improving clinical feasibility. Thus, the goals of the study include establishing a QCL-based model for pancreatic cancer classification and creating a fast surgical margin detection model using reduced spectral information. The research involves preprocessing QCL data, training Random Forest (RF) classifiers, and optimizing the selection of spectral features for the models. Results demonstrate successful translation of the diagnostic model to QCL microscopy, achieving high predictive power (AUC = 98%) in detecting cancerous tissues. Moreover, a model for rapid surgical margin recognition, based on only a few spectral frequencies, is developed with promising differentiation between benign and cancerous regions. The findings highlight the potential of QCL microscopy for efficient pancreatic cancer diagnosis and surgical margin detection within clinical timeframes of minutes per surgical resection tissue.
Collapse
Affiliation(s)
- Paulina Koziol-Bohatkiewicz
- Solaris National Synchrotron Radiation Centre, Jagiellonian University, Czerwone Maki 98, 30-392, Krakow, Poland.
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Danuta Liberda-Matyja
- Solaris National Synchrotron Radiation Centre, Jagiellonian University, Czerwone Maki 98, 30-392, Krakow, Poland.
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Prof. St. Łojasiewicza 11, PL30348, Cracow, Poland
| | - Tomasz P Wrobel
- Solaris National Synchrotron Radiation Centre, Jagiellonian University, Czerwone Maki 98, 30-392, Krakow, Poland.
| |
Collapse
|
2
|
Liberda D, Pięta E, Pogoda K, Piergies N, Roman M, Koziol P, Wrobel TP, Paluszkiewicz C, Kwiatek WM. The Impact of Preprocessing Methods for a Successful Prostate Cell Lines Discrimination Using Partial Least Squares Regression and Discriminant Analysis Based on Fourier Transform Infrared Imaging. Cells 2021; 10:cells10040953. [PMID: 33924045 PMCID: PMC8073124 DOI: 10.3390/cells10040953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 11/30/2022] Open
Abstract
Fourier transform infrared spectroscopy (FT-IR) is widely used in the analysis of the chemical composition of biological materials and has the potential to reveal new aspects of the molecular basis of diseases, including different types of cancer. The potential of FT-IR in cancer research lies in its capability of monitoring the biochemical status of cells, which undergo malignant transformation and further examination of spectral features that differentiate normal and cancerous ones using proper mathematical approaches. Such examination can be performed with the use of chemometric tools, such as partial least squares discriminant analysis (PLS-DA) classification and partial least squares regression (PLSR), and proper application of preprocessing methods and their correct sequence is crucial for success. Here, we performed a comparison of several state-of-the-art methods commonly used in infrared biospectroscopy (denoising, baseline correction, and normalization) with the addition of methods not previously used in infrared biospectroscopy classification problems: Mie extinction extended multiplicative signal correction, Eiler’s smoothing, and probabilistic quotient normalization. We compared all of these approaches and their effect on the data structure, classification, and regression capability on experimental FT-IR spectra collected from five different prostate normal and cancerous cell lines. Additionally, we tested the influence of added spectral noise. Overall, we concluded that in the case of the data analyzed here, the biggest impact on data structure and performance of PLS-DA and PLSR was caused by the baseline correction; therefore, much attention should be given, especially to this step of data preprocessing.
Collapse
Affiliation(s)
- Danuta Liberda
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland; (D.L.); (E.P.); (N.P.); (M.R.); (P.K.); (C.P.); (W.M.K.)
| | - Ewa Pięta
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland; (D.L.); (E.P.); (N.P.); (M.R.); (P.K.); (C.P.); (W.M.K.)
| | - Katarzyna Pogoda
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland; (D.L.); (E.P.); (N.P.); (M.R.); (P.K.); (C.P.); (W.M.K.)
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (K.P.); (T.P.W.)
| | - Natalia Piergies
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland; (D.L.); (E.P.); (N.P.); (M.R.); (P.K.); (C.P.); (W.M.K.)
| | - Maciej Roman
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland; (D.L.); (E.P.); (N.P.); (M.R.); (P.K.); (C.P.); (W.M.K.)
| | - Paulina Koziol
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland; (D.L.); (E.P.); (N.P.); (M.R.); (P.K.); (C.P.); (W.M.K.)
| | - Tomasz P. Wrobel
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland; (D.L.); (E.P.); (N.P.); (M.R.); (P.K.); (C.P.); (W.M.K.)
- Correspondence: (K.P.); (T.P.W.)
| | - Czeslawa Paluszkiewicz
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland; (D.L.); (E.P.); (N.P.); (M.R.); (P.K.); (C.P.); (W.M.K.)
| | - Wojciech M. Kwiatek
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland; (D.L.); (E.P.); (N.P.); (M.R.); (P.K.); (C.P.); (W.M.K.)
| |
Collapse
|
3
|
Liberda D, Koziol P, Raczkowska MK, Kwiatek WM, Wrobel TP. Influence of interference effects on the spectral quality and histological classification by FT-IR imaging in transflection geometry. Analyst 2020; 146:646-654. [PMID: 33206067 DOI: 10.1039/d0an01565b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Infrared (IR) imaging can be used for fast, accurate and non-destructive pathology recognition of biopsies when supported by machine learning algorithms. Transflection mode of measurements has the potential to be translated into the clinic due to economic reasons of large-scale imaging with the need for inexpensive substrates. Unfortunately, in this mode spectral distortions originating from light interference appear. Due to this fact transmission measurement mode is more frequently used in pathology recognition. Nevertheless, this measurement mode also is not devoid of spectral distortion effects like scattering. However, this effect is better understood and there are preprocessing algorithms to minimize it. In this work, we investigated the influence of interference effects on spectral quality of pancreatic tissues measured in transmission and transflection mode with Fourier tranform IR (FT-IR) microscopy using samples embedded with and without paraffin. The removal of paraffin leads to an altered magnitude of interference in transflection and provides a platform for a detailed analysis of its effect on the spectra of biological material, since the same sample is measured with different interference conditions. Moreover, the potential of transflection mode measurements in histological classification of analyzed samples was investigated and compared with classification results for transmission mode.
Collapse
Affiliation(s)
- Danuta Liberda
- Solaris National Synchrotron Radiation Centre, Jagiellonian University, Czerwone Maki 98, 30-392 Krakow, Poland.
| | | | | | | | | |
Collapse
|
4
|
Li Y, Huang Q, Yao G, Wang X, Zhang F, Wang T, Shao C, Zheng X, Jing X, Zhou H. Remodeling Chromatin Induces Z-DNA Conformation Detected through Fourier Transform Infrared Spectroscopy. Anal Chem 2020; 92:14452-14458. [PMID: 33085464 DOI: 10.1021/acs.analchem.0c02432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The SWI/SNF complex is a highly conserved chromatin remodeling complex and can hydrolyze ATP by its catalytic subunit BRG1 or BRM to reconstruct the chromatin. To investigate whether this ATP-dependent chromatin remodeling could affect the DNA conformation, we therefore regulated (knocked down or overexpressed) BRG1/BRM in the cells and applied Fourier transform infrared (FTIR) spectroscopy to probe DNA conformational changes. As a result, we found that BRG1/BRM was indeed associated with the DNA conformational changes, in which knockdown of BRG1/BRM reduced Z-DNA conformation, while overexpression of BRG1/BRM enhanced Z-DNA conformation. This Z-DNA conformational transformation was also verified using the Z-DNA-binding proteins. Therefore, this work has provided a direct analytical tool to probe Z-DNA transformation upon ATP-dependent chromatin remodeling.
Collapse
Affiliation(s)
- Yalin Li
- Henan Key Laboratory of Ion-beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Qing Huang
- CAS Key Laboratory of Ion-beam Bioengineering, Hefei Institutes of Physical Science, Institute of Intelligent Machines, Chinese Academy of Sciences (CAS), Hefei 230031, China
| | - Guohua Yao
- CAS Key Laboratory of Ion-beam Bioengineering, Hefei Institutes of Physical Science, Institute of Intelligent Machines, Chinese Academy of Sciences (CAS), Hefei 230031, China
| | - Xiaoyi Wang
- Department of Pediatric Hematology and Oncology, Zhengzhou University First Affiliated Hospital, Zhengzhou 450000 China
| | - Fengqiu Zhang
- Henan Key Laboratory of Ion-beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Tao Wang
- The College of Nursing and Health, Zhengzhou University, Zhengzhou, China 450001
| | - Changsheng Shao
- CAS Key Laboratory of Ion-beam Bioengineering, Hefei Institutes of Physical Science, Institute of Intelligent Machines, Chinese Academy of Sciences (CAS), Hefei 230031, China
| | - Xinxin Zheng
- CAS Key Laboratory of Ion-beam Bioengineering, Hefei Institutes of Physical Science, Institute of Intelligent Machines, Chinese Academy of Sciences (CAS), Hefei 230031, China
| | - Xumiao Jing
- Henan Key Laboratory of Ion-beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Huiyue Zhou
- The College of Nursing and Health, Zhengzhou University, Zhengzhou, China 450001
| |
Collapse
|
5
|
Liberda D, Hermes M, Koziol P, Stone N, Wrobel TP. Translation of an esophagus histopathological FT-IR imaging model to a fast quantum cascade laser modality. JOURNAL OF BIOPHOTONICS 2020; 13:e202000122. [PMID: 32406973 DOI: 10.1002/jbio.202000122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
The technical progress in fast quantum cascade laser (QCL) microscopy offers a platform where chemical imaging becomes feasible for clinical diagnostics. QCL systems allow the integration of previously developed FT-IR-based pathology recognition models in a faster workflow. The translation of such models requires a systematic approach, focusing only on the spectral frequencies that carry crucial information for discrimination of pathologic features. In this study, we optimize an FT-IR-based histopathological method for esophageal cancer detection to work with a QCL system. We explore whether the classifier's performance is affected by paraffin presence from tissue blocks compared to removing it chemically. Working with paraffin-embedded samples reduces preprocessing time in the lab and allows samples to be archived after analysis. Moreover, we test, whether the creation of a QCL model requires a preestablished FTIR model or can be optimized using solely QCL measurements.
Collapse
Affiliation(s)
- Danuta Liberda
- Solaris National Synchrotron Radiation Centre, Jagiellonian University, Krakow, Poland
| | - Michael Hermes
- School of Physics and Astronomy, University of Exeter, Exeter, UK
| | - Paulina Koziol
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Nick Stone
- School of Physics and Astronomy, University of Exeter, Exeter, UK
| | - Tomasz P Wrobel
- Solaris National Synchrotron Radiation Centre, Jagiellonian University, Krakow, Poland
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
6
|
Roman M, Wrobel TP, Paluszkiewicz C, Kwiatek WM. Comparison between high definition FT-IR, Raman and AFM-IR for subcellular chemical imaging of cholesteryl esters in prostate cancer cells. JOURNAL OF BIOPHOTONICS 2020; 13:e201960094. [PMID: 31999078 DOI: 10.1002/jbio.201960094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The family of vibrational spectroscopic imaging techniques grows every few years and there is a need to compare and contrast new modalities with the better understood ones, especially in the case of demanding biological samples. Three vibrational spectroscopy techniques (high definition Fourier-transform infrared [FT-IR], Raman and atomic force microscopy infrared [AFM-IR]) were applied for subcellular chemical imaging of cholesteryl esters in PC-3 prostate cancer cells. The techniques were compared and contrasted in terms of image quality, spectral pattern and chemical information. All tested techniques were found to be useful in chemical imaging of cholesterol derivatives in cancer cells. The results obtained from FT-IR and Raman imaging showed to be comparable, whereas those achieved from AFM-IR study exhibited higher spectral heterogeneity. It confirms AFM-IR method as a powerful tool in local chemical imaging of cells at the nanoscale level. Furthermore, due to polarization effect, p-polarized AFM-IR spectra showed strong enhancement of lipid bands when compared to FT-IR.
Collapse
Affiliation(s)
- Maciej Roman
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Tomasz P Wrobel
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Czeslawa Paluszkiewicz
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Wojciech M Kwiatek
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
7
|
Raczkowska MK, Koziol P, Urbaniak-Wasik S, Paluszkiewicz C, Kwiatek WM, Wrobel TP. Influence of denoising on classification results in the context of hyperspectral data: High Definition FT-IR imaging. Anal Chim Acta 2019; 1085:39-47. [DOI: 10.1016/j.aca.2019.07.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 12/31/2022]
|