1
|
Eskonen V, Tong-Ochoa N, Mattsson L, Miettinen M, Lastusaari M, Pulliainen AT, Kopra K, Härmä H. Single-Peptide TR-FRET Detection Platform for Cysteine-Specific Post-Translational Modifications. Anal Chem 2020; 92:13202-13210. [PMID: 32872778 PMCID: PMC7735653 DOI: 10.1021/acs.analchem.0c02370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Post-translational
modifications (PTMs) are one of the most important
regulatory mechanisms in cells, and they play key roles in cell signaling
both in health and disease. PTM catalyzing enzymes have become significant
drug targets, and therefore, tremendous interest has been focused
on the development of broad-scale assays to monitor several different
PTMs with a single detection platform. Most of the current methodologies
suffer from low throughput or rely on antibody recognition, increasing
the assay costs, and decreasing the multifunctionality of the assay.
Thus, we have developed a sensitive time-resolved Förster resonance
energy transfer (TR-FRET) detection method for PTMs of cysteine residues
using a single-peptide approach performed in a 384-well format. In
the developed assay, the enzyme-specific biotinylated substrate peptide
is post-translationally modified at the cysteine residue, preventing
the subsequent thiol coupling with a reactive AlexaFluor 680 acceptor
dye. In the absence of enzymatic activity, increase in the TR-FRET
signal between the biotin-bound Eu(III)-labeled streptavidin donor
and the cysteine-coupled AlexaFluor 680 acceptor dye is observed.
We demonstrate the detection concept with cysteine modifying S-nitrosylation
and ADP-ribosylation reactions using a chemical nitric oxide donor
S-nitrosoglutathione and enzymatic ADP-ribosyltransferase PtxS1-subunit
of pertussis toxin, respectively. As a proof of concept, three peptide
substrates derived from the small GTPase K-Ras and the inhibitory
α-subunit of the heterotrimeric G-protein Gαi showed expected
functionality in both chemical and enzymatic assays. Measurements
yielded signal-to-background ratios of 28.7, 33.0, and 8.7 between
the modified and the nonmodified substrates for the three peptides
in the S-nitrosylation assay, 5.8 in the NAD+ hydrolysis
assay, and 6.8 in the enzymatic ADP-ribosyltransferase inhibitor dose–response
assay. The developed antibody-free assay for cysteine-modifying enzymes
provides a detection platform with low nanomolar peptide substrate
consumption, and the assay is potentially applicable to investigate
various cysteine-modifying enzymes in a high throughput compatible
format.
Collapse
Affiliation(s)
- Ville Eskonen
- Chemistry of Drug Development, Department of Chemistry, University of Turku, Vatselankatu 2, FI-20014 Turku, Finland
| | - Natalia Tong-Ochoa
- Chemistry of Drug Development, Department of Chemistry, University of Turku, Vatselankatu 2, FI-20014 Turku, Finland
| | - Leena Mattsson
- Chemistry of Drug Development, Department of Chemistry, University of Turku, Vatselankatu 2, FI-20014 Turku, Finland
| | - Moona Miettinen
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Mika Lastusaari
- Inorganic Materials Chemistry Research Group, Department of Chemistry, University of Turku, Vatselankatu 2, FI-20014 Turku, Finland
| | - Arto T Pulliainen
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Kari Kopra
- Chemistry of Drug Development, Department of Chemistry, University of Turku, Vatselankatu 2, FI-20014 Turku, Finland
| | - Harri Härmä
- Chemistry of Drug Development, Department of Chemistry, University of Turku, Vatselankatu 2, FI-20014 Turku, Finland
| |
Collapse
|
2
|
Eskonen V, Tong-Ochoa N, Valtonen S, Kopra K, Härmä H. Thermal Dissociation Assay for Time-Resolved Fluorescence Detection of Protein Post-Translational Modifications. ACS OMEGA 2019; 4:16501-16507. [PMID: 31616828 PMCID: PMC6787904 DOI: 10.1021/acsomega.9b02134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Post-translational modifications (PTMs) of proteins provide an important mechanism for cell signal transduction control. Impaired PTM control is a key feature in multiple different disease states, and thus the enzyme-controlling PTMs have drawn attention as highly promising drug targets. Due to the importance of PTMs, various methods to monitor PTM enzyme activity have been developed, but universal high-throughput screening (HTS), a compatible method for different PTMs, remains elusive. Here, we present a homogeneous single-label thermal dissociation assay for the detection of enzymatic PTM removal. The developed method allows the use of micromolar concentration of substrate peptide, which is expected to be beneficial when monitoring enzymes with low activity and peptide binding affinity. We prove the thermal dissociation concept functionality using peptides for dephosphorylation, deacetylation, and demethylation and demonstrate the HTS-compatible flash isothermal method for PTM enzyme activity monitoring. Using specific inhibitors, we detected literature-comparable IC50 values and Z' factors from 0.61 to 0.72, proving the HTS compatibility of the thermal peptide-break technology.
Collapse
Affiliation(s)
- Ville Eskonen
- Materials Chemistry and Chemical
Analysis, Department of Chemistry, University
of Turku, Vatselankatu 2, FI-20014 Turku, Finland
| | - Natalia Tong-Ochoa
- Materials Chemistry and Chemical
Analysis, Department of Chemistry, University
of Turku, Vatselankatu 2, FI-20014 Turku, Finland
| | - Salla Valtonen
- Materials Chemistry and Chemical
Analysis, Department of Chemistry, University
of Turku, Vatselankatu 2, FI-20014 Turku, Finland
| | - Kari Kopra
- Materials Chemistry and Chemical
Analysis, Department of Chemistry, University
of Turku, Vatselankatu 2, FI-20014 Turku, Finland
| | - Harri Härmä
- Materials Chemistry and Chemical
Analysis, Department of Chemistry, University
of Turku, Vatselankatu 2, FI-20014 Turku, Finland
| |
Collapse
|