1
|
Kumar S, Kumar A, Kumar A, Chakkar AG, Betal A, Kumar P, Sahu S, Kumar M. Catalytic synergy of WS 2-anchored PdSe 2 for highly sensitive hydrogen gas sensor. NANOSCALE 2024. [PMID: 38682669 DOI: 10.1039/d4nr00342j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Hydrogen (H2) is widely used in industrial processes and is one of the well-known choices for storage of renewable energy. H2 detection has become crucial for safety in manufacturing, storage, and transportation due to its strong explosivity. To overcome the issue of explosion, there is a need for highly selective and sensitive H2 sensors that can function at low temperatures. In this research, we have adequately fabricated an unreported van der Waals (vdWs) PdSe2/WS2 heterostructure, which exhibits exceptional properties as a H2 sensor. The formation of these heterostructure devices involves the direct selenization process using chemical vapor deposition (CVD) of Pd films that have been deposited on the substrate of SiO2/Si by DC sputtering, followed by drop casting of WS2 nanoparticles prepared by a hydrothermal method onto device substrates including pre-patterned electrodes. The confirmation of the heterostructure has been done through the utilization of powder X-ray diffraction (XRD), depth-dependent X-ray photoelectron spectroscopy (XPS) and field-emission scanning electron microscopy (FE-SEM) techniques. Also, the average roughness of thin films is decided by Atomic Force Microscopy (AFM). The comprehensive research shows that the PdSe2/WS2 heterostructure-based sensor produces a response that is equivalent to 67.4% towards 50 ppm H2 at 100 °C. The response could be a result of the heterostructure effect and the superior selectivity for H2 gas in contrast to other gases, including NO2, CH4, CO and CO2, suggesting tremendous potential for H2 detection. Significantly, the sensor exhibits fast response and a recovery time of 31.5 s and 136.6 s, respectively. Moreover, the explanation of the improvement in gas sensitivity was suggested by exploiting the energy band positioning of the PdSe2/WS2 heterostructure, along with a detailed study of variations in the surface potential. This study has the potential to provide a road map for the advancement of gas sensors utilizing two-dimensional (2D) vdWs heterostructures, which exhibit superior performance at low temperatures.
Collapse
Affiliation(s)
- Suresh Kumar
- Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur 342030, India.
| | - Ashok Kumar
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, India.
| | - Amit Kumar
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, India.
| | - Atul G Chakkar
- School of Physical Sciences, Indian Institute of Technology Mandi, Mandi 175005, India
| | - Atanu Betal
- Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur 342030, India.
| | - Pradeep Kumar
- School of Physical Sciences, Indian Institute of Technology Mandi, Mandi 175005, India
| | - Satyajit Sahu
- Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur 342030, India.
| | - Mahesh Kumar
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, India.
- Department of Cybernetics, Nanotechnology and Data Processing, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| |
Collapse
|
2
|
Bis(phosphine) Pd(II) and Pt(II) Ethylene Glycol Carboxylates: Synthesis, Nanoparticle Formation, Catalysis. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Kaaliveetil S, Yang J, Alssaidy S, Li Z, Cheng YH, Menon NH, Chande C, Basuray S. Microfluidic Gas Sensors: Detection Principle and Applications. MICROMACHINES 2022; 13:1716. [PMID: 36296069 PMCID: PMC9607434 DOI: 10.3390/mi13101716] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
With the rapid growth of emerging point-of-use (POU)/point-of-care (POC) detection technologies, miniaturized sensors for the real-time detection of gases and airborne pathogens have become essential to fight pollution, emerging contaminants, and pandemics. However, the low-cost development of miniaturized gas sensors without compromising selectivity, sensitivity, and response time remains challenging. Microfluidics is a promising technology that has been exploited for decades to overcome such limitations, making it an excellent candidate for POU/POC. However, microfluidic-based gas sensors remain a nascent field. In this review, the evolution of microfluidic gas sensors from basic electronic techniques to more advanced optical techniques such as surface-enhanced Raman spectroscopy to detect analytes is documented in detail. This paper focuses on the various detection methodologies used in microfluidic-based devices for detecting gases and airborne pathogens. Non-continuous microfluidic devices such as bubble/droplet-based microfluidics technology that have been employed to detect gases and airborne pathogens are also discussed. The selectivity, sensitivity, advantages/disadvantages vis-a-vis response time, and fabrication costs for all the microfluidic sensors are tabulated. The microfluidic sensors are grouped based on the target moiety, such as air pollutants such as carbon monoxide and nitrogen oxides, and airborne pathogens such as E. coli and SARS-CoV-2. The possible application scenarios for the various microfluidic devices are critically examined.
Collapse
Affiliation(s)
- Sreerag Kaaliveetil
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Juliana Yang
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Saud Alssaidy
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Zhenglong Li
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Yu-Hsuan Cheng
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Niranjan Haridas Menon
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Charmi Chande
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Sagnik Basuray
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
4
|
Materials for Chemical Sensing: A Comprehensive Review on the Recent Advances and Outlook Using Ionic Liquids, Metal–Organic Frameworks (MOFs), and MOF-Based Composites. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10080290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ability to measure and monitor the concentration of specific chemical and/or gaseous species (i.e., “analytes”) is the main requirement in many fields, including industrial processes, medical applications, and workplace safety management. As a consequence, several kinds of sensors have been developed in the modern era according to some practical guidelines that regard the characteristics of the active (sensing) materials on which the sensor devices are based. These characteristics include the cost-effectiveness of the materials’ manufacturing, the sensitivity to analytes, the material stability, and the possibility of exploiting them for low-cost and portable devices. Consequently, many gas sensors employ well-defined transduction methods, the most popular being the oxidation (or reduction) of the analyte in an electrochemical reactor, optical techniques, and chemiresistive responses to gas adsorption. In recent years, many of the efforts devoted to improving these methods have been directed towards the use of certain classes of specific materials. In particular, ionic liquids have been employed as electrolytes of exceptional properties for the preparation of amperometric gas sensors, while metal–organic frameworks (MOFs) are used as highly porous and reactive materials which can be employed, in pure form or as a component of MOF-based functional composites, as active materials of chemiresistive or optical sensors. Here, we report on the most recent developments relative to the use of these classes of materials in chemical sensing. We discuss the main features of these materials and the reasons why they are considered interesting in the field of chemical sensors. Subsequently, we review some of the technological and scientific results published in the span of the last six years that we consider among the most interesting and useful ones for expanding the awareness on future trends in chemical sensing. Finally, we discuss the prospects for the use of these materials and the factors involved in their possible use for new generations of sensor devices.
Collapse
|
5
|
Lei H, Han H, Wang G, Mukherjee S, Bian H, Liu J, Zhao C, Fang Y. Self-Assembly of Amphiphilic BODIPY Derivatives on Micropatterned Ionic Liquid Surfaces for Fluorescent Films with Excellent Stability and Sensing Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13962-13969. [PMID: 35275635 DOI: 10.1021/acsami.2c01417] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fluorescent films have been widely recognized as one of the most powerful tools for trace analyte detection. However, their use has been limited due to the poor photochemical stability of fluorophores at a gas-solid interface and inefficient film mass transfer. Herein, novel fluorescent films were developed through self-assembly of amphiphilic BODIPY derivatives on micropatterned ionic liquid surfaces. Unlike solid-state films, the obtained monolayer films exhibit excellent photochemical stability, similar to that of a solution. Moreover, the interfacial assembly of amphiphilic fluorophores can avoid gas diffusion inside the microdroplets, significantly improving the sensing performance. The 1/1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) monolayer exhibits high sensitivity, high selectivity, and a fast response to detect diethylchlorophosphate (DCP) vapor. The detection limit was 226 ppt, with a response time to DCP of 2.0 s. Importantly, the 1/[BMIM]BF4 monolayer can be reused for at least 50 cycles with no obvious signal fading. This study is expected to benefit the development of new strategies for designing fluorescence sensing films and lay a solid foundation for the fabrication of multifunctional sensing devices with excellent photochemical stability and sensing performance.
Collapse
Affiliation(s)
- Hairui Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Huimin Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Somnath Mukherjee
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Chuan Zhao
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| |
Collapse
|
6
|
Chemical Vapor Deposition of Ionic Liquids for the Fabrication of Ionogel Films and Patterns. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Chen Y, Luo N, Li Z, Dong J, Wang X, Cheng Z, Xu J. The growth behavior of brain-like SnO 2 microspheres under a solvothermal reaction with tetrahydrofuran as a solvent and their gas sensitivity. RSC Adv 2021; 11:37568-37574. [PMID: 35496432 PMCID: PMC9043803 DOI: 10.1039/d1ra06675g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/05/2021] [Indexed: 11/21/2022] Open
Abstract
In this paper, the growth behavior of brain-like SnO2 microspheres synthesized by a tetrahydrofuran (THF) solvothermal method was studied. Unlike water or ethanol as the solvent, THF is a medium polar and aprotic solvent. Compared with other common polar solvents, the THF has no strong irregular effects on the growth process of SnO2. In addition, the viscosity of THF also helps the SnO2 to form a regular microstructure. The growth behavior of the brain-like SnO2 microspheres is controlled by changing the synthesis temperature of the reaction. The SEM and TEM results reveal that the SnO2 forms particles first (125 °C/3 h), and then these nanoparticles connect to each other forming nanowires and microspheres (diameter ≈ 1-2 μm) at 135 °C for 3 h; finally the microspheres further aggregate to form double or multi-sphere structures at 180 °C for 3 h. In this paper, the brain-like SnO2 microspheres obtained at 125 °C for 3 h were selected as sensitive materials to test their gas sensing performance at different operating temperature (50 °C and 350 °C). The H2S was tested at 50 °C which is the lowest operating temperature for the sensor. The combustible gas (H2/CH4/CO) was measured at 350 °C which is the highest temperature for the sensor. They all have extremely high sensitivity, but only H2S has excellent selectivity.
Collapse
Affiliation(s)
- Yang Chen
- NEST Lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University Shanghai 200444 PR China
| | - Na Luo
- NEST Lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University Shanghai 200444 PR China
| | - Zhixin Li
- NEST Lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University Shanghai 200444 PR China
| | - Junping Dong
- NEST Lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University Shanghai 200444 PR China
| | - Xiaohong Wang
- NEST Lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University Shanghai 200444 PR China
| | - Zhixuan Cheng
- NEST Lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University Shanghai 200444 PR China
| | - Jiaqiang Xu
- NEST Lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University Shanghai 200444 PR China
| |
Collapse
|
8
|
Obst M, Arnauts G, Cruz AJ, Calderon Gonzalez M, Marcoen K, Hauffman T, Ameloot R. Chemical Vapor Deposition of Ionic Liquids for the Fabrication of Ionogel Films and Patterns. Angew Chem Int Ed Engl 2021; 60:25668-25673. [PMID: 34478224 DOI: 10.1002/anie.202110022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/08/2022]
Abstract
Film deposition and high-resolution patterning of ionic liquids (ILs) remain a challenge, despite a broad range of applications that would benefit from this type of processing. Here, we demonstrate for the first time the chemical vapor deposition (CVD) of ILs. The IL-CVD method is based on the formation of a non-volatile IL through the reaction of two vaporized precursors. Ionogel micropatterns can be easily obtained via the combination of IL-CVD and standard photolithography, and the resulting microdrop arrays can be used as microreactors. The IL-CVD approach will facilitate leveraging the properties of ILs in a range of applications and microfabricated devices.
Collapse
Affiliation(s)
- Martin Obst
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions, KU Leuven, Leuven, Belgium
| | - Giel Arnauts
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions, KU Leuven, Leuven, Belgium
| | - Alexander John Cruz
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions, KU Leuven, Leuven, Belgium.,Research Group of Electrochemical and Surface Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maider Calderon Gonzalez
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions, KU Leuven, Leuven, Belgium
| | - Kristof Marcoen
- Research Group of Electrochemical and Surface Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tom Hauffman
- Research Group of Electrochemical and Surface Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Rob Ameloot
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Bloch K, Pardesi K, Satriano C, Ghosh S. Bacteriogenic Platinum Nanoparticles for Application in Nanomedicine. Front Chem 2021; 9:624344. [PMID: 33763405 PMCID: PMC7982945 DOI: 10.3389/fchem.2021.624344] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Nanoscale materials have recently gained wide attention due to their potential to revolutionize many technologies and industrial sectors, including information technology, homeland security, transportation, energy, food safety, environmental science, catalysis, photonics and medicine. Among various nanoparticles, platinum nanoparticles (PtNPs) are widely used for biomedical applications, including imaging, implants, photothermal therapy and drug delivery. Indeed, PtNPs possesses intrinsic antimicrobial, antioxidant, and anticancer properties. Also, due to their remarkable catalytic activity, they are able to reduce the intracellular reactive oxygen species (ROS) levels and impair the downstream pathways leading to inflammation. Various approaches, including both physical and chemical methods, are currently employed for synthesis of PtNPs. However, the use of hazardous reaction conditions and toxic chemicals in these processes poses a potential threat to the environment and severely compromise the biocompatibility of the nanoparticles. Hereby, increasing need for exploitation of novel routes for synthesis of PtNPs has led to development of biological fabrication using microbes, specifically bacteria. Herein, we present a most comprehensive report on biogenesis of PtNPs by several bacteria like Acinetobacter calcoaceticus, Desulfovibrio alaskensis, Escherichia coli, Shewanella algae, Plectonema boryanum, etc. An overview of the underlying mechanisms of both enzymatic and non-enzymatic methods of synthesis is included. Moreover, this review highlights the scope of developing optimized process to control the physicochemical properties, such as the nanoparticle surface chemistry, charge, size and shape, which, in turn, may affect their nanotoxicity and response at the biointerface for nanomedicine applications.
Collapse
Affiliation(s)
- Khalida Bloch
- Department of Microbiology, School of Science, RK University, Rajkot, India
| | - Karishma Pardesi
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Sougata Ghosh
- Department of Microbiology, School of Science, RK University, Rajkot, India
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| |
Collapse
|
10
|
Tajik S, Garkani-Nejad Z, Mahmoudi-Moghaddam H, Beitollahi H, Khabazzadeh H. Electrochemical Determination of Levodopa and Cabergoline by a Magnetic Core-Shell Iron (II,III) Oxide@Silica/Multiwalled Carbon Nanotube/Ionic Liquid/2-(4-Oxo-3-Phenyl-3,4-Dihydroquinazolinyl)- N′-Phenyl-Hydrazine Carbothioamide (FSCNT/IL/2PHC) Modified Carbon Paste Electrode. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1880425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Garkani-Nejad
- Chemistry Department, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hadi Mahmoudi-Moghaddam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental, Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Hojatollah Khabazzadeh
- Chemistry Department, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
11
|
Darmadi I, Nugroho FAA, Langhammer C. High-Performance Nanostructured Palladium-Based Hydrogen Sensors-Current Limitations and Strategies for Their Mitigation. ACS Sens 2020; 5:3306-3327. [PMID: 33181012 PMCID: PMC7735785 DOI: 10.1021/acssensors.0c02019] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022]
Abstract
Hydrogen gas is rapidly approaching a global breakthrough as a carbon-free energy vector. In such a hydrogen economy, safety sensors for hydrogen leak detection will be an indispensable element along the entire value chain, from the site of hydrogen production to the point of consumption, due to the high flammability of hydrogen-air mixtures. To stimulate and guide the development of such sensors, industrial and governmental stakeholders have defined sets of strict performance targets, which are yet to be entirely fulfilled. In this Perspective, we summarize recent efforts and discuss research strategies for the development of hydrogen sensors that aim at meeting the set performance goals. In the first part, we describe the state-of-the-art for fast and selective hydrogen sensors at the research level, and we identify nanostructured Pd transducer materials as the common denominator in the best performing solutions. As a consequence, in the second part, we introduce the fundamentals of the Pd-hydrogen interaction to lay the foundation for a detailed discussion of key strategies and Pd-based material design rules necessary for the development of next generation high-performance nanostructured Pd-based hydrogen sensors that are on par with even the most stringent and challenging performance targets.
Collapse
Affiliation(s)
- Iwan Darmadi
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Ferry Anggoro Ardy Nugroho
- DIFFER
- Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612
AJ Eindhoven, The Netherlands
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, De Boelelaan
1081, 1081 HV Amsterdam, The Netherlands
| | - Christoph Langhammer
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
12
|
Smith ME, Stastny AL, Lynch JA, Yu Z, Zhang P, Heineman WR. Indicator Dyes and Catalytic Nanoparticles for Irreversible Visual Hydrogen Sensing. Anal Chem 2020; 92:10651-10658. [DOI: 10.1021/acs.analchem.0c01769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michael E. Smith
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Angela L. Stastny
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - John A. Lynch
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Zhao Yu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Peng Zhang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - William R. Heineman
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
13
|
Trivedi S, Ravula S, Baker GA, Pandey S, Bright FV. Controlling Microarray Feature Spreading and Response Stability on Porous Silicon Platforms by Using Alkene-Terminal Ionic Liquids and UV Hydrosilylation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5474-5482. [PMID: 32338920 DOI: 10.1021/acs.langmuir.0c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In an attempt to develop reversible sensors based on ionic liquid/porous silicon (IL/pSi) platforms, we introduce an approach using task-specific, alkene-terminal ILs (AT-ILs) for direct grafting to the hydrogen-passivated as prepared-pSi (ap-pSi) surface via UV-hydrosilylation to address previous shortcomings associated with IL pattern impermanence (i.e., spread). By employing photoluminescence emission (PLE) and Fourier-transform infrared (FT-IR) imaging measurements, we demonstrate that the covalent grafting of AT-ILs onto the ap-pSi surface via photochemical hydrosilylation not only mitigates such feature spreading but also greatly improves PLE pattern stability. Significantly, we have discovered that, upon hydrosilylation, the resulting contact pin printed IL features remain stable to repeated challenges by toluene vapors, demonstrating the utility of AT-IL hydrosilylation for producing high-fidelity microarray features on pSi toward robust optical sensory microarrays.
Collapse
Affiliation(s)
- Shruti Trivedi
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Sudhir Ravula
- Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Science Center, School of Dentistry, 1100 Florida Avenue, New Orleans, Louisiana 70119, United States
| | - Gary A Baker
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Siddharth Pandey
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Frank V Bright
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
14
|
Electrodeposited copper nanoparticles in ionic liquid microchannels electrode for carbon dioxide sensor. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|