1
|
Tanaka YK, Ogra Y. Single-Cell Analysis of Elemental Contents by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2082-2089. [PMID: 39141521 DOI: 10.1021/jasms.4c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Elemental analysis at the single-cell level is an emerging technique in the field of inductively coupled plasma mass spectrometry (ICP-MS). In comparison to the analysis of cell suspensions by fast time-resolved analysis, single-cell sampling by laser ablation (LA) allows the discriminatory analysis of single cells according to their size and morphology. In this study, we evaluated the changes in elemental contents in a single cell through differentiation of rat adrenal pheochromocytoma into neuron-like cells by LA-ICP-MS. The contents of seven essential minerals were increased about 2-3 times after the differentiation. In addition, we evaluated the degree of differentiation at the single-cell level by means of imaging cytometry after immunofluorescence staining of microtubule-associated protein 2 (Map2), a neuron-specific protein. The fluorescence intensities of Alexa Fluor 488-conjugated secondary antibody against the anti-Map2 primary antibody showed large variations among the cells after the onset of differentiation. Although the average fluorescence intensity was increased through the differentiation, there were still less-matured neuron-like cells that exhibited a lower fluorescence intensity after 5 days of differentiation. Since a positive correlation between the fluorescence intensity and the cell size in area was found, we separately measured the elemental contents in the less-matured smaller cells and well-matured larger cells by LA-ICP-MS. The larger cells had higher elemental contents than the smaller cells, indicating that the essential minerals are highly required at a later stage of differentiation.
Collapse
Affiliation(s)
- Yu-Ki Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| |
Collapse
|
2
|
Li M, Zuo J, Yang K, Wang P, Zhou S. Proteomics mining of cancer hallmarks on a single-cell resolution. MASS SPECTROMETRY REVIEWS 2024; 43:1019-1040. [PMID: 37051664 DOI: 10.1002/mas.21842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 11/25/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Dysregulated proteome is an essential contributor in carcinogenesis. Protein fluctuations fuel the progression of malignant transformation, such as uncontrolled proliferation, metastasis, and chemo/radiotherapy resistance, which severely impair therapeutic effectiveness and cause disease recurrence and eventually mortality among cancer patients. Cellular heterogeneity is widely observed in cancer and numerous cell subtypes have been characterized that greatly influence cancer progression. Population-averaged research may not fully reveal the heterogeneity, leading to inaccurate conclusions. Thus, deep mining of the multiplex proteome at the single-cell resolution will provide new insights into cancer biology, to develop prognostic biomarkers and treatments. Considering the recent advances in single-cell proteomics, herein we review several novel technologies with particular focus on single-cell mass spectrometry analysis, and summarize their advantages and practical applications in the diagnosis and treatment for cancer. Technological development in single-cell proteomics will bring a paradigm shift in cancer detection, intervention, and therapy.
Collapse
Affiliation(s)
- Maomao Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Jing Zuo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ping Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Menero-Valdés P, Álvarez L, González-Iglesias H, Fernández B, Pereiro R. Unveiling compositional images of specific proteins in individual cells by LA-ICP-MS: Labelling with ruthenium red and metal nanoclusters. Anal Chim Acta 2024; 1317:342906. [PMID: 39030007 DOI: 10.1016/j.aca.2024.342906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 06/23/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Recent biological studies have demonstrated that changes can occur in the cellular genome and proteome due to variations in cell volume. Therefore, it is imperative to take cell volume into account when analyzing a target protein. This consideration becomes especially critical in experimental models involving cells subjected to different treatments. Failure to consider cell volume could obscure the studied biological phenomena or lead to erroneous conclusions. However, quantitative imaging of proteins within cells by LA-ICP-MS is limited by the lack of methods that provide the protein concentration (protein mass over cell volume) rather than just protein mass within individual cells. RESULTS The combination of a metal tagged immunoprobe with ruthenium red (RR) labelling enables the simultaneous analysis of a specific protein and the cell volume in each cell analyzed by LA-ICP-(Q)MS. The results indicate that the CYP1B1 concentration exhibits a quasi-normally distribution in control ARPE-19 cells, whereas AAPH-treated cells reveal the presence of two distinct cell groups, responding and non-responding cells to an in vitro induced oxidative stress. The labelling of the membrane with RR and the measurement of Ru mass in each cell by LA-ICP-MS offers higher precision compared to manually delimitation of the cell perimeter and eliminates the risk of biased information, which can be prone to inter-observer variability. The proposed procedure is fast and minimizes errors in cell area assignment and offers the possibility to carry out a faster data treatment approach if just relative volumes are compared, which can be advantageous for specific applications. SIGNIFICANCE AND NOVELTY This work presents an innovative strategy to directly study the distribution and concentration of proteins within individual cells by LA-ICP-MS. This method employs ruthenium red as a cell volume marker and Au nanoclusters (AuNCs) tagged immunoprobes to label the protein of interest. Furthermore, the proposed labelling strategy enables rapid data processing, allowing for the calculation of relative concentrations and thus facilitating the comparison across large datasets. As a proof-of-concept, the concentration of the CYP1B1 protein was quantified in ARPE-19 cells under both control and oxidative stress conditions.
Collapse
Affiliation(s)
- Paula Menero-Valdés
- Department of Physical and Analytical Chemistry, University of Oviedo, Faculty of Chemistry, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| | - Lydia Álvarez
- Fundación de Investigación Oftalmológica (FIO), Avda. Dres. Fernández-Vega, 34, 33012, Oviedo, Spain
| | - Héctor González-Iglesias
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Beatriz Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Faculty of Chemistry, Avda. Julián Clavería 8, 33006, Oviedo, Spain.
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Faculty of Chemistry, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
4
|
Billimoria K, Andresen E, Resch-Genger U, Goenaga-Infante H. A Strategy for Quantitative Imaging of Lanthanide Tags in A549 Cells Using the Ratio of Internal Standard Elements. Anal Chem 2024. [PMID: 39028702 DOI: 10.1021/acs.analchem.4c02763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
One remaining handicap for spatially resolved elemental quantification in biological samples is the lack of a suitable internal standard (IS) that can be reliably measured across both calibration standards and samples. In this work, multielement quantitative intracellular imaging of cells tagged with lanthanide nanoparticles containing key lanthanides, e.g., Eu and Ho, is described using a novel strategy that uses the ratio of IS elements and LA-ICP-TOFMS analysis. To achieve this, an internal standard layer is deposited onto microscope slides containing either gelatin calibration standards or Eu- and Ho-tagged cell samples. This IS layer contains both gallium (Ga) and indium (In). Monitoring either element as an IS individually showed significant variability in intensity signal between sample or standards prepared across multiple microscope slides, which is indicative of the difficulties in producing a homogeneous film at intracellular resolution. However, normalization of the lanthanide signal to the ratio of the IS elements improved the calibration correlation coefficients from 0.9885 to 0.9971 and 0.9805 to 0.9980 for Eu and Ho, respectively, while providing a consistent signal to monitor the ablation behavior between standards and samples. By analyzing an independent quality control (QC) gelatin sample spiked with Eu and Ho, it was observed that without normalization to the IS ratio the concentrations of Eu and Ho were highly biased by approximately 20% in comparison to the expected values. Similarly, this overestimation was also observed in the lanthanide concentration distribution of the cell samples in comparison with the normalized data.
Collapse
Affiliation(s)
- Kharmen Billimoria
- National Measurement Laboratory, LGC, Teddington, TW11 0LY, United Kingdom
| | - Elina Andresen
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin 12205, Germany
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin 12205, Germany
| | | |
Collapse
|
5
|
Niculescu AG, Mihaiescu B, Bîrcă AC, Moroșan A, Munteanu (Mihaiescu) OM, Vasile BȘ, Hadibarata T, Istrati D, Mihaiescu DE, Grumezescu AM. Fabrication and Advanced Imaging Characterization of Magnetic Aerogel-Based Thin Films for Water Decontamination. Gels 2024; 10:394. [PMID: 38920940 PMCID: PMC11202994 DOI: 10.3390/gels10060394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Aerogels have emerged as appealing materials for various applications due to their unique features, such as low density, high porosity, high surface area, and low thermal conductivity. Aiming to bring the advantages of these materials to the environmental field, this study focuses on synthesizing magnetic silica aerogel-based films suitable for water decontamination. In this respect, a novel microfluidic platform was created to obtain core-shell iron oxide nanoparticles that were further incorporated into gel-forming precursor solutions. Afterward, dip-coating deposition was utilized to create thin layers of silica-based gels, which were further processed by 15-hour gelation time, solvent transfer, and further CO2 desiccation. A series of physicochemical analyses (XRD, HR-MS FT-ICR, FT-IR, TEM, SEM, and EDS) were performed to characterize the final films and intermediate products. The proposed advanced imaging experimental model for film homogeneity and adsorption characteristics confirmed uniform aerogel film deposition, nanostructured surface, and ability to remove pesticides from contaminated water samples. Based on thorough investigations, it was concluded that the fabricated magnetic aerogel-based thin films are promising candidates for water decontamination and novel solid-phase extraction sample preparation.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Bogdan Mihaiescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
| | - Alina Moroșan
- Department of Organic Chemistry, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.M.); (D.I.)
| | - Oana Maria Munteanu (Mihaiescu)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
| | - Tony Hadibarata
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
- Department of Environmental Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri 98009, Malaysia
| | - Daniela Istrati
- Department of Organic Chemistry, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.M.); (D.I.)
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.M.); (D.I.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
6
|
Li L, Zhang Y, Zhou J, Wang J, Wang L. Single-cell metabolomics in rare disease: From technology to disease. Intractable Rare Dis Res 2024; 13:99-103. [PMID: 38836176 PMCID: PMC11145402 DOI: 10.5582/irdr.2023.01073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024] Open
Abstract
With the development of clinical experience and technology, rare diseases (RDs) are gradually coming into the limelight. As they often lead to poor prognosis, it is urgent to promote the accuracy and rapidity of diagnosis and promote the development of therapeutic drugs. In recent years, with the rapid improvement of single-cell sequencing technology, the advantages of multi-omics combined application in diseases have been continuously explored. Single-cell metabolomics represents a powerful tool for advancing our understanding of rare diseases, particularly metabolic RDs, and transforming clinical practice. By unraveling the intricacies of cellular metabolism at a single-cell resolution, this innovative approach holds the potential to revolutionize diagnosis, treatment, and management strategies, ultimately improving outcomes for RDs patients. Continued research and technological advancements in single-cell metabolomics are essential for realizing its full potential in the field of RDs diagnosis and therapeutics. It is expected that single-cell metabolomics can be better applied to RDs research in the future, for the benefit of patients and society.
Collapse
Affiliation(s)
- Lisha Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Yiqin Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
7
|
Francischini DDS, Arruda MAZ. One-point calibration and matrix-matching concept for quantification of potentially toxic elements in wood by LA-ICP-MS. Anal Bioanal Chem 2024; 416:2737-2748. [PMID: 37924375 DOI: 10.1007/s00216-023-04999-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023]
Abstract
The aim of this work is to evaluate two quantitative methods, based on the external calibration applied in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis, known as (i) analytical curve and (ii) one-point calibration, using the concept of matrix matching to quantify three potentially toxic elements (PTEs) in wood samples. These can biologically register changes in the abiotic environment and be applied to monitoring climate change or environmental toxicity. In this case, standard sample preparation was evaluated to prepare the standard pellets using Pinus taeda species as a matrix-matching concept. Six pellets of P. taeda, with different Pb, Cd, and Ba concentrations, were prepared to build the analytical curve and one-point calibration strategies. The LA-ICP-MS parameters were optimised for 206Pb, 208Pb, 112Cd, 114Cd, 137Ba, and 138Ba isotope analysis in wood samples. The two calibration strategies provided 74-110% analytical recovery from certified reference materials and similar results to those obtained by ICP-MS through the acid digestion of environmental wood samples from São Paulo City (Brazil). This demonstrated the applicability of the one-point calibration strategy in quantifying PTEs in wood samples, which could be used with environmental analyses. Differences observed between the Ba isotope results obtained via LA-ICP-MS and ICP-MS quantification were related to sampling by LA-ICP-MS and the ICP-MS sample introduction, as well as to laser matrix and transport effects because of the difference between the wood species evaluated.
Collapse
Affiliation(s)
- Danielle da Silva Francischini
- Spectrometry, Sample Preparation and Mechanization Group (GEPAM), Institute of Chemistry, University of Campinas, PO Box 6154, Campinas, SP, 13083-970, Brazil
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | - Marco Aurélio Zezzi Arruda
- Spectrometry, Sample Preparation and Mechanization Group (GEPAM), Institute of Chemistry, University of Campinas, PO Box 6154, Campinas, SP, 13083-970, Brazil.
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
8
|
Mello MG, Westerhausen MT, Lockwood TE, Singh P, Wanagat J, Bishop DP. Immunolabelling perturbs the endogenous and antibody-conjugated elemental concentrations during immuno-mass spectrometry imaging. Anal Bioanal Chem 2024; 416:2725-2735. [PMID: 37801117 PMCID: PMC10997740 DOI: 10.1007/s00216-023-04967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/28/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023]
Abstract
Immuno-mass spectrometry imaging uses lanthanide-conjugated antibodies to spatially quantify biomolecules via laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The multi-element capabilities allow for highly multiplexed analyses that may include both conjugated antibodies and endogenous metals to reveal relationships between disease and chemical composition. Sample handling is known to perturb the composition of the endogenous elements, but there has been little investigation into the effects of immunolabelling and coverslipping. Here, we used cryofixed muscle sections to examine the impact of immunolabelling steps on the concentrations of a Gd-conjugated anti-dystrophin primary antibody, and the endogenous metals Cu and Zn. Primary antibody incubation resulted in a decrease in Zn, and an increase in Cu. Zn was removed from the cytoplasm where it was hypothesised to be more labile, whereas concentrated locations of Zn remained in the cell membrane in all samples that underwent the immunostaining process. Cu increased in concentration and was found mostly in the cell membrane. The concentration of the Gd-conjugated antibody when compared to the standard air-dried sample was not significantly different when coverslipped using an organic mounting medium, whereas use of an aqueous mounting medium significantly reduced the concentration of Gd. These results build on the knowledge of how certain sample handling techniques change elemental concentrations and distributions in tissue sections. Immunolabelling steps impact the concentration of endogenous elements, and separate histological sections are required for the quantitative analysis of endogenous elements and biomolecules. Additionally, coverslipping tissue sections for complementary immunohistochemical/immunofluorescent imaging may compromise the integrity of the elemental label, and organic mounting media are recommended over aqueous mounting media.
Collapse
Affiliation(s)
- Monique G Mello
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia
| | - Mika T Westerhausen
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia
| | - Thomas E Lockwood
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia
| | - Prashina Singh
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia
| | - Jonathan Wanagat
- Division of Geriatrics, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
9
|
Becker P, Nauser T, Wiggenhauser M, Aeschlimann B, Frossard E, Günther D. In Vitro Fossilization for High Spatial Resolution Quantification of Elements in Plant-Tissue Using LA-ICP-TOFMS. Anal Chem 2024; 96:4952-4959. [PMID: 38482755 PMCID: PMC10975018 DOI: 10.1021/acs.analchem.3c05849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Laser ablation in combination with an inductively coupled plasma time-of-flight mass spectrometer (LA-ICP-TOFMS) is an upcoming method for rapid quantitative element mapping of various samples. While widespread in geological applications, quantification of elements in biotissues remains challenging. In this study, a proof-of-concept sample preparation method is presented in which plant-tissues are fossilized in order to solidify the complex biotissue matrix into a mineral-like matrix. This process enables quantification of elements by using silicone as an internal standard for normalization while also providing consistent ablation processes similar to minerals to reduce image blurring. Furthermore, it allows us to generate a quantitative image of the element composition at high spatial resolution. The feasibility of the approach is demonstrated on leaves of sunflowers (Helianthus annuus), soy beans (Glycine max), and corn (Zea mays) as representatives for common crops, which were grown on both nonspiked and cadmium-spiked agricultural soil. The quantitative results achieved during imaging were validated with digestion of whole leaves followed by ICP-OES analysis. LA-ICP-TOFMS element mapping of conventionally dried samples can provide misleading trends due to the irregular ablation behavior of biotissue because high signals caused by high ablation rates are falsely interpreted as enrichment of elements. Fossilization provides the opportunity to correct such phenomena by standardization with Si as an internal standard. The method demonstrated here allows for quantitative image acquisition without time-consuming sample preparation steps by using comparatively safe chemicals. The diversity of tested samples suggests that this sample preparation method is well-suited to achieve reproducible and quantitative element maps of various plant samples.
Collapse
Affiliation(s)
- Pascal Becker
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Thomas Nauser
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Matthias Wiggenhauser
- Institute of Agricultural Sciences, ETH Zurich, Eschikon 33, Lindau CH-8315, Switzerland
| | - Beat Aeschlimann
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Emmanuel Frossard
- Institute of Agricultural Sciences, ETH Zurich, Eschikon 33, Lindau CH-8315, Switzerland
| | - Detlef Günther
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
10
|
Perron N, Kirst M, Chen S. Bringing CAM photosynthesis to the table: Paving the way for resilient and productive agricultural systems in a changing climate. PLANT COMMUNICATIONS 2024; 5:100772. [PMID: 37990498 PMCID: PMC10943566 DOI: 10.1016/j.xplc.2023.100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Modern agricultural systems are directly threatened by global climate change and the resulting freshwater crisis. A considerable challenge in the coming years will be to develop crops that can cope with the consequences of declining freshwater resources and changing temperatures. One approach to meeting this challenge may lie in our understanding of plant photosynthetic adaptations and water use efficiency. Plants from various taxa have evolved crassulacean acid metabolism (CAM), a water-conserving adaptation of photosynthetic carbon dioxide fixation that enables plants to thrive under semi-arid or seasonally drought-prone conditions. Although past research on CAM has led to a better understanding of the inner workings of plant resilience and adaptation to stress, successful introduction of this pathway into C3 or C4 plants has not been reported. The recent revolution in molecular, systems, and synthetic biology, as well as innovations in high-throughput data generation and mining, creates new opportunities to uncover the minimum genetic tool kit required to introduce CAM traits into drought-sensitive crops. Here, we propose four complementary research avenues to uncover this tool kit. First, genomes and computational methods should be used to improve understanding of the nature of variations that drive CAM evolution. Second, single-cell 'omics technologies offer the possibility for in-depth characterization of the mechanisms that trigger environmentally controlled CAM induction. Third, the rapid increase in new 'omics data enables a comprehensive, multimodal exploration of CAM. Finally, the expansion of functional genomics methods is paving the way for integration of CAM into farming systems.
Collapse
Affiliation(s)
- Noé Perron
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32608, USA
| | - Matias Kirst
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32608, USA; School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, FL 32603, USA.
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS 38677-1848, USA.
| |
Collapse
|
11
|
Davison C, Beste D, Bailey M, Felipe-Sotelo M. Expanding the boundaries of atomic spectroscopy at the single-cell level: critical review of SP-ICP-MS, LIBS and LA-ICP-MS advances for the elemental analysis of tissues and single cells. Anal Bioanal Chem 2023; 415:6931-6950. [PMID: 37162524 PMCID: PMC10632293 DOI: 10.1007/s00216-023-04721-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023]
Abstract
Metals have a fundamental role in microbiology, and accurate methods are needed for their identification and quantification. The inability to assess cellular heterogeneity is considered an impediment to the successful treatment of different diseases. Unlike bulk approaches, single-cell analysis allows elemental heterogeneity across genetically identical populations to be related to specific biological events and to the effectiveness of drugs. Single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) can analyse single cells in suspension and measure this heterogeneity. Here we explore advances in instrumental design, compare mass analysers and discuss key parameters requiring optimisation. This review has identified that the effect of pre-treatment of cell suspensions and cell fixation approaches require further study and novel validation methods are needed as using bulk measurements is unsatisfactory. SP-ICP-MS has the advantage that a large number of cells can be analysed; however, it does not provide spatial information. Techniques based on laser ablation (LA) enable elemental mapping at the single-cell level, such as laser-induced breakdown spectroscopy (LIBS) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The sensitivity of commercial LIBS instruments restricts its use for sub-tissue applications; however, the capacity to analyse endogenous bulk components paired with developments in nano-LIBS technology shows great potential for cellular research. LA-ICP-MS offers high sensitivity for the direct analysis of single cells, but standardisation requires further development. The hyphenation of these trace elemental analysis techniques and their coupling with multi-omic technologies for single-cell analysis have enormous potential in answering fundamental biological questions.
Collapse
Affiliation(s)
- Claire Davison
- School of Chemistry and Chemical Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
- Department of Microbial Science, Faculty ofHealth and Medical Sciences, University of Surrey, Guildford, UK
| | - Dany Beste
- Department of Microbial Science, Faculty ofHealth and Medical Sciences, University of Surrey, Guildford, UK
| | - Melanie Bailey
- School of Chemistry and Chemical Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
| | - Mónica Felipe-Sotelo
- School of Chemistry and Chemical Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK.
| |
Collapse
|
12
|
Abstract
Lipids are essential cellular components forming membranes, serving as energy reserves, and acting as chemical messengers. Dysfunction in lipid metabolism and signaling is associated with a wide range of diseases including cancer and autoimmunity. Heterogeneity in cell behavior including lipid signaling is increasingly recognized as a driver of disease and drug resistance. This diversity in cellular responses as well as the roles of lipids in health and disease drive the need to quantify lipids within single cells. Single-cell lipid assays are challenging due to the small size of cells (∼1 pL) and the large numbers of lipid species present at concentrations spanning orders of magnitude. A growing number of methodologies enable assay of large numbers of lipid analytes, perform high-resolution spatial measurements, or permit highly sensitive lipid assays in single cells. Covered in this review are mass spectrometry, Raman imaging, and fluorescence-based assays including microscopy and microseparations.
Collapse
Affiliation(s)
- Ming Yao
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; , ,
| | | | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; , ,
| |
Collapse
|
13
|
Brožová K, Hantusch B, Kenner L, Kratochwill K. Spatial Proteomics for the Molecular Characterization of Breast Cancer. Proteomes 2023; 11:17. [PMID: 37218922 PMCID: PMC10204503 DOI: 10.3390/proteomes11020017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/30/2023] [Accepted: 04/23/2023] [Indexed: 05/24/2023] Open
Abstract
Breast cancer (BC) is a major global health issue, affecting a significant proportion of the female population and contributing to high rates of mortality. One of the primary challenges in the treatment of BC is the disease's heterogeneity, which can lead to ineffective therapies and poor patient outcomes. Spatial proteomics, which involves the study of protein localization within cells, offers a promising approach for understanding the biological processes that contribute to cellular heterogeneity within BC tissue. To fully leverage the potential of spatial proteomics, it is critical to identify early diagnostic biomarkers and therapeutic targets, and to understand protein expression levels and modifications. The subcellular localization of proteins is a key factor in their physiological function, making the study of subcellular localization a major challenge in cell biology. Achieving high resolution at the cellular and subcellular level is essential for obtaining an accurate spatial distribution of proteins, which in turn can enable the application of proteomics in clinical research. In this review, we present a comparison of current methods of spatial proteomics in BC, including untargeted and targeted strategies. Untargeted strategies enable the detection and analysis of proteins and peptides without a predetermined molecular focus, whereas targeted strategies allow the investigation of a predefined set of proteins or peptides of interest, overcoming the limitations associated with the stochastic nature of untargeted proteomics. By directly comparing these methods, we aim to provide insights into their strengths and limitations and their potential applications in BC research.
Collapse
Affiliation(s)
- Klára Brožová
- Core Facility Proteomics, Medical University of Vienna, 1090 Vienna, Austria
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1210 Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine, 1090 Vienna, Austria
| | - Brigitte Hantusch
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine, 1090 Vienna, Austria
- CBmed GmbH—Center for Biomarker Research in Medicine, 8010 Graz, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, 1090 Vienna, Austria
| | - Klaus Kratochwill
- Core Facility Proteomics, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
14
|
Metarapi D, Schweikert A, Jerše A, Schaier M, van Elteren JT, Koellensperger G, Theiner S, Šala M. Semiquantitative Analysis for High-Speed Mapping Applications of Biological Samples Using LA-ICP-TOFMS. Anal Chem 2023; 95:7804-7812. [PMID: 37122168 DOI: 10.1021/acs.analchem.3c01439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Laser ablation (LA) in combination with inductively coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) enables monitoring of elements from the entire mass range for every pixel, regardless of the isotopes of interest for a certain application. This provides nontargeted multi-element (bio-)imaging capabilities and the unique possibility to screen for elements that were initially not expected in the sample. Quantification of a large range of elements is limited as the preparation of highly multiplexed calibration standards for bioimaging applications by LA-ICP-(TOF)MS is challenging. In this study, we have developed a workflow for semiquantitative analysis by LA-ICP-TOFMS based on multi-element gelatin micro-droplet standards. The presented approach is intended for the mapping of biological samples due to the requirement of matrix-matched standards for accurate quantification in LA-ICPMS, a prerequisite that is given by the use of gelatin-based standards. A library of response factors was constructed based on 72 elements for the semiquantitative calculations. The presented method was evaluated in two stages: (i) on gelatin samples with known elemental concentrations and (ii) on real-world samples that included prime examples of bioimaging (mouse spleen and tumor tissue). The developed semiquantification approach was based on 10 elements as calibration standards and provided the determination of 136 nuclides of 63 elements, with errors below 25%, and for half of the nuclides, below 10%. A web application for quantification and semiquantification of LA-ICP(-TOF)MS data was developed, and a detailed description is presented to easily allow others to use the presented method.
Collapse
Affiliation(s)
- Dino Metarapi
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Andreas Schweikert
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Ana Jerše
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Martin Schaier
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | | | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Sarah Theiner
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Martin Šala
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Wheeler AM, Eberhard CD, Mosher EP, Yuan Y, Wilkins HN, Seneviratne HK, Orsburn BC, Bumpus NN. Achieving a Deeper Understanding of Drug Metabolism and Responses Using Single-Cell Technologies. Drug Metab Dispos 2023; 51:350-359. [PMID: 36627162 PMCID: PMC10029823 DOI: 10.1124/dmd.122.001043] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 01/12/2023] Open
Abstract
Recent advancements in single-cell technologies have enabled detection of RNA, proteins, metabolites, and xenobiotics in individual cells, and the application of these technologies has the potential to transform pharmacological research. Single-cell data has already resulted in the development of human and model species cell atlases, identifying different cell types within a tissue, further facilitating the characterization of tumor heterogeneity, and providing insight into treatment resistance. Research discussed in this review demonstrates that distinct cell populations express drug metabolizing enzymes to different extents, indicating there may be variability in drug metabolism not only between organs, but within tissue types. Additionally, we put forth the concept that single-cell analyses can be used to expose underlying variability in cellular response to drugs, providing a unique examination of drug efficacy, toxicity, and metabolism. We will outline several of these techniques: single-cell RNA-sequencing and mass cytometry to characterize and distinguish different cell types, single-cell proteomics to quantify drug metabolizing enzymes and characterize cellular responses to drug, capillary electrophoresis-ultrasensitive laser-induced fluorescence detection and single-probe single-cell mass spectrometry for detection of drugs, and others. Emerging single-cell technologies such as these can comprehensively characterize heterogeneity in both cell-type-specific drug metabolism and response to treatment, enhancing progress toward personalized and precision medicine. SIGNIFICANCE STATEMENT: Recent technological advances have enabled the analysis of gene expression and protein levels in single cells. These types of analyses are important to investigating mechanisms that cannot be elucidated on a bulk level, primarily due to the variability of cell populations within biological systems. Here, we summarize cell-type-specific drug metabolism and how pharmacologists can utilize single-cell approaches to obtain a comprehensive understanding of drug metabolism and cellular heterogeneity in response to drugs.
Collapse
Affiliation(s)
- Abigail M Wheeler
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Colten D Eberhard
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Eric P Mosher
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Yuting Yuan
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Hannah N Wilkins
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Herana Kamal Seneviratne
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Namandjé N Bumpus
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| |
Collapse
|
16
|
Menero-Valdés P, Lores-Padín A, Fernández B, Quarles CD, García M, González-Iglesias H, Pereiro R. Determination and localization of specific proteins in individual ARPE-19 cells by single cell and laser ablation ICP-MS using iridium nanoclusters as label. Talanta 2023; 253:123974. [PMID: 36195026 DOI: 10.1016/j.talanta.2022.123974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 09/25/2022] [Indexed: 12/13/2022]
Abstract
Single cell-inductively coupled plasma-mass spectrometry (sc-ICP-MS) and laser ablation (LA)-ICP-MS have been complementary employed to develop a comprehensive study of APOE and claudin-1 expression in ARPE-19 cells submitted to a glucose treatment (100 mM, 48 h) that induces oxidative stress conditions. Results were compared with control cells. The determination of the two proteins by ICP-MS was sequentially carried out using specific immunoprobes labelled with IrNCs that offer a huge amplification (1760 ± 90 atoms of Ir on average). A novel sample introduction system, the microFAST Single Cell set-up, was employed for sc-ICP-MS analysis. This introduction system resulted in a cellular transport efficiency of 85 ± 9% for ARPE-19 cells (91 ± 5% using a PtNPs standard). After the proper immunocytochemistry protocol with the specific IrNCs immunoprobes in cell suspensions (sc-ICP-MS), the mass of APOE and claudin-1 in individual ARPE-19 cells was obtained. Average detection limits per cell by sc-ICP-MS were 0.02 fg of APOE and 3 ag of claudin-1. The results of sample analyses obtained by sc-ICP-MS were validated with commercial ELISA kits. The distribution of both target proteins in individual cells (fixated in the chamber wall) was unveiled by LA-ICP-MS. The high amplification provided by the IrNCs immunoprobes allowed the identification of APOE and claudin-1 within individual ARPE-19 cells. High resolution images were obtained using a laser spot of 2 × 2 μm.
Collapse
Affiliation(s)
- Paula Menero-Valdés
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, Oviedo, 33006, Spain
| | - Ana Lores-Padín
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, Oviedo, 33006, Spain
| | - Beatriz Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, Oviedo, 33006, Spain.
| | - C Derrick Quarles
- Elemental Scientific, Inc., 7277 World Communications Drive, Omaha, NE, 68122, USA
| | - Montserrat García
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, Oviedo, 33012, Spain; Department of Cellular Morphology and Biology, Faculty of Medicine, Julian Clavería, Oviedo, 33006, Spain
| | - Héctor González-Iglesias
- Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, Oviedo, 33006, Spain.
| |
Collapse
|
17
|
da Silva ABS, Arruda MAZ. Single-cell ICP-MS to address the role of trace elements at a cellular level. J Trace Elem Med Biol 2023; 75:127086. [PMID: 36215757 DOI: 10.1016/j.jtemb.2022.127086] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/13/2022]
Abstract
The heterogeneity properties shown by cells or unicellular organisms have led to the development of analytical methods at the single-cell level. In this sense, considering the importance of trace elements in these biological systems, the inductively coupled plasma mass spectrometer (ICP-MS) configured for analyzing single cell has presented a high potential to assess the evaluation of elements in cells. Moreover, advances in instrumentation, such as coupling laser ablation to the tandem configuration (ICP-MS/MS), or alternative mass analyzers (ICP-SFMS and ICP-TOFMS), brought significant benefits, including sensitivity improvement, high-resolution imaging, and the cell fingerprint. From this perspective, the single-cell ICP-MS has been widely reported in studies involving many fields, from oncology to environmental research. Hence, it has contributed to finding important results, such as elucidating nanoparticle toxicity at the cellular level and vaccine development. Therefore, in this review, the theory of single-cell ICP-MS analysis is explored, and the applications in this field are pointed out. In addition, the instrumentation advances for single-cell ICP-MS are addressed.
Collapse
Affiliation(s)
- Ana Beatriz Santos da Silva
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil.
| | - Marco Aurélio Zezzi Arruda
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil
| |
Collapse
|
18
|
Schoeberl A, Gutmann M, Theiner S, Corte-Rodríguez M, Braun G, Vician P, Berger W, Koellensperger G. The copper transporter CTR1 and cisplatin accumulation at the single-cell level by LA-ICP-TOFMS. Front Mol Biosci 2022; 9:1055356. [PMID: 36518851 PMCID: PMC9742377 DOI: 10.3389/fmolb.2022.1055356] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/15/2022] [Indexed: 09/17/2023] Open
Abstract
More than a decade ago, studies on cellular cisplatin accumulation via active membrane transport established the role of the high affinity copper uptake protein 1 (CTR1) as a main uptake route besides passive diffusion. In this work, CTR1 expression, cisplatin accumulation and intracellular copper concentration was assessed for single cells revisiting the case of CTR1 in the context of acquired cisplatin resistance. The single-cell workflow designed for in vitro experiments enabled quantitative imaging at resolutions down to 1 µm by laser ablation-inductively coupled plasma-time-of-flight mass spectrometry (LA-ICP-TOFMS). Cisplatin-sensitive ovarian carcinoma cells A2780 as compared to the cisplatin-resistant subline A2780cis were investigated. Intracellular cisplatin and copper levels were absolutely quantified for thousands of individual cells, while for CTR1, relative differences of total CTR1 versus plasma membrane-bound CTR1 were determined. A markedly decreased intracellular cisplatin concentration accompanied by reduced copper concentrations was observed for single A2780cis cells, along with a distinctly reduced (total) CTR1 level as compared to the parental cell model. Interestingly, a significantly different proportion of plasma membrane-bound versus total CTR1 in untreated A2780 as compared to A2780cis cells was observed. This proportion changed in both models upon cisplatin exposure. Statistical analysis revealed a significant correlation between total and plasma membrane-bound CTR1 expression and cisplatin accumulation at the single-cell level in both A2780 and A2780cis cells. Thus, our study recapitulates the crosstalk of copper homeostasis and cisplatin uptake, and also indicates a complex interplay between subcellular CTR1 localization and cellular cisplatin accumulation as a driver for acquired resistance development.
Collapse
Affiliation(s)
- Anna Schoeberl
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Michael Gutmann
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sarah Theiner
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Mario Corte-Rodríguez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - Gabriel Braun
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Petra Vician
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Tajik M, Baharfar M, Donald WA. Single-cell mass spectrometry. Trends Biotechnol 2022; 40:1374-1392. [PMID: 35562238 DOI: 10.1016/j.tibtech.2022.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 01/21/2023]
Abstract
Owing to recent advances in mass spectrometry (MS), tens to hundreds of proteins, lipids, and small molecules can be measured in single cells. The ability to characterize the molecular heterogeneity of individual cells is necessary to define the full assortment of cell subtypes and identify their function. We review single-cell MS including high-throughput, targeted, mass cytometry-based approaches and antibody-free methods for broad profiling of the proteome and metabolome of single cells. The advantages and disadvantages of different methods are discussed, as well as the challenges and opportunities for further improvements in single-cell MS. These methods is being used in biomedicine in several applications including revealing tumor heterogeneity and high-content drug screening.
Collapse
Affiliation(s)
- Mohammad Tajik
- School of Chemistry, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
20
|
Braeuer S, Van Helden T, Van Acker T, Leroux O, Van Der Straeten D, Verbeken A, Borovička J, Vanhaecke F. Quantitative mapping of mercury and selenium in mushroom fruit bodies with laser ablation-inductively coupled plasma-mass spectrometry. Anal Bioanal Chem 2022; 414:7517-7530. [PMID: 35927365 PMCID: PMC9482896 DOI: 10.1007/s00216-022-04240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/26/2022] [Accepted: 07/19/2022] [Indexed: 11/19/2022]
Abstract
This work describes the development of a novel method for quantitative mapping of Hg and Se in mushroom fruit body tissues with laser ablation coupled to inductively coupled plasma-mass spectrometry (LA-ICP-MS). Different parameters of the protocol for preparation of the standards used for quantification via external calibration were assessed, e.g., the dissolution temperature of gelatin standards and the addition of chitosan and L-cysteine as additives to the gelatin-based calibration droplets to better match the sample matrix. While chitosan was not suited for this purpose, the presence of L-cysteine considerably improved the figures of merit of the calibration, leading to limits of detection of 0.006 and 0.3 µg g-1 for Hg and Se, respectively, at a pixel size of 20 × 20 µm. Further, an in-house reference material, ideally suited for the validation of the method for application to mushroom samples, was successfully prepared from a paste of Boletus edulis. The newly developed method was used to investigate the distribution of Hg and Se in tissue sections of five porcini mushroom individuals of three different species (Boletus edulis, Boletus aereus, and Boletus pinophilus) and one sample of a parasol mushroom (Macrolepiota procera). For one sample, additional areas were ablated at higher spatial resolution, with a laser spot size down to 5 µm, which allows a detailed investigation of the spatial distribution of Hg and Se in mushrooms.
Collapse
Affiliation(s)
- Simone Braeuer
- Atomic & Mass Spectrometry - A&MS research unit, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281 - S12, 9000, Ghent, Belgium.
- Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010, Graz, Austria.
| | - Tom Van Helden
- Atomic & Mass Spectrometry - A&MS research unit, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281 - S12, 9000, Ghent, Belgium
| | - Thibaut Van Acker
- Atomic & Mass Spectrometry - A&MS research unit, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281 - S12, 9000, Ghent, Belgium
| | - Olivier Leroux
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Annemieke Verbeken
- Research Group Mycology, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Jan Borovička
- Nuclear Physics Institute of the Czech Academy of Sciences, Hlavní 130, 25068, Husinec-Řež, Czech Republic
- Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 16500, Prague 6, Czech Republic
| | - Frank Vanhaecke
- Atomic & Mass Spectrometry - A&MS research unit, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281 - S12, 9000, Ghent, Belgium
| |
Collapse
|
21
|
Li W, Mu L, Zou Y, Wang W, Zhao H, Wu X, Liao S. Effect of Silkworm Pupa Protein Hydrolysates on Proliferation of Gastric Cancer Cells In Vitro. Foods 2022; 11:foods11152367. [PMID: 35954133 PMCID: PMC9368083 DOI: 10.3390/foods11152367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
The proliferation inhibition effects of the hydrolysates from silkworm pupa proteins on MGC-803 gastric cancer cells were investigated in this study. The specific morphological changes (cell membrane, cell nucleus and cytoskeleton) of cells were measured. In vitro, the proliferation of MGC-803 cells was inhibited by silkworm pupa protein hydrolysates (SPPHs) in a dose-dependent manner. The flow cytometry analysis showed that the blocking effect of SPPHs on the MGC-803 cells was mainly in the G0/G1-phase. The morphological changes, disintegration of the cytoskeleton and retardant cell cycles were probably related to the activation of apoptosis. Thus, SPPHs could be promising as a chemopreventive agent due to their ability to promote apoptosis of tumor cells.
Collapse
Affiliation(s)
- Weixin Li
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lixia Mu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
- Correspondence: ; Tel./Fax: +86-20-8723-6897
| | - Yuxiao Zou
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Weifei Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xuli Wu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Sentai Liao
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| |
Collapse
|
22
|
Chen J, Wang R, Ma M, Gao L, Zhao B, Xu M. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)-based strategies applied for the analysis of metal-binding protein in biological samples: an update on recent advances. Anal Bioanal Chem 2022; 414:7023-7033. [PMID: 35790569 DOI: 10.1007/s00216-022-04185-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/21/2022] [Accepted: 06/17/2022] [Indexed: 11/01/2022]
Abstract
New analytical strategies for metal-binding protein facilitate researchers learning about how metals play a significant role in life. Laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) offers many advantages for the metal analysis of biological samples and shows a promising future in protein analysis, but recent advances in LA-ICP-MS-based strategies for identifying metal-binding proteins via endogenous metals remain less updated yet. To present the current status in this field, the main analytical strategies for metal-binding proteins with LA-ICP-MS are reviewed here, including in situ analysis of biospecimens and ex situ analysis with gel electrophoresis. A critical discussion of challenges and future perspectives is also given. Multifarious laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS)-based strategies have been developed and applied to investigate the metal-binding proteins in biospecimens in situ or through gel electrophoresis ex situ over the past decades, facilitating researchers disclosing how essential metals are implicated in life or what proteins toxic metals will target.
Collapse
Affiliation(s)
- Jiahao Chen
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruixia Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghao Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lirong Gao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Zhao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China. .,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
23
|
Schweikert A, Theiner S, Šala M, Vician P, Berger W, Keppler BK, Koellensperger G. Quantification in bioimaging by LA-ICPMS - Evaluation of isotope dilution and standard addition enabled by micro-droplets. Anal Chim Acta 2022; 1223:340200. [DOI: 10.1016/j.aca.2022.340200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/27/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022]
|
24
|
Dong Y, Aharoni A. Image to insight: exploring natural products through mass spectrometry imaging. Nat Prod Rep 2022; 39:1510-1530. [PMID: 35735199 DOI: 10.1039/d2np00011c] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 2017 to 2022Mass spectrometry imaging (MSI) has become a mature molecular imaging technique that is well-matched for natural product (NP) discovery. Here we present a brief overview of MSI, followed by a thorough discussion of different MSI applications in NP research. This review will mainly focus on the recent progress of MSI in plants and microorganisms as they are the main producers of NPs. Specifically, the opportunity and potential of combining MSI with other imaging modalities and stable isotope labeling are discussed. Throughout, we focus on both the strengths and weaknesses of MSI, with an eye on future improvements that are necessary for the progression of MSI toward routine NP studies. Finally, we discuss new areas of research, future perspectives, and the overall direction that the field may take in the years to come.
Collapse
Affiliation(s)
- Yonghui Dong
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
25
|
Lores-Padín A, Fernández B, García M, González-Iglesias H, Pereiro R. Real matrix-matched standards for quantitative bioimaging of cytosolic proteins in individual cells using metal nanoclusters as immunoprobes-label: A case study using laser ablation ICP-MS detection. Anal Chim Acta 2022; 1221:340128. [DOI: 10.1016/j.aca.2022.340128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/19/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022]
|
26
|
Michalke B. Review about Powerful Combinations of Advanced and Hyphenated Sample Introduction Techniques with Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) for Elucidating Trace Element Species in Pathologic Conditions on a Molecular Level. Int J Mol Sci 2022; 23:ijms23116109. [PMID: 35682788 PMCID: PMC9181184 DOI: 10.3390/ijms23116109] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Element analysis in clinical or biological samples is important due to the essential role in clinical diagnostics, drug development, and drug-effect monitoring. Particularly, the specific forms of element binding, actual redox state, or their spatial distribution in tissue or in single cells are of interest in medical research. This review summarized exciting combinations of sophisticated sample delivery systems hyphenated to inductively coupled plasma-mass spectrometry (ICP-MS), enabling a broadening of information beyond the well-established outstanding detection capability. Deeper insights into pathological disease processes or intracellular distribution of active substances were provided, enabling a better understanding of biological processes and their dynamics. Examples were presented from spatial elemental mapping in tissue, cells, or spheroids, also considering elemental tagging. The use of natural or artificial tags for drug monitoring was shown. In the context of oxidative stress and ferroptosis iron, redox speciation gained importance. Quantification methods for Fe2+, Fe3+, and ferritin-bound iron were introduced. In Wilson’s disease, free and exchangeable copper play decisive roles; the respective paragraph provided information about hyphenated Cu speciation techniques, which provide their fast and reliable quantification. Finally, single cell ICP-MS provides highly valuable information on cell-to-cell variance, insights into uptake of metal-containing drugs, and their accumulation and release on the single-cell level.
Collapse
Affiliation(s)
- Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München-German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| |
Collapse
|
27
|
Schoeberl A, Gutmann M, Theiner S, Schaier M, Schweikert A, Berger W, Koellensperger G. Cisplatin Uptake in Macrophage Subtypes at the Single-Cell Level by LA-ICP-TOFMS Imaging. Anal Chem 2021; 93:16456-16465. [PMID: 34846133 PMCID: PMC8674877 DOI: 10.1021/acs.analchem.1c03442] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A high-throughput
laser ablation–inductively coupled plasma–time-of-flight
mass spectrometry (LA-ICP-TOFMS) workflow was implemented for quantitative
single-cell analysis following cytospin preparation of cells. For
the first time, in vitro studies on cisplatin exposure addressed human
monocytes and monocyte-derived macrophages (undifferentiated THP-1
monocytic cells, differentiated M0 macrophages, as well as further
polarized M1 and M2 phenotypes) at the single-cell level. The models
are of particular interest as macrophages comprise the biggest part
of immune cells present in the tumor microenvironment and play an
important role in modulating tumor growth and progression. The introduced
bioimaging workflow proved to be universally applicable to adherent
and suspension cell cultures and fit-for-purpose for the quantitative
analysis of several hundreds of cells within minutes. Both, cross-validation
of the method with single-cell analysis in suspension for THP-1 cells
and with LA-ICP-TOFMS analysis of adherent M0 cells grown on chambered
glass coverslips, revealed agreeing platinum concentrations at the
single-cell level. A high incorporation of cisplatin was observed
in M2 macrophages compared to the M0 and M1 macrophage subtypes and
the monocyte model, THP-1. The combination with bright-field images
and monitoring of highly abundant endogenous elements such as phosphorus
and sodium at a high spatial resolution allowed assessing cell size
and important morphological cell parameters and thus straightforward
control over several cell conditions. This way, apoptotic cells and
cell debris as well as doublets or cell clusters could be easily excluded
prior to data evaluation without additional staining.
Collapse
Affiliation(s)
- Anna Schoeberl
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Michael Gutmann
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| | - Sarah Theiner
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Martin Schaier
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Andreas Schweikert
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria.,Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
28
|
Zhu Y. Single-cell Analysis Based on ICP-MS. ANAL SCI 2021; 37:1653-1654. [PMID: 34897178 DOI: 10.2116/analsci.highlights2112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yanbei Zhu
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
29
|
Liu T, Bolea-Fernandez E, Mangodt C, De Wever O, Vanhaecke F. Single-event tandem ICP-mass spectrometry for the quantification of chemotherapeutic drug-derived Pt and endogenous elements in individual human cells. Anal Chim Acta 2021; 1177:338797. [PMID: 34482885 DOI: 10.1016/j.aca.2021.338797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/05/2021] [Accepted: 06/22/2021] [Indexed: 11/27/2022]
Abstract
Single cell - tandem ICP-mass spectrometry (SC-ICP-MS/MS) was used for the determination of the absolute amount of Pt (coming from exposure to various concentration levels of cisplatin as a chemotherapeutic drug) and five endogenous elements (P, S, Fe, Cu and Zn) in individual human cells of three different types - Raji, Jurkat and Y79. Optimum conditions were obtained by using a sample introduction unit transporting cell suspension containing approx. 5 × 104 cells per mL at a flow rate of 10 μL min-1 to a nebulizer with narrow internal diameter (250 μm i.d.), mounted onto a total consumption spray chamber. Interference-free conditions were obtained in tandem MS mode (i) for P and S by pressurizing the collision/reaction cell (CRC) with O2 and monitoring the PO+ and SO + reaction product ions and (ii) for Fe by pressurizing the CRC with NH3 and monitoring the Fe(NH3)2+ reaction product ion. The quantification approach was validated by comparison of the absolute amounts of the target elements (in fg per cell) as obtained using SC-ICP-MS/MS with those obtained after acid digestion of approx. 2 × 106 cells and subsequent solution ICP-MS/MS analysis ("bulk" analysis). A higher Pt cell content was observed upon increasing the concentration of the cisplatin solution the cells were exposed to during 24 h. The Pt mass per cell (fg) increased linearly as a function of the cisplatin concentration, but a higher Pt uptake was found in the case of Jurkat cells compared to the other cell types. A cell viability assay showed a lack of chemosensitivity to cisplatin below 200 μM for the Raji and Y79 cell line, but an IC50 value of 11.1 ± 1.3 μM for Jurkat cells. This difference in chemo-responsiveness between the different cell types supported the difference in Pt uptake as indicated via SC-ICP-MS analysis. The increasing level of Pt did not have a marked effect on the contents of the endogenous elements monitored in Raji and Y79 cells, but a decrease in the P and S cell content upon increasing cisplatin treatment was observed for Jurkat cells. This can most likely be attributed to stress induced by the chemotherapeutic treatment in cells showing chemosensitivity towards cisplatin. The results also indicate differences in the absolute amount of endogenous element per cell between different cell types, suggesting the potential of SC-ICP-MS as a "metallo-fingerprinting" tool.
Collapse
Affiliation(s)
- Tong Liu
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry, A&MS Research Group, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium; Cancer Research Institute Ghent - CRIG, 9000, Ghent, Belgium
| | - Eduardo Bolea-Fernandez
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry, A&MS Research Group, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium; Cancer Research Institute Ghent - CRIG, 9000, Ghent, Belgium.
| | - Christophe Mangodt
- Ghent University, Department of Human Structure and Repair, Laboratory of Experimental Cancer Research - LECR, C. Heymanslaan 10, 9000, Ghent, Belgium; Cancer Research Institute Ghent - CRIG, 9000, Ghent, Belgium
| | - Olivier De Wever
- Ghent University, Department of Human Structure and Repair, Laboratory of Experimental Cancer Research - LECR, C. Heymanslaan 10, 9000, Ghent, Belgium; Cancer Research Institute Ghent - CRIG, 9000, Ghent, Belgium
| | - Frank Vanhaecke
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry, A&MS Research Group, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium; Cancer Research Institute Ghent - CRIG, 9000, Ghent, Belgium
| |
Collapse
|
30
|
Lum JTS, Chan YN, Leung KSY. Current applications and future perspectives on elemental analysis of non-invasive samples for human biomonitoring. Talanta 2021; 234:122683. [PMID: 34364482 DOI: 10.1016/j.talanta.2021.122683] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/09/2022]
Abstract
Humans are continuously exposed to numerous environmental pollutants including potentially toxic elements. Essential elements play an important role in human health. Abnormal elemental levels in the body, in different forms that existed, have been reported to be correlated with different diseases and environmental exposure. Blood is the conventional biological sample used in human biomonitoring. However, blood samples can only reflect short-term exposure and require invasive sampling, which poses infection risk to individuals. In recent years, the number of research evaluating the effectiveness of non-invasive samples (hair, nails, urine, meconium, breast milk, placenta, cord blood, saliva and teeth) for human biomonitoring is increasing. These samples can be collected easily and provide extra information in addition to blood analysis. Yet, the correlation between the elemental concentration in non-invasive samples and in blood is not well established, which hinders the application of those samples in routine human biomonitoring. This review aims at providing a fundamental overview of analytical methods of non-invasive samples in human biomonitoring. The content covers the sample collection and pretreatment, sample preparation and instrumental analysis. The technical discussions are separated into solution analysis and solid analysis. In the last section, the authors highlight some of the perspectives on the future of elemental analysis in human biomonitoring.
Collapse
Affiliation(s)
- Judy Tsz-Shan Lum
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Yun-Nam Chan
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China.
| |
Collapse
|
31
|
Costa IM, Cheng J, Osytek KM, Imberti C, Terry SYA. Methods and techniques for in vitro subcellular localization of radiopharmaceuticals and radionuclides. Nucl Med Biol 2021; 98-99:18-29. [PMID: 33964707 PMCID: PMC7610823 DOI: 10.1016/j.nucmedbio.2021.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 12/28/2022]
Abstract
In oncology, the holy grail of radiotherapy is specific radiation dose deposition in tumours with minimal healthy tissue toxicity. If used appropriately, injectable, systemic radionuclide therapies could meet these criteria, even for treatment of micrometastases and single circulating tumour cells. The clinical use of α and β- particle-emitting molecular radionuclide therapies is rising, however clinical translation of Auger electron-emitting radionuclides is hampered by uncertainty around their exact subcellular localisation, which in turn affects the accuracy of dosimetry. This review aims to discuss and compare the advantages and disadvantages of various subcellular localisation methods available to localise radiopharmaceuticals and radionuclides for in vitro investigations.
Collapse
Affiliation(s)
- Ines M Costa
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Jordan Cheng
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Katarzyna M Osytek
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Cinzia Imberti
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom; Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Samantha Y A Terry
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom.
| |
Collapse
|
32
|
Sullivan KV, Moore RET, Capper MS, Schilling K, Goddard K, Ion C, Layton-Matthews D, Leybourne MI, Coles B, Kreissig K, Antsygina O, Coombes RC, Larner F, Rehkämper M. Zinc stable isotope analysis reveals Zn dyshomeostasis in benign tumours, breast cancer, and adjacent histologically normal tissue. Metallomics 2021; 13:6273136. [PMID: 33970272 DOI: 10.1093/mtomcs/mfab027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022]
Abstract
The disruption of Zn homeostasis has been linked with breast cancer development and progression. To enhance our understanding of changes in Zn homeostasis both inside and around the tumour microenvironment, Zn concentrations and isotopic compositions (δ66Zn) were determined in benign (BT) and malignant (MT) tumours, healthy tissue from reduction mammoplasty (HT), and histologically normal tissue adjacent to benign (NAT(BT)) and malignant tumours (NAT(MT)). Mean Zn concentrations in NAT(BT) are 5.5 µg g-1 greater than in NAT(MT) (p = 0.00056) and 5.1 µg g-1 greater than in HT (p = 0.0026). Zinc concentrations in MT are 12.9 µg g-1 greater than in HT (p = 0.00012) and 13.3 µg g-1 greater than in NAT(MT) (p < 0.0001), whereas δ66Zn is 0.17‰ lower in MT than HT (p = 0.017). Benign tumour Zn concentrations are also elevated compared to HT (p = 0.00013), but are not significantly elevated compared to NAT(BT) (p = 0.32). The δ66Zn of BT is 0.15‰ lower than in NAT(BT) (p = 0.045). The similar light δ66Zn of BT and MT compared to HT and NAT may be related to the isotopic compensation of increased metallothionein (64Zn-rich) expression by activated matrix metalloproteinase (66Zn-rich) in MT, and indicates a resultant 66Zn-rich reservoir may exist in patients with breast tumours. Zinc isotopic compositions thus show promise as a potential diagnostic tool for the detection of breast tumours. The revealed differences of Zn accumulation in healthy and tumour-adjacent tissues require additional investigation.
Collapse
Affiliation(s)
- Kaj V Sullivan
- Department of Geological Sciences and Geological Engineering, Queen's University, 36 Union Street, Kingston, K7L 2N8, Canada.,Department of Earth Science & Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Rebekah E T Moore
- Department of Earth Science & Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Miles S Capper
- Department of Earth Science & Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Kathrin Schilling
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
| | - Kate Goddard
- Department of Surgery and Cancer, Imperial College, ICTEM, Hammersmith Hospital, Du Cane Rd, London W12 ONS, UK
| | - Charlotte Ion
- Department of Surgery and Cancer, Imperial College, ICTEM, Hammersmith Hospital, Du Cane Rd, London W12 ONS, UK
| | - Daniel Layton-Matthews
- Department of Geological Sciences and Geological Engineering, Queen's University, 36 Union Street, Kingston, K7L 2N8, Canada
| | - Matthew I Leybourne
- Department of Geological Sciences and Geological Engineering, Queen's University, 36 Union Street, Kingston, K7L 2N8, Canada.,Arthur B. McDonald Canadian Astroparticle Physics Research Institute, Department of Physics, Engineering Physics & Astronomy, Queen's University, 64 Bader Lane, Kingston, K7L 3N6, Canada
| | - Barry Coles
- Department of Earth Science & Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Katharina Kreissig
- Department of Earth Science & Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Olga Antsygina
- Healthy Active Living and Obesity Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada.,Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - R Charles Coombes
- Department of Surgery and Cancer, Imperial College, ICTEM, Hammersmith Hospital, Du Cane Rd, London W12 ONS, UK
| | - Fiona Larner
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK.,St Catherine's College, Manor Road, Oxford OX1 3UJ, UK.,Science & Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0DE, UK
| | - Mark Rehkämper
- Department of Earth Science & Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| |
Collapse
|
33
|
Schweikert A, Theiner S, Wernitznig D, Schoeberl A, Schaier M, Neumayer S, Keppler BK, Koellensperger G. Micro-droplet-based calibration for quantitative elemental bioimaging by LA-ICPMS. Anal Bioanal Chem 2021; 414:485-495. [PMID: 33954828 PMCID: PMC8748332 DOI: 10.1007/s00216-021-03357-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/02/2021] [Accepted: 04/16/2021] [Indexed: 12/29/2022]
Abstract
In this work, a novel standardization strategy for quantitative elemental bioimaging is evaluated. More specifically, multi-element quantification by laser ablation-inductively coupled plasma-time-of-flight mass spectrometry (LA-ICP-TOFMS) is performed by multi-point calibration using gelatin-based micro-droplet standards and validated using in-house produced reference materials. Fully automated deposition of micro-droplets by micro-spotting ensured precise standard volumes of 400 ± 5 pL resulting in droplet sizes of around 200 μm in diameter. The small dimensions of the micro-droplet standards and the use of a low-dispersion laser ablation setup reduced the analysis time required for calibration by LA-ICPMS significantly. Therefore, as a key advance, high-throughput analysis (pixel acquisition rates of more than 200 Hz) enabled to establish imaging measurement sequences with quality control- and standardization samples comparable to solution-based quantification exercises by ICP-MS. Analytical figures of merit such as limit of detection, precision, and accuracy of the calibration approach were assessed for platinum and for elements with biological key functions from the lower mass range (phosphorus, copper, and zinc). As a proof-of-concept application, the tool-set was employed to investigate the accumulation of metal-based anticancer drugs in multicellular tumor spheroid models at clinically relevant concentrations. Graphical abstract ![]()
Collapse
Affiliation(s)
- Andreas Schweikert
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria.,Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Sarah Theiner
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria.
| | - Debora Wernitznig
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Anna Schoeberl
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
| | - Martin Schaier
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
| | - Sophie Neumayer
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
| |
Collapse
|
34
|
Taylor M, Lukowski JK, Anderton CR. Spatially Resolved Mass Spectrometry at the Single Cell: Recent Innovations in Proteomics and Metabolomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:872-894. [PMID: 33656885 PMCID: PMC8033567 DOI: 10.1021/jasms.0c00439] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 05/02/2023]
Abstract
Biological systems are composed of heterogeneous populations of cells that intercommunicate to form a functional living tissue. Biological function varies greatly across populations of cells, as each single cell has a unique transcriptome, proteome, and metabolome that translates to functional differences within single species and across kingdoms. Over the past decade, substantial advancements in our ability to characterize omic profiles on a single cell level have occurred, including in multiple spectroscopic and mass spectrometry (MS)-based techniques. Of these technologies, spatially resolved mass spectrometry approaches, including mass spectrometry imaging (MSI), have shown the most progress for single cell proteomics and metabolomics. For example, reporter-based methods using heavy metal tags have allowed for targeted MS investigation of the proteome at the subcellular level, and development of technologies such as laser ablation electrospray ionization mass spectrometry (LAESI-MS) now mean that dynamic metabolomics can be performed in situ. In this Perspective, we showcase advancements in single cell spatial metabolomics and proteomics over the past decade and highlight important aspects related to high-throughput screening, data analysis, and more which are vital to the success of achieving proteomic and metabolomic profiling at the single cell scale. Finally, using this broad literature summary, we provide a perspective on how the next decade may unfold in the area of single cell MS-based proteomics and metabolomics.
Collapse
Affiliation(s)
- Michael
J. Taylor
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jessica K. Lukowski
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Christopher R. Anderton
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
35
|
Marković S, Uršič K, Cemazar M, Sersa G, Starešinič B, Milačič R, Ščančar J. High spatial resolution imaging of cisplatin and Texas Red cisplatin in tumour spheroids using laser ablation isotope dilution inductively coupled plasma mass spectrometry and confocal fluorescence microscopy. Anal Chim Acta 2021; 1162:338424. [PMID: 33926700 DOI: 10.1016/j.aca.2021.338424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/20/2021] [Accepted: 03/16/2021] [Indexed: 01/03/2023]
Abstract
Oncology research uses different imaging techniques to provide information about the spatial distribution of the chemotherapy drugs used for the targeted tissues. Among them, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is increasingly being used to track the spatial distribution of metal-based chemotherapeutics in different tissue samples. In this investigation, instrumental parameters were optimized for the bioimaging of Pt in HT29 tumour spheroids treated with cisplatin (CDDP) or Texas Red cisplatin (TR-CDDP) using LA-ICP-MS. A high spatial resolution, using pixel dimensions of 2.0 μm × 2.5 μm, and a high sensitivity, with the limits of detection (LOD) better than 0.78 mg kg-1 Pt, was achieved. Matrix-matched gelatine standards and/or isotope dilution (ID) analyses were used to quantify the amount of Pt. Differences between the results of the Pt concentrations determined by the two quantification were less than 4%. The results of the LA analysis revealed that the Pt in the CDDP-treated tumour spheroids was localized primarily in the outer rim of the spheroids and to a lesser extent in the intermediary layer and the necrotic core. Due to the steric effects, significantly lower Pt concentrations were accumulated in the spheroids treated with TR-CDDP (2.2 times lower than in CDDP-treated spheroids, normalized to the spheroid volume), while the Pt was mostly distributed in the areas of the outer rim. Finally, imaging with confocal fluorescence microscopy, which is commonly used in oncology research, was compared with that by LA-ICP-MS. The results of the two complementary techniques demonstrated good agreement in terms of the spatial distribution of the TR-CDDP, while the intensity of the fluorescence matched well with the concentrations of Pt determined with LA-ICP-MS.
Collapse
Affiliation(s)
- Stefan Marković
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, 1000, Ljubljana, Slovenia
| | - Katja Uršič
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloška Cesta 2, 1000, Ljubljana, Slovenia; Biotechnical Faculty, University of Ljubljana, Jamnikarjeva Ulica 101, 1000, Ljubljana, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloška Cesta 2, 1000, Ljubljana, Slovenia; Faculty of Health Sciences, University of Primorska, Polje 42, 6310, Izola, Slovenia
| | - Gregor Sersa
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloška Cesta 2, 1000, Ljubljana, Slovenia; Faculty of Health Sciences, University of Ljubljana, Zdravstvena Pot 5, 1000, Ljubljana, Slovenia
| | - Barbara Starešinič
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloška Cesta 2, 1000, Ljubljana, Slovenia
| | - Radmila Milačič
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, 1000, Ljubljana, Slovenia
| | - Janez Ščančar
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
36
|
Pisonero J, Traub H, Cappella B, Álvarez-Llamas C, Méndez A, Richter S, Encinar JR, Costa-Fernandez JM, Bordel N. Exploring quantitative cellular bioimaging and assessment of CdSe/ZnS quantum dots cellular uptake in single cells, using ns-LA-ICP-SFMS. Talanta 2021; 227:122162. [PMID: 33714466 DOI: 10.1016/j.talanta.2021.122162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/12/2021] [Accepted: 01/25/2021] [Indexed: 01/25/2023]
Abstract
Quantitative bioimaging of Quantum Dots (QDs) uptake in single cells by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a challenging task due to the high sensitivity and high spatial resolution required, and to the lack of matrix-matched reference materials. In this work, high spatially resolved quantitative bioimaging of CdSe/ZnS QDs uptake in single HT22 mouse hippocampal neuronal cells and in single HeLa human cervical carcinoma cells is novelty investigated combining: (a) the use of a ns-LA-ICP-Sector Field (SF)MS unit with mono-elemental fast and sensitive single pulse response for 114Cd+; and (b) the spatially resolved analysis of dried pL-droplets from a solution with a known concentration of these QDs to obtain a response factor that allows quantification of elemental bioimages. Single cells and dried pL-droplets are morphologically characterized by Atomic Force Microscopy (AFM) to determine their volume and thickness distribution. Moreover, operating conditions (e.g. spot size, energy per laser pulse, etc.) are optimized to completely ablate the cells and pL droplets at high spatial resolution. Constant operating conditions for the analysis of the single cells and calibrating samples is employed to reduce potential fractionation effects related to mass load effects in the ICP. A number concentration of CdSe/ZnS QDs between 3.5 104 and 48 104 is estimated to be uptaken by several selected single HT22 and HeLa cells, after being incubated in the presence of a QDs suspension added to a standard cell culture medium. Mono-elemental bioimaging at subcellular resolution seems to show a higher number concentration of the CdSe/ZnS QDs in the cytosol around the cell nucleus.
Collapse
Affiliation(s)
- J Pisonero
- Department of Physics, University of Oviedo, C/ Federico García Lorca, Nº18, 33007, Oviedo, Spain.
| | - H Traub
- Bundesanstalt für Materialforschung und -prüfung, (BAM), Unter Den Eichen 87, 12205, Berlin, Germany
| | - B Cappella
- Bundesanstalt für Materialforschung und -prüfung, (BAM), Unter Den Eichen 87, 12205, Berlin, Germany
| | - C Álvarez-Llamas
- Department of Analytical Chemistry, University of Malaga, 29071, Málaga, Spain
| | - A Méndez
- Department of Physics, University of Oviedo, C/ Federico García Lorca, Nº18, 33007, Oviedo, Spain
| | - S Richter
- Bundesanstalt für Materialforschung und -prüfung, (BAM), Unter Den Eichen 87, 12205, Berlin, Germany
| | - J Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julian Claveria, 8, 33006, Oviedo, Spain
| | - J M Costa-Fernandez
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julian Claveria, 8, 33006, Oviedo, Spain
| | - N Bordel
- Department of Physics, University of Oviedo, C/ Federico García Lorca, Nº18, 33007, Oviedo, Spain
| |
Collapse
|
37
|
Affiliation(s)
- Keke Hu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Tho D. K. Nguyen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Stefania Rabasco
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Pieter E. Oomen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
- ParaMedir B.V., 1e Energieweg 13, 9301 LK Roden, The Netherlands
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| |
Collapse
|
38
|
Sun QX, Wei X, Zhang SQ, Chen ML, Yang T, Yu YL, Wang JH. Dual-mode imaging of copper transporter 1 in HepG2 cells by hyphenating confocal laser scanning microscopy with laser ablation ICPMS. Anal Bioanal Chem 2021; 413:1353-1361. [PMID: 33404748 DOI: 10.1007/s00216-020-03097-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/25/2020] [Indexed: 11/29/2022]
Abstract
Copper transporter 1 (CTR1) is a transport protein involved in copper and cisplatin uptake. The visualization of cellular CTR1 migration and its redistribution is highly important in copper/cisplatin exposure/transport. However, to the best of our knowledge, this is a highly challenging task. Herein, a dual-mode imaging strategy for CTR1 is developed by hyphenating confocal laser scanning microscopy (CLSM) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) with a fluorescent/elemental bifunctional tag conjugated with anti-CTR1 antibody. The tag consists of rhodamine B and zirconium metal-organic frameworks (Zr-MOF) for CLSM fluorescence imaging and LA-ICPMS element imaging for a same group of HepG2 cells in a designated visual zone. This dual-mode imaging strategy facilitates visualization of CTR1 migration and meanwhile provides information of CTR1 redistribution in HepG2 cells by uptake of divalent copper or cisplatin. The present dual-mode imaging strategy provides in-depth information for the elucidation of CTR1 involved biological processes. Graphical abstract.
Collapse
Affiliation(s)
- Qi-Xuan Sun
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Shang-Qing Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China.
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China.
| |
Collapse
|
39
|
Amais RS, Donati GL, Zezzi Arruda MA. ICP-MS and trace element analysis as tools for better understanding medical conditions. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116094] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Voloaca OM, Greenhalgh CJ, Cole LM, Clench MR, Managh AJ, Haywood-Small SL. Laser ablation inductively coupled plasma mass spectrometry as a novel clinical imaging tool to detect asbestos fibres in malignant mesothelioma. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8906. [PMID: 32700418 DOI: 10.1002/rcm.8906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Malignant pleural mesothelioma is an extremely aggressive and incurable malignancy associated with prior exposure to asbestos fibres. Difficulties remain in relation to early diagnosis, notably due to impeded identification of asbestos in lung tissue. This study describes a novel laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) imaging approach to identify asbestos within mesothelioma models with clinical significance. METHODS Human mesothelioma cells were exposed to different types of asbestos fibres and prepared on plastic slides for LA-ICP-MS analysis. No further sample preparation was required prior to analysis, which was performed using an NWR Image 266 nm laser ablation system coupled to an Element XR sector-field ICP mass spectrometer, with a lateral resolution of 2 μm. Data was processed using LA-ICP-MS ImageTool v1.7 with the final graphic production made using DPlot software. RESULTS Four different mineral fibres were successfully identified within the mesothelioma samples based on some of the most abundant elements that make up these fibres (Si, Mg and Fe). Using LA-ICP-MS as an imaging tool provided information on the spatial distribution of the fibres at cellular level, which is essential in asbestos detection within tissue samples. Based on the metal counts generated by the different types of asbestos, different fibres can be identified based on shape, size, and elemental composition. Detection of Ca was attempted but requires further optimisation. CONCLUSIONS Detection of asbestos fibres in lung tissues is very useful, if not necessary, to complete the pathological dt9iagnosis of asbestos-related malignancies in the medicolegal field. For the first time, this study demonstrates the successful application of LA-ICP-MS imaging to identify asbestos fibres and other mineral fibres within mesothelioma samples. Ultimately, high-resolution, fast-speed LA-ICP-MS analysis has the potential to be integrated into clinical workflow to aid earlier detection and stratification of mesothelioma patient samples.
Collapse
Affiliation(s)
- Oana M Voloaca
- Biomolecular Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield, S1 1WB, UK
| | - Calum J Greenhalgh
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| | - Laura M Cole
- Biomolecular Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield, S1 1WB, UK
| | - Malcolm R Clench
- Biomolecular Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield, S1 1WB, UK
| | - Amy J Managh
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| | - Sarah L Haywood-Small
- Biomolecular Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield, S1 1WB, UK
| |
Collapse
|
41
|
Yu X, He M, Chen B, Hu B. Recent advances in single-cell analysis by inductively coupled plasma-mass spectrometry: A review. Anal Chim Acta 2020; 1137:191-207. [DOI: 10.1016/j.aca.2020.07.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022]
|
42
|
Wei X, Lu Y, Zhang X, Chen ML, Wang JH. Recent advances in single-cell ultra-trace analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115886] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Grijalba N, Legrand A, Holler V, Bouvier-Capely C. A novel calibration strategy based on internal standard-spiked gelatine for quantitative bio-imaging by LA-ICP-MS: application to renal localization and quantification of uranium. Anal Bioanal Chem 2020; 412:3113-3122. [PMID: 32193588 PMCID: PMC7200646 DOI: 10.1007/s00216-020-02561-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/17/2020] [Accepted: 02/28/2020] [Indexed: 10/31/2022]
Abstract
Mass spectrometry imaging (MSI) using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been employed for the elemental bio-distribution and quantification of uranium (U) in histological tissue sections of rodent kidneys. Kidneys were immediately immersed into 4% paraformaldehyde (PFA) solution for 24 h, Tissue-Tek O.C.T. Compound embedded and stored at - 80 °C until cutting in a cryostat, and mounted in gel-covered glass slides. In order to assure complete ablation of sample, sample preparation and laser conditions were carefully optimized. In this work, a new analytical methodology is presented for performing quantitative laser ablation analyses based on internal standard (thulium, Tm)-spiked gelatine (10% m/v) for correction of matrix effects, lack of tissue homogeneity, and instrumental drift. In parallel, matrix-matched laboratory standards, dosed at different concentrations of U, were prepared from a pool of rat kidneys. The quantitative images of cryo-sections revealed heterogeneous distribution of uranium within the renal tissue, because the cortical concentration was up to 120-fold higher than the medullary concentration. Graphical abstract.
Collapse
Affiliation(s)
- Nagore Grijalba
- Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE/SESANE/LRSI, BP17, 92262, Fontenay-aux-Roses Cedex, France
| | - Alexandre Legrand
- Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE/SESANE/LRSI, BP17, 92262, Fontenay-aux-Roses Cedex, France
| | - Valerie Holler
- Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE/SESANE/LRSI, BP17, 92262, Fontenay-aux-Roses Cedex, France.
| | - Céline Bouvier-Capely
- Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE/SESANE/LRSI, BP17, 92262, Fontenay-aux-Roses Cedex, France
| |
Collapse
|
44
|
Van Malderen SJ, Van Acker T, Vanhaecke F. Sub-micrometer Nanosecond LA-ICP-MS Imaging at Pixel Acquisition Rates above 250 Hz via a Low-Dispersion Setup. Anal Chem 2020; 92:5756-5764. [DOI: 10.1021/acs.analchem.9b05056] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | | | - Frank Vanhaecke
- Department of Chemistry, Atomic & Mass Spectrometry, A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan 281-S12, B-9000 Ghent, Belgium
| |
Collapse
|
45
|
Interactions of Cisplatin and Daunorubicin at the Chromatin Level. Sci Rep 2020; 10:1107. [PMID: 31980698 PMCID: PMC6981277 DOI: 10.1038/s41598-020-57702-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/19/2019] [Indexed: 01/08/2023] Open
Abstract
Unexpectedly, the widely used anticancer agents Cisplatin (Cis-Pt) and Daunorubicin (Dauno) exhibited cell type- and concentration-dependent synergy or antagonism in vitro. We attempted to interpret these effects in terms of the changes elicited by the drugs in the chromatin, the target held primarily responsible for the cytotoxicity of both agents. We measured the effect of Cis-Pt on the levels of Dauno in different cell compartments, the effect of Cis-Pt on Dauno-induced nucleosome eviction, and assessed the influence of Dauno on DNA platination in flow- and laser scanning cytometry as well as in laser ablation-inductively coupled plasma-mass spectrometry assays. We show that the two drugs antagonize each other through a decrease of interstrand crosslinks upon co-treatment with Dauno, and also via the diminished Dauno uptake in the presence of Cis-Pt, and both effects are observed already at low Dauno concentrations. At high Dauno concentrations synergy becomes dominant because histone eviction by Dauno intercalation into the DNA is enhanced in the presence of co-treatment with Cis-Pt. These interactions may have an impact on the efficacy of combination treatment protocols, considering the long retention time of DNA adducts formed by both agents.
Collapse
|
46
|
Hartnell D, Andrews W, Smith N, Jiang H, McAllum E, Rajan R, Colbourne F, Fitzgerald M, Lam V, Takechi R, Pushie MJ, Kelly ME, Hackett MJ. A Review of ex vivo Elemental Mapping Methods to Directly Image Changes in the Homeostasis of Diffusible Ions (Na +, K +, Mg 2 +, Ca 2 +, Cl -) Within Brain Tissue. Front Neurosci 2020; 13:1415. [PMID: 32038130 PMCID: PMC6987141 DOI: 10.3389/fnins.2019.01415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Diffusible ions (Na+, K+, Mg2+, Ca2+, Cl-) are vital for healthy function of all cells, especially brain cells. Unfortunately, the diffusible nature of these ions renders them difficult to study with traditional microscopy in situ within ex vivo brain tissue sections. This mini-review examines the recent progress in the field, using direct elemental mapping techniques to study ion homeostasis during normal brain physiology and pathophysiology, through measurement of ion distribution and concentration in ex vivo brain tissue sections. The mini-review examines the advantages and limitations of specific techniques: proton induced X-ray emission (PIXE), X-ray fluorescence microscopy (XFM), secondary ion mass spectrometry (SIMS), laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and the sample preparation requirements to study diffusible ions with these methods.
Collapse
Affiliation(s)
- David Hartnell
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Curtin Institute for Functional Molecules and Interfaces, Curtin University, Perth, WA, Australia
| | - Wendy Andrews
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Curtin Institute for Functional Molecules and Interfaces, Curtin University, Perth, WA, Australia
| | - Nicole Smith
- School of Molecular Sciences, Faculty of Science, University of Western Australia, Perth, WA, Australia
| | - Haibo Jiang
- School of Molecular Sciences, Faculty of Science, University of Western Australia, Perth, WA, Australia
| | - Erin McAllum
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Ramesh Rajan
- Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Frederick Colbourne
- Department of Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AL, Canada
- Department of Psychology, Faculty of Arts, University of Alberta, Edmonton, AL, Canada
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - M. Jake Pushie
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael E. Kelly
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mark J. Hackett
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Curtin Institute for Functional Molecules and Interfaces, Curtin University, Perth, WA, Australia
| |
Collapse
|
47
|
Wei X, Zhang X, Guo R, Chen ML, Yang T, Xu ZR, Wang JH. A Spiral-Helix (3D) Tubing Array That Ensures Ultrahigh-Throughput Single-Cell Sampling. Anal Chem 2019; 91:15826-15832. [DOI: 10.1021/acs.analchem.9b04122] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, P.R. China
| | - Xuan Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, P.R. China
| | - Rui Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, P.R. China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, P.R. China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, P.R. China
| | - Zhang-Run Xu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, P.R. China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, P.R. China
| |
Collapse
|
48
|
Ge Z, Yu H, Yang W, Yang J, Liu B, Wang X, Liu Z, Liu L. Development of Multi-Dimensional Cell Co-Culture via a Novel Microfluidic Chip Fabricated by DMD-Based Optical Projection Lithography. IEEE Trans Nanobioscience 2019; 18:679-686. [PMID: 31514145 DOI: 10.1109/tnb.2019.2940258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Establishing a physiological microenvironment in vitro that is suitable for cell and tissue growth is essential for medical research. Microfluidic chips are widely used in the construction of a microenvironment and the analysis of cell behavior in vitro; however, the design and manufacture of microfluidic chips for the long-term culture of a tumor model tends to be highly complex and time-consuming. In this paper, we propose a method for the rapid fabrication of a microfluidic chip for multi-dimensional cell co-culture. A major advantage of this method is that the microfluidic chip can be divided into several sections by micro-pillar arrays to form different functional regions to grow two- and three-dimensional cell culture on the same matrix. At the micro-scale, the surface tension between the gelatin methacryloyl-encapsulated cells and micro-pillars prevents the leakage of the hydrogel, and the hydrogel provides a three-dimensional microenvironment for cell growth. Our results of long-term cell culture and preclinical drug screening showed that cells cultured in a two-dimensional monolayer differ from three-dimensional cultured cells in terms of morphology, area, survival rate, proliferation, and drug resistance. This method shows potential for use in the study of cell behavior, drug screening, and tissue engineering.
Collapse
|