1
|
Bezinge L, Shih CJ, Richards DA, deMello AJ. Electrochemical Paper-Based Microfluidics: Harnessing Capillary Flow for Advanced Diagnostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401148. [PMID: 38801400 DOI: 10.1002/smll.202401148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Electrochemical paper-based microfluidics has attracted much attention due to the promise of transforming point-of-care diagnostics by facilitating quantitative analysis with low-cost and portable analyzers. Such devices harness capillary flow to transport samples and reagents, enabling bioassays to be executed passively. Despite exciting demonstrations of capillary-driven electrochemical tests, conventional methods for fabricating electrodes on paper impede capillary flow, limit fluidic pathways, and constrain accessible device architectures. This account reviews recent developments in paper-based electroanalytical devices and offers perspective by revisiting key milestones in lateral flow tests and paper-based microfluidics engineering. The study highlights the benefits associated with electrochemical sensing and discusses how the detection modality can be leveraged to unlock novel functionalities. Particular focus is given to electrofluidic platforms that embed electrodes into paper for enhanced biosensing applications. Together, these innovations pave the way for diagnostic technologies that offer portability, quantitative analysis, and seamless integration with digital healthcare, all without compromising the simplicity of commercially available rapid diagnostic tests.
Collapse
Affiliation(s)
- Léonard Bezinge
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Chih-Jen Shih
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Daniel A Richards
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Andrew J deMello
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| |
Collapse
|
2
|
Sun X, Liu M, Liu H, Li L, Ding Y. A molecularly imprinted electrochemical aptasensor-based dual recognition elements for selective detection of dexamethasone. Talanta 2024; 277:126404. [PMID: 38879945 DOI: 10.1016/j.talanta.2024.126404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/18/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Abstract
In this work, a novel molecularly imprinted electrochemical aptasensor (MIEAS) was developed for highly selective detection of dexamethasone (Dex) in natural water environment. Gold nanoparticles (AuNPs) modified by nitrogen doped molybdenum carbide-graphene (N-Mo2C-Gr) were employed as the supports, where N-Mo2C-Gr improved the conductivity of the electrode and provided a larger specific surface area to polymerize more active substances. Using Dex as template molecule, o-phenylenediamine (o-PD) as the chemical functional monomer and aptamer as the biofunctional monomer, a molecularly imprinted polymer (MIP) membrane with Dex specific recognition sites was formed by electropolymerization. Due to the synergistic effect of MIP and aptamers, the as-prepared MIEAS exhibited a decent linear relationship to Dex detection within a relatively wide range of 10-13 - 10-5 M, and the detection limit was 1.79 × 10-14 M. The recovery in actual water and tablet samples is satisfactory, which confirms the potential application prospects of this sensor in the determination of Dex.
Collapse
Affiliation(s)
- Xuyuan Sun
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Minmin Liu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Hao Liu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Li Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Yaping Ding
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
3
|
Jakkrawhad C, Makkliang F, Nurerk P, Siaj M, Poorahong S. Iron-based metal-organic framework/graphene oxide composite electrodes for efficient flow-injection amperometric detection of dexamethasone. RSC Adv 2024; 14:23921-23929. [PMID: 39086520 PMCID: PMC11289712 DOI: 10.1039/d4ra03815k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
A highly stable flow-injection amperometric sensor for dexamethasone (DEX) was developed using a pencil graphite electrode (PGE) modified with Fe-based metal organic frameworks, MIL-100(Fe) and graphene oxide composite materials (MIL-100(Fe)/GO). Scanning electron microscopy and energy-dispersive X-ray spectroscopy, transmission electron microscopy, powder X-ray diffraction, and Fourier-transform infrared spectroscopy were used to characterize the MIL-100(Fe) composites. The MIL-100(Fe)/GO-modified PGE (denoted MIL-100(Fe)/GO/PGE) was further electrochemically characterized using cyclic voltammetry. As an electrode material, MIL-100(Fe) is a sensing element that undergoes oxidation from Fe(ii)-MOF to Fe(iii)-MOF, and GO possesses high conductivity and a large surface area, which exhibits high absorbability. In the presence of DEX, Fe(iii) is reduced, which accelerates electron transfer at the electrode interface. Therefore, DEX can be quantitatively detected by analyzing the anodic current of MIL-100(Fe). When coupled with amperometric flow injection analysis, excellent performance can be obtained even when a low detection potential is applied (+0.10 V vs. Ag/AgCl). The concentration was linear in the range 0.10-5.0 μM and 0.010-5.0 mM with LOD of 0.030 μM based on 3(sd/slope). The modified electrode also exhibited a remarkably stable response under optimized conditions, and up to 55 injections can be used per electrode. The sensor exhibits high repeatability, reproducibility, and anti-interference properties when used for DEX detection. The effective determination of dexamethasone in real pharmaceutical and cosmetic samples demonstrated the feasibility of the electrochemical sensor, and the results were in good agreement with those obtained from the HPLC-DAD analysis. Acceptable percentage recoveries from the spiked pharmaceutical and cosmetic samples were obtained, ranging from 93-111% for this new method compared with 84-107% for the HPLC-DAD standard method.
Collapse
Affiliation(s)
- Chanida Jakkrawhad
- Functional Materials and Nanotechnology Center of Excellence, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
- Department of Chemistry, School of Science, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| | - Fonthip Makkliang
- Functional Materials and Nanotechnology Center of Excellence, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
- School of Languages and General Education, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| | - Piyaluk Nurerk
- Functional Materials and Nanotechnology Center of Excellence, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
- Department of Chemistry, School of Science, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| | - Mohamed Siaj
- Department of Chemistry, Université du Québec à Montréal Montréal Québec H3C 3P8 Canada
| | - Sujittra Poorahong
- Functional Materials and Nanotechnology Center of Excellence, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
- Department of Chemistry, School of Science, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| |
Collapse
|
4
|
Traipop S, Jesadabundit W, Khamcharoen W, Pholsiri T, Naorungroj S, Jampasa S, Chailapakul O. Nanomaterial-based Electrochemical Sensors for Multiplex Medicinal Applications. Curr Top Med Chem 2024; 24:986-1009. [PMID: 38584544 DOI: 10.2174/0115680266304711240327072348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024]
Abstract
This review explores the advancements in nanomaterial-based electrochemical sensors for the multiplex detection of medicinal compounds. The growing demand for efficient and selective detection methods in the pharmaceutical field has prompted significant research into the development of electrochemical sensors employing nanomaterials. These materials, defined as functional materials with at least one dimension between 1 and 100 nanometers, encompass metal nanoparticles, polymers, carbon-based nanocomposites, and nano-bioprobes. These sensors are characterized by their enhanced sensitivity and selectivity, playing a crucial role in simultaneous detection and offering a comprehensive analysis of multiple medicinal complexes within a single sample. The review comprehensively examines the design, fabrication, and application of nanomaterial- based electrochemical sensors, focusing on their ability to achieve multiplex detection of various medicinal substances. Insights into the strategies and nanomaterials employed for enhancing sensor performance are discussed. Additionally, the review explores the challenges and future perspectives of this evolving field, highlighting the potential impact of nanomaterial-based electrochemical sensors on the advancement of medicinal detection technologies.
Collapse
Affiliation(s)
- Surinya Traipop
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Whitchuta Jesadabundit
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wisarut Khamcharoen
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Thailand
| | - Tavechai Pholsiri
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sarida Naorungroj
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sakda Jampasa
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
5
|
Ebrahimi G, Pakchin PS, Mota A, Omidian H, Omidi Y. Electrochemical microfluidic paper-based analytical devices for cancer biomarker detection: From 2D to 3D sensing systems. Talanta 2023; 257:124370. [PMID: 36858013 DOI: 10.1016/j.talanta.2023.124370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Microfluidic paper-based analytical devices (μPADs) offer a unique possibility for a cost-effective portable and rapid detection of a wide range of small molecules and macromolecules and even microorganisms. In this line, electrochemical detection methods are key techniques for the qualitative analysis of different types of ligands. The electrochemical sensing μPADs have been devised for the rapid, accurate, and quantitative detection of oncomarkers through two-/three-dimensional (2D/3D) approaches. The 2D μPADs were first developed and then transformed into 3D systems via folding and/or twisting of paper. The microfluidic channels and connections were created within the layers of paper. Based on the fabrication methods, 3D μPADs can be classified into origami and stacking devices. Various fabrication methods and materials have been used to create hydrophilic channels in μPADs, among which the wax printing technique is the most common method in fabricating μPADs. In this review, we discuss the fabrication and design strategies of μPADs, elaborate on their detection modes, and highlight their applications in affinity-based electrochemical μPADs methods for the detection of oncomarkers.
Collapse
Affiliation(s)
- Ghasem Ebrahimi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Samadi Pakchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mota
- Department of Biochemistry and Clinical Laboratories, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA.
| |
Collapse
|
6
|
Pradela-Filho LA, Veloso WB, Arantes IVS, Gongoni JLM, de Farias DM, Araujo DAG, Paixão TRLC. Paper-based analytical devices for point-of-need applications. Mikrochim Acta 2023; 190:179. [PMID: 37041400 PMCID: PMC10089827 DOI: 10.1007/s00604-023-05764-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
Paper-based analytical devices (PADs) are powerful platforms for point-of-need testing since they are inexpensive devices fabricated in different shapes and miniaturized sizes, ensuring better portability. Additionally, the readout and detection systems can be accomplished with portable devices, allying with the features of both systems. These devices have been introduced as promising analytical platforms to meet critical demands involving rapid, reliable, and simple testing. They have been applied to monitor species related to environmental, health, and food issues. Herein, an outline of chronological events involving PADs is first reported. This work also introduces insights into fundamental parameters to engineer new analytical platforms, including the paper type and device operation. The discussions involve the main analytical techniques used as detection systems, such as colorimetry, fluorescence, and electrochemistry. It also showed recent advances involving PADs, especially combining optical and electrochemical detection into a single device. Dual/combined detection systems can overcome individual barriers of the analytical techniques, making possible simultaneous determinations, or enhancing the devices' sensitivity and/or selectivity. In addition, this review reports on distance-based detection, which is also considered a trend in analytical chemistry. Distance-based detection offers instrument-free analyses and avoids user interpretation errors, which are outstanding features for analyses at the point of need, especially for resource-limited regions. Finally, this review provides a critical overview of the practical specifications of the recent analytical platforms involving PADs, demonstrating their challenges. Therefore, this work can be a highly useful reference for new research and innovation.
Collapse
Affiliation(s)
- Lauro A Pradela-Filho
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| | - William B Veloso
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Iana V S Arantes
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Juliana L M Gongoni
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Davi M de Farias
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Diele A G Araujo
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Thiago R L C Paixão
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
7
|
Ye Z, Yuan Y, Zhan S, Liu W, Fang L, Li T. Paper-based microfluidics in sweat detection: from design to application. Analyst 2023; 148:1175-1188. [PMID: 36861489 DOI: 10.1039/d2an01818g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Sweat, as a sample that includes a lot of biochemical information, is good for non-invasive monitoring. In recent years, there have been an increasing number of studies on in situ monitoring of sweat. However, there are still some challenges for the continuous analysis of samples. As a hydrophilic, easy-to-process, environmentally friendly, inexpensive and easily accessible material, paper is an ideal substrate material for making in situ sweat analysis microfluidics. This review introduces the development of paper as a sweat analysis microfluidic substrate material, focusing on the advantages of the structural characteristics of paper, trench design and equipment integration applications to expand the design and research ideas for the development of in situ sweat detection technology.
Collapse
Affiliation(s)
- Zhichao Ye
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310028, China.,School of Medicine, Zhejiang University, Hangzhou 310028, China
| | - Yuyang Yuan
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310028, China. .,Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310028, China.,School of Medicine, Zhejiang University, Hangzhou 310028, China
| | - Shaowei Zhan
- School of Medicine, Zhejiang University, Hangzhou 310028, China.,Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310028, China
| | - Wei Liu
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310028, China
| | - Lu Fang
- Department of Automation, Hangzhou Dianzi University, Hangzhou 310028, China.
| | - Tianyu Li
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310028, China. .,National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310028, China
| |
Collapse
|
8
|
Jawla J, Kumar RR, Mendiratta SK, Agarwal RK, Singh P, Saxena V, Kumari S, Kumar D. A novel paper based loop mediated isothermal amplification and lateral flow assay (LAMP‐LFA) for point‐of‐care detection of buffalo tissue origin in diverse foods. J Food Saf 2023. [DOI: 10.1111/jfs.13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jyoti Jawla
- Division of Livestock Products Technology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| | - Rajiv Ranjan Kumar
- Division of Livestock Products Technology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| | - Sanjod Kumar Mendiratta
- Division of Livestock Products Technology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| | - Ravi Kant Agarwal
- Division of Livestock Products Technology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| | - Praveen Singh
- Division of Veterinary Biotechnology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| | - Vikas Saxena
- Center for Vascular & Inflammatory Diseases, School of Medicine University of Maryland Baltimore Maryland USA
| | - Sarita Kumari
- Division of Livestock Products Technology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| | - Dhananjay Kumar
- Division of Livestock Products Technology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| |
Collapse
|
9
|
Ni Z. TESTOSTERONE BIOSENSOR IN SPORTS DOPING. REV BRAS MED ESPORTE 2023. [DOI: 10.1590/1517-8692202329012022_0442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ABSTRACT Introduction: Testosterone is a steroid that can help with blood disorders, sexual dysfunctions, connective tissue diseases, some malignancies, intractable pain, and other serious diseases. However, it must be prescribed under medical supervision because of the risk of major adverse effects such as liver disease, heart disease, stroke, blood clots, and cancer. There is an urgent need for research on developing an electrochemical sensor to detect testosterone as a doping substance in sports. Objective: Develop an electrochemical sensor of poly(ionic liquid)-graphene oxide molecularly printed polymers (PIL/MIs/GO) to detect testosterone as a doping substance in sports. Methods: Morphological characterization of modified electrodes was performed by field emission scanning electron microscopy (FESEM), allowing the GO to be surface-mounted with fragments and apertures. Due to the holes generated by the agglomeration of PIL and MIs molecules on the wavy edges of the GO nanosheets, the surface morphology of PIL/MIs/GO/GCE also revealed a high porosity structure. Results: Compared to other synergistic influences of GO nanosheets with PIL and MIs molecules, electrochemical investigations using a differential pulse voltammetry approach indicated high selectivity, good stability, appropriate linear range, lower detection limit, and higher selectivity. Conclusion: In pharmaceutical samples and human biological fluids, the validity and accuracy of PIL/MIs/GO/GCE for the determination of testosterone demonstrated practical application. PIL/MIs/GO/GCE can thus be used as an accurate and reliable sensor for detecting testosterone as a doping agent in sports. Level of evidence II; Therapeutic studies - investigation of treatment outcomes.
Collapse
|
10
|
Modulating the Electrochemical Response of Eco‐Friendly Laser‐Pyrolyzed Paper Sensors Applied to Nitrite Determination. ChemElectroChem 2022. [DOI: 10.1002/celc.202201018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Kuswandi B, Hidayat MA, Noviana E. Paper-Based Electrochemical Biosensors for Food Safety Analysis. BIOSENSORS 2022; 12:1088. [PMID: 36551055 PMCID: PMC9775995 DOI: 10.3390/bios12121088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Nowadays, foodborne pathogens and other food contaminants are among the major contributors to human illnesses and even deaths worldwide. There is a growing need for improvements in food safety globally. However, it is a challenge to detect and identify these harmful analytes in a rapid, sensitive, portable, and user-friendly manner. Recently, researchers have paid attention to the development of paper-based electrochemical biosensors due to their features and promising potential for food safety analysis. The use of paper in electrochemical biosensors offers several advantages such as device miniaturization, low sample consumption, inexpensive mass production, capillary force-driven fluid flow, and capability to store reagents within the pores of the paper substrate. Various paper-based electrochemical biosensors have been developed to enable the detection of foodborne pathogens and other contaminants that pose health hazards to humans. In this review, we discussed several aspects of the biosensors including different device designs (e.g., 2D and 3D devices), fabrication techniques, and electrode modification approaches that are often optimized to generate measurable signals for sensitive detection of analytes. The utilization of different nanomaterials for the modification of electrode surface to improve the detection of analytes via enzyme-, antigen/antibody-, DNA-, aptamer-, and cell-based bioassays is also described. Next, we discussed the current applications of the sensors to detect food contaminants such as foodborne pathogens, pesticides, veterinary drug residues, allergens, and heavy metals. Most of the electrochemical paper analytical devices (e-PADs) reviewed are small and portable, and therefore are suitable for field applications. Lastly, e-PADs are an excellent platform for food safety analysis owing to their user-friendliness, low cost, sensitivity, and a high potential for customization to meet certain analytical needs.
Collapse
Affiliation(s)
- Bambang Kuswandi
- Chemo and Biosensors Group, Faculty of Farmasi, University of Jember, Jember 68121, Indonesia
| | - Mochammad Amrun Hidayat
- Chemo and Biosensors Group, Faculty of Farmasi, University of Jember, Jember 68121, Indonesia
| | - Eka Noviana
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
12
|
Saidykhan J, Pointon L, Cinti S, May JE, Killard AJ. Development of a paper-based lateral flow prothrombin assay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3718-3726. [PMID: 36048161 DOI: 10.1039/d2ay00965j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Disorders of haemostasis result in both excessive bleeding and clotting and are a major global cause of morbidity and mortality, particularly in the developing world. A small number of simple tests can be used to screen and monitor for such dysfunctions, one of which is the prothrombin time (PT) test and associated International Normalisation Ratio (INR). PT/INR is routine in hospital laboratories in developed countries, and can also be performed using point-of-care instruments. However, neither of these approaches is appropriate in low-resource settings. Significant interest has grown in paper-based devices to form the basis of simple and low-cost assays that may have the potential for application in such environments. This study describes the development of a simple, low-cost, paper-based lateral flow prothrombin assay. The assay employed wax printing on chromatography paper to define test channels, with deposition of thromboplastin reagent and calcium chloride onto the resulting strips. These were placed in a test housing and measurement of the flow rates of deposited plasma samples were performed in triplicate. The flow dynamics of the assay was optimised according to the type of paper substrate used, the nature and quantity of the thromboplastin reagent, the amount of calcium chloride required, and the volume of sample employed. An optimised assay configuration demonstrated a dynamic range of 6 mm between normal and factor-deficient plasmas. The assay showed good correlation with laboratory-based PT assay (Yumizen G200) in artificial plasmas in the 9.8 to 36 s range (r2 = 0.8112). The assay also demonstrated good dynamic range and correlation in patient plasma samples in comparison with hospital PT, with a range of 9.8 to 45 s (r2 = 0.7209).
Collapse
Affiliation(s)
- Jerro Saidykhan
- Department of Applied Sciences, Centre for Research in Biosciences (CRIB), University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| | - Louise Pointon
- North Bristol NHS Trust, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Stefano Cinti
- Department of Pharmacy, University of Naples "Federico II", Napoli 80131, Italy
| | - Jennifer E May
- Department of Applied Sciences, Centre for Research in Biosciences (CRIB), University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| | - Anthony J Killard
- Department of Applied Sciences, Centre for Research in Biosciences (CRIB), University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
13
|
Ionic liquid-multi walled carbon nanotubes-l-lysine modified glassy carbon electrode for detection of prednisolone. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Yu LD, Tong YJ, Li N, Yang Y, Ye P, Ouyang G, Zhu F. Calix[6]arene functionalized lanthanide metal-organic frameworks with boosted performance in identifying an anti-epidemic pharmaceutical. Chem Commun (Camb) 2022; 58:11697-11700. [PMID: 36177962 DOI: 10.1039/d2cc03564b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel composite was fabricated by hybridizing terbium 1,3,5-benzenetricarboxylic MOF (TB-MOF) with Cx[6]. The obtained composite TB-Cx[6] possessed long-term stability and dispersion stability and was used for on-site analysis of the anti-COVID-19 disinfection product Prednis via a combing remote sampling technique.
Collapse
Affiliation(s)
- Lu-Dan Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yuan-Jun Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Nan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yating Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Pengfei Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China. .,Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, China.,Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou, 510070, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
15
|
Qin Y, Qin Y, Bubiajiaer H, Chen F, Yao J, Zhang M. Engineering constructed of high selectivity dexamethasone aptamer based on truncation and mutation technology. Front Bioeng Biotechnol 2022; 10:994711. [PMID: 36177181 PMCID: PMC9513367 DOI: 10.3389/fbioe.2022.994711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Various biosensors based on aptamers are currently the most popular rapid detection approaches, but the performance of these sensors is closely related to the affinity of aptamers. In this work, a strategy for constructed high-affinity aptamer was proposed. By truncating the bases flanking the 59 nt dexamethasones (DEX) original aptamer sequence to improve the sensitivity of the aptamer to DEX, and then base mutation was introduced to further improve the sensitivity and selectivity of aptamers. Finally, the 33 nt aptamer Apt-M13 with G-quadruplex structures was obtained. The dissociation constant (Kd) was determined to be 200 nM by Graphene oxide (GO)-based fluorometry. As-prepared Apt-M13 was used for a label-free colorimetric aptamer sensor based on gold nanoparticles, the LOD was 3.2-fold lower than the original aptamer described in previous works. The anti-interference ability of DEX analogs is also further improved. It indicates that truncation technology effectively improves the specificity of the aptamer to DEX in this work, and the introduction of mutation further improves the affinity and selectivity of the aptamer to DEX. Therefore, the proposed aptamer optimization method is also expected to become a general strategy for various aptamer sequences.
Collapse
Affiliation(s)
- Yadi Qin
- School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Yanan Qin
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | | | - Fengxia Chen
- School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Jun Yao
- School of Pharmacy, Xinjiang Medical University, Urumqi, China
- *Correspondence: Jun Yao, ; Minwei Zhang,
| | - Minwei Zhang
- College Life Science and Technology, Xinjiang University, Urumqi, China
- *Correspondence: Jun Yao, ; Minwei Zhang,
| |
Collapse
|
16
|
Sefid-Sefidehkhan Y, Jouyban A, Khoshkam M, Amiri M, Rahimpour E. A mini review on materials used for the colorimetric detection of corticosteroids. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Qin Y, Bubiajiaer H, Yao J, Zhang M. Based on Unmodified Aptamer-Gold Nanoparticles Colorimetric Detection of Dexamethasone in Food. BIOSENSORS 2022; 12:bios12040242. [PMID: 35448302 PMCID: PMC9029452 DOI: 10.3390/bios12040242] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 05/10/2023]
Abstract
Residue and illegal addition of Dexamethasone (DEX) in food has received widespread attention over the past few decades. Long-term intake of DEX will have a strong endocrine-disrupting effect, and there is an urgent need to develop highly sensitive and rapid on-site detection methods. In this work, a colorimetric sensor based on an unmodified aptamer and gold nanoparticles (Au NPs) was designed to detect DEX in milk and glucosamine. Under optimized conditions, the absorbance ratio of Au NPs increased linearly with DEX concentration over the range of 10-350 nmol/mL (r2 = 0.997), with a limit of detection (LOD) of 0.5 nmol/mL, and the recoveries ranged from 93.6 to 117%. To explore the interaction mechanism between aptamer and DEX, molecular docking and molecular dynamics simulations were applied to probe intermolecular interactions and structures of the complex. The establishment of aptamer-based sensors effectively avoids the antibody screening response, with a cost-efficient, excellent selective and great potential in DEX determination.
Collapse
Affiliation(s)
- Yadi Qin
- School of Pharmacy, Xinjiang Medical University, Xinyi Road, Urumqi 830054, China; (Y.Q.); (H.B.)
| | - Hayilati Bubiajiaer
- School of Pharmacy, Xinjiang Medical University, Xinyi Road, Urumqi 830054, China; (Y.Q.); (H.B.)
| | - Jun Yao
- School of Pharmacy, Xinjiang Medical University, Xinyi Road, Urumqi 830054, China; (Y.Q.); (H.B.)
- Correspondence: (J.Y.); (M.Z.); Tel.: +86-1899-9250-641 (J.Y.); +86-1399-9258-239 (M.Z.)
| | - Minwei Zhang
- College Life Science & Technology, Xinjiang University, Shengli Road, Urumqi 830046, China
- Correspondence: (J.Y.); (M.Z.); Tel.: +86-1899-9250-641 (J.Y.); +86-1399-9258-239 (M.Z.)
| |
Collapse
|
18
|
Da Ruos J, Baldo MA, Daniele S. Analytical Methods for the Determination of Major Drugs Used for the Treatment of COVID-19. A Review. Crit Rev Anal Chem 2022; 53:1698-1732. [PMID: 35195461 DOI: 10.1080/10408347.2022.2039094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
At the beginning of the COVID-19 outbreak (end 2019 - 2020), therapeutic treatments based on approved drugs have been the fastest approaches to combat the new coronavirus pandemic. Nowadays several vaccines are available. However, the worldwide vaccination program is going to take a long time and its success will depend on the vaccine public's acceptance. Therefore, outside of vaccination, the repurposing of existing antiviral, anti-inflammatory and other types of drugs, have been considered an alternative medical strategy for the COVI-19 infection. Due to the broad clinical potential of the drugs, but also to their possible side effects, analytical methods are needed to monitor the drug concentrations in biological fluids and pharmaceutical products. This review deals with analytical methods developed in the period 2015 - July 2021 to detect potential drugs that, according to a literature survey, have been taken into consideration for the treatment of COVID-19. The drugs considered here have been selected on the basis of the number of articles published in the period January 2020-July 2021, using the combination of the keywords: COVID-19 and drugs or SARS-CoV-2 and drugs. A section is also devoted to monoclonal antibodies. Over the period considered, the analytical methods have been employed in a variety of real samples, such as body fluids (plasma, blood and urine), pharmaceutical products, environmental matrices and food.
Collapse
Affiliation(s)
- Jessica Da Ruos
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| | - M Antonietta Baldo
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| | - Salvatore Daniele
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| |
Collapse
|
19
|
Khamcharoen W, Kaewjua K, Yomthiangthae P, Anekrattanasap A, Chailapakul O, Siangproh W. Recent Developments in Microfluidic Paper-based Analytical Devices for Pharmaceutical Analysis. Curr Top Med Chem 2022; 22:2241-2260. [PMID: 36305123 DOI: 10.2174/1568026623666221027144310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022]
Abstract
In the last decade, due to the global increase in diseases, drugs for biomedical applications have increased dramatically. Therefore, there is an urgent need for analytical tools to monitor, treat, investigate, and control drug compounds in diverse matrices. The new and challenging task has been looking for simple, low-cost, rapid, and portable analytical platforms. The development of microfluidic paper-based analytical devices (μPADs) has garnered immense attention in many analytical applications due to the benefit of cellulose structure. It can be functionalized and serves as an ideal channel and scaffold for the transportation and immobilization of various substances. Microfluidic technology has been considered an effective tool in pharmaceutical analysis that facilitates the quantitative measurement of several parameters on cells or other biological systems. The μPADs represent unique advantages over conventional microfluidics, such as the self-pumping capability. They have low material costs, are easy to fabricate, and do not require external power sources. This review gives an overview of the current designs in this decade for μPADs and their respective application in pharmaceutical analysis. These include device designs, choice of paper material, and fabrication techniques with their advantages and drawbacks. In addition, the strategies for improving analytical performance in terms of simplicity, high sensitivity, and selectivity are highlighted, followed by the application of μPADs design for the detection of drug compounds for various purposes. Moreover, we present recent advances involving μPAD technologies in the field of pharmaceutical applications. Finally, we discussed the challenges and potential of μPADs for the transition from laboratory to commercialization.
Collapse
Affiliation(s)
- Wisarut Khamcharoen
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok, 10110, Thailand
| | - Kantima Kaewjua
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok, 10110, Thailand
| | - Phanumas Yomthiangthae
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok, 10110, Thailand
| | - Ananyaporn Anekrattanasap
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok, 10110, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Weena Siangproh
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok, 10110, Thailand
| |
Collapse
|
20
|
Recent Analytical Method for Detection of Chemical Adulterants in Herbal Medicine. Molecules 2021; 26:molecules26216606. [PMID: 34771013 PMCID: PMC8588557 DOI: 10.3390/molecules26216606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Herbal medicine has become popular in recent years as an alternative medicine. The problem arises when herbal medicines contain an undeclared synthetic drug that is illegally added, since it is a natural product that does not contain any chemical drugs due to the potential cause of harmful effects. Supervision of herbal medicines is important to ensure that these herbal medicines are still safe to use. Thus, developing a reliable analytical technique for the determination of adulterated drugs in herbal medicine is gaining interest. This review aims to provide a recent analytical method that has been used within the past 5 years (2016-2021) for the determination of chemical adulterants in herbal medicine.
Collapse
|
21
|
Tai WC, Chang YC, Chou D, Fu LM. Lab-on-Paper Devices for Diagnosis of Human Diseases Using Urine Samples-A Review. BIOSENSORS 2021; 11:260. [PMID: 34436062 PMCID: PMC8393526 DOI: 10.3390/bios11080260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022]
Abstract
In recent years, microfluidic lab-on-paper devices have emerged as a rapid and low-cost alternative to traditional laboratory tests. Additionally, they were widely considered as a promising solution for point-of-care testing (POCT) at home or regions that lack medical infrastructure and resources. This review describes important advances in microfluidic lab-on-paper diagnostics for human health monitoring and disease diagnosis over the past five years. The review commenced by explaining the choice of paper, fabrication methods, and detection techniques to realize microfluidic lab-on-paper devices. Then, the sample pretreatment procedure used to improve the detection performance of lab-on-paper devices was introduced. Furthermore, an in-depth review of lab-on-paper devices for disease measurement based on an analysis of urine samples was presented. The review concludes with the potential challenges that the future development of commercial microfluidic lab-on-paper platforms for human disease detection would face.
Collapse
Affiliation(s)
- Wei-Chun Tai
- Department of Oral and Maxillofacial Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Yu-Chi Chang
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan;
| | - Dean Chou
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan;
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan;
- Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
22
|
Noviana E, Ozer T, Carrell CS, Link JS, McMahon C, Jang I, Henry CS. Microfluidic Paper-Based Analytical Devices: From Design to Applications. Chem Rev 2021; 121:11835-11885. [DOI: 10.1021/acs.chemrev.0c01335] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eka Noviana
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia 55281
| | - Tugba Ozer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey 34220
| | - Cody S. Carrell
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeremy S. Link
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Catherine McMahon
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ilhoon Jang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- Institute of Nano Science and Technology, Hanyang University, Seoul, South Korea 04763
| | - Charles S. Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
23
|
Costa-Rama E, Fernández-Abedul MT. Paper-Based Screen-Printed Electrodes: A New Generation of Low-Cost Electroanalytical Platforms. BIOSENSORS 2021; 11:51. [PMID: 33669316 PMCID: PMC7920281 DOI: 10.3390/bios11020051] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Screen-printed technology has helped considerably to the development of portable electrochemical sensors since it provides miniaturized but robust and user-friendly electrodes. Moreover, this technology allows to obtain very versatile transducers, not only regarding their design, but also their ease of modification. Therefore, in the last decades, the use of screen-printed electrodes (SPEs) has exponentially increased, with ceramic as the main substrate. However, with the growing interest in the use of cheap and widely available materials as the basis of analytical devices, paper or other low-cost flat materials have become common substrates for SPEs. Thus, in this revision, a comprehensive overview on paper-based SPEs used for analytical proposes is provided. A great variety of designs is reported, together with several examples to illustrate the main applications.
Collapse
|
24
|
A Simple, Low Cost, Sensitive, and Portable Electrochemical Immunochromatography Sensing Device to Measure Estrone-3-Sulfate. SENSORS 2020; 20:s20174781. [PMID: 32847124 PMCID: PMC7506911 DOI: 10.3390/s20174781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 11/24/2022]
Abstract
In livestock production, point-of-care testing (POCT) technology that enables easy on-site analysis of sex hormones is desired to improve reproductive efficiency. In this context, low-molecular-weight endogenous steroids are particularly important for perinatal management. Therefore, we attempted to use a simple method that combines electrochemical techniques with immunochromatography to measure estrone-3-sulfate (E1S), one of the low-molecular-weight endogenous steroids that is an estrogen ester. The limit of detection (LOD) for E1S achieved by electrochemical immunochromatography was 570.5 ng/mL, which was one to two orders of magnitude lower than that of small molecule compounds analyzed by other POCT techniques (Primpray et al., Anal. Chim. Acta, 2019). In addition, it was indicated by a colorimetric analysis that the sensitivity of the electrochemical immunochromatographic technique could be enhanced by improving the method of application of the antibodies on the nitrocellulose membrane and the contact between the electrochemical detector and the nitrocellulose membrane.
Collapse
|
25
|
Díaz-Liñán MC, García-Valverde MT, Lucena R, Cárdenas S, López-Lorente AI. Paper-based sorptive phases for microextraction and sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3074-3091. [PMID: 32930167 DOI: 10.1039/d0ay00702a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The simplification of the analytical procedures, including cost-effective materials and detectors, is a current research trend. In this context, paper has been identified as a useful material thanks to its low price and high availability in different compositions (office, filter, chromatographic). Its porosity, flexibility, and planar geometry permit the design of flow-through devices compatible with most instrumental techniques. This article provides a general overview of the potential of paper, as substrate, on the simplification of analytical chemistry methodologies. The design of paper-based sorptive phases is considered in-depth, and the different functionalization strategies are described. Considering our experience in sample preparation, special attention has been paid to the use of these phases under the classical microextraction-analysis workflow, which usually includes a chromatographic separation of the analytes before their determination. However, the interest of these materials extends beyond this field as they can be easily implemented into spectroscopic and electrochemical sensors. Finally, the direct analysis of paper substrates in mass spectrometry, in the so-called paper-spray technique is also discussed. This review is more focused on presenting ideas rather than the description of specific applications to draw a general picture of the potential of these materials.
Collapse
Affiliation(s)
- M C Díaz-Liñán
- Departamento de Química Analítica, Instituto, Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain.
| | - M T García-Valverde
- Departamento de Química Analítica, Instituto, Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain.
| | - R Lucena
- Departamento de Química Analítica, Instituto, Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain.
| | - S Cárdenas
- Departamento de Química Analítica, Instituto, Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain.
| | - A I López-Lorente
- Departamento de Química Analítica, Instituto, Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain.
| |
Collapse
|
26
|
Mohd Yusop AY, Xiao L, Fu S. Suspected-target and non-targeted screenings of phosphodiesterase 5 inhibitors in herbal remedies using liquid chromatography-quadrupole time-of-flight-mass spectrometry. Drug Test Anal 2020; 13:965-976. [PMID: 32441056 DOI: 10.1002/dta.2861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022]
Abstract
The lucrative market of herbal remedies spurs rampant adulteration, particularly with pharmaceutical drugs and their unapproved analogues. A comprehensive screening strategy is, therefore, warranted to detect these adulterants and, accordingly, to safeguard public health. This study uses the data-dependent acquisition of liquid chromatography-quadrupole time-of-flight-mass spectrometry (LC-QTOF-MS) to screen phosphodiesterase 5 (PDE5) inhibitors in herbal remedies using suspected-target and non-targeted strategies. For the suspected-target screening, we used a library comprising 95 PDE5 inhibitors. For the non-targeted screening, we adopted top-down and bottom-up approaches to flag novel PDE5 inhibitor analogues based on common fragmentation patterns. LC-QTOF-MS was optimised and validated for capsule and tablet dosage forms using 23 target analytes, selected to represent different groups of PDE5 inhibitors. The method exhibited excellent specificity and linearity with limit of detection and limit of quantification of <40 and 80 ng/mL, respectively. The accuracy ranged from 79.0% to 124.7% with a precision of <14.9% relative standard deviation. The modified, quick, easy, cheap, effective, rugged, and safe extraction provided insignificant matrix effect within -9.1%-8.0% and satisfactory extraction recovery of 71.5%-105.8%. These strategies were used to screen 52 herbal remedy samples that claimed to enhance male sexual performance. The suspected-target screening resulted in 33 positive samples, revealing 10 target analytes and 2 suspected analytes. Systematic MS and tandem MS interrogations using the non-targeted screening returned insignificant signals, indicating the absence of potentially novel analogues. The target analytes were quantified from 0.03 to 121.31 mg per dose of each sample. The proposed strategies ensure that all PDE5 inhibitors are comprehensively screened, providing a useful tool to curb the widespread adulteration of herbal remedies.
Collapse
Affiliation(s)
- Ahmad Yusri Mohd Yusop
- Centre for Forensic Science, University of Technology Sydney, Ultimo, NSW, Australia.,Pharmacy Enforcement Division, Ministry of Health, Petaling Jaya, Selangor, Malaysia
| | - Linda Xiao
- Centre for Forensic Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Shanlin Fu
- Centre for Forensic Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
27
|
Emerging applications of paper-based analytical devices for drug analysis: A review. Anal Chim Acta 2020; 1116:70-90. [DOI: 10.1016/j.aca.2020.03.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/28/2020] [Accepted: 03/07/2020] [Indexed: 02/07/2023]
|
28
|
Noviana E, McCord CP, Clark KM, Jang I, Henry CS. Electrochemical paper-based devices: sensing approaches and progress toward practical applications. LAB ON A CHIP 2020; 20:9-34. [PMID: 31620764 DOI: 10.1039/c9lc00903e] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Paper-based sensors offer an affordable yet powerful platform for field and point-of-care (POC) testing due to their self-pumping ability and utility for many different analytical measurements. When combined with electrochemical detection using small and portable electronics, sensitivity and selectivity of the paper devices can be improved over naked eye detection without sacrificing portability. Herein, we review how the field of electrochemical paper-based analytical devices (ePADs) has grown since it was introduced a decade ago. We start by reviewing fabrication methods relevant to ePADs with more focus given to the electrode fabrication, which is fundamental for electrochemical sensing. Multiple sensing approaches applicable to ePADs are then discussed and evaluated to present applicability, advantages and challenges associated with each approach. Recent applications of ePADs in the fields of clinical diagnostics, environmental testing, and food analysis are also presented. Finally, we discuss how the current ePAD technologies have progressed to meet the analytical and practical specifications required for field and/or POC applications, as well as challenges and outlook.
Collapse
Affiliation(s)
- Eka Noviana
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA. and Department of Pharmaceutical Chemistry, School of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Cynthia P McCord
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Kaylee M Clark
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ilhoon Jang
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA. and Institute of Nano Science and Technology, Hanyang University, Seoul, South Korea
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
29
|
Yomthiangthae P, Kondo T, Chailapakul O, Siangproh W. The effects of the supporting electrolyte on the simultaneous determination of vitamin B2, vitamin B6, and vitamin C using a modification-free screen-printed carbon electrode. NEW J CHEM 2020. [DOI: 10.1039/d0nj02175j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A simple and modification-free SPCE demonstrated high efficiency for the simultaneous detection of VB2, VB6, and VC in various practical applications.
Collapse
Affiliation(s)
- Phanumas Yomthiangthae
- Department of Chemistry, Faculty of Science
- Srinakharinwirot University
- Bangkok 10110
- Thailand
| | - Takeshi Kondo
- Department of Pure and Applied Chemistry
- Faculty of Science and Technology
- Tokyo University of Science
- Chiba
- Japan
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE)
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
| | - Weena Siangproh
- Department of Chemistry, Faculty of Science
- Srinakharinwirot University
- Bangkok 10110
- Thailand
| |
Collapse
|