1
|
Hořejší K, Holčapek M. Unraveling the complexity of glycosphingolipidome: the key role of mass spectrometry in the structural analysis of glycosphingolipids. Anal Bioanal Chem 2024; 416:5403-5421. [PMID: 39138658 PMCID: PMC11427620 DOI: 10.1007/s00216-024-05475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
Glycosphingolipids (GSL) are a highly heterogeneous class of lipids representing the majority of the sphingolipid category. GSL are fundamental constituents of cellular membranes that have key roles in various biological processes, such as cellular signaling, recognition, and adhesion. Understanding the structural complexity of GSL is pivotal for unraveling their functional significance in a biological context, specifically their crucial role in the pathophysiology of various diseases. Mass spectrometry (MS) has emerged as a versatile and indispensable tool for the structural elucidation of GSL enabling a deeper understanding of their complex molecular structures and their key roles in cellular dynamics and patholophysiology. Here, we provide a thorough overview of MS techniques tailored for the analysis of GSL, emphasizing their utility in probing GSL intricate structures to advance our understanding of the functional relevance of GSL in health and disease. The application of tandem MS using diverse fragmentation techniques, including novel ion activation methodologies, in studying glycan sequences, linkage positions, and fatty acid composition is extensively discussed. Finally, we address current challenges, such as the detection of low-abundance species and the interpretation of complex spectra, and offer insights into potential solutions and future directions by improving MS instrumentation for enhanced sensitivity and resolution, developing novel ionization techniques, or integrating MS with other analytical approaches for comprehensive GSL characterization.
Collapse
Affiliation(s)
- Karel Hořejší
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic.
| |
Collapse
|
2
|
Zheng J, Yang J, Liang X, Fang M, Wang Y. Dual strategy for 13C-Metabolic flux analysis of central carbon and energy metabolism in Mammalian cells based on LC-isoMRM-MS. Talanta 2024; 266:125074. [PMID: 37651912 DOI: 10.1016/j.talanta.2023.125074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023]
Abstract
Central carbon and energy metabolism are the most concerned metabolic pathways in 13C-Metabolic flux analysis (13C-MFA). However, some α-keto acids, ribonucleoside triphosphate (NTPs) and deoxyribonucleoside triphosphate (dNTPs) involved in central carbon and energy metabolism pathways were unstable or reactive, leading to inaccurate metabolic flux analysis. To achieve accurate 13C-MFA of central carbon and energy metabolism, we proposed a dual strategy for the detection of 101 metabolites in glucose metabolism pathways. N-Methylphenylethylamine (MPEA) was utilized for derivatization of 4 carboxyl (α-keto acids) and 8 phosphate metabolites (NTPs and dNTPs). After derivatization, the MPEA derivatives were investigated to be stable for 4 weeks under 4 °C and detected with high intensity in ∼104 cells. On the other hand, we analyzed an additional 89 metabolites in central carbon and energy metabolic pathways were directly analyzed by liquid chromatography tandem mass spectrometry (LC-MRM-MS). The limit of detection (LODs) of our method were as low as 0.05 ng/mL and the linear range was at least two orders of magnitude with determination coefficient (R2) > 0.9701. The relative standard divisions (RSDs) of intra- and inter-day of 95% metabolites were below 20%. In addition, the isotope list of 82 detected metabolites in central carbon and energy metabolism were generated according to isotopologues and isotopomers for each metabolite resulting from 13C incorporation. Accurate assessment of mass isotopomer distributions (MIDs) of intracellular 13C-labeled metabolites was achieved in [U-13C]-glucose cultured HepG2 cells by our dual strategy. Finally, we performed MID analysis of 101 metabolites in central carbon and energy metabolism. Overall, this dual method is reproducible and robust for application on 13C-MFA and has a great potential for studying clinical isotope labeled samples.
Collapse
Affiliation(s)
- Jie Zheng
- Singapore Phenome Center, Nanyang Technological University, 639798, Singapore
| | - Junjie Yang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Nanyang Environment & Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Xu Liang
- Singapore Phenome Center, Nanyang Technological University, 639798, Singapore
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Yulan Wang
- Singapore Phenome Center, Nanyang Technological University, 639798, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
3
|
Gao S, Zhou X, Yue M, Zhu S, Liu Q, Zhao XE. Advances and perspectives in chemical isotope labeling-based mass spectrometry methods for metabolome and exposome analysis. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
4
|
Triple chemical derivatization strategy assisted liquid chromatography-mass spectrometry for determination of retinoic acids in human serum. Talanta 2022; 245:123474. [DOI: 10.1016/j.talanta.2022.123474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 11/18/2022]
|
5
|
Stable isotope labelling-flow injection analysis-mass spectrometry for rapid and high throughput quantitative analysis of 5-hydroxymethylfurfural in drinks. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Peterka O, Jirásko R, Vaňková Z, Chocholoušková M, Wolrab D, Kulhánek J, Bureš F, Holčapek M. Simple and Reproducible Derivatization with Benzoyl Chloride: Improvement of Sensitivity for Multiple Lipid Classes in RP-UHPLC/MS. Anal Chem 2021; 93:13835-13843. [PMID: 34623138 DOI: 10.1021/acs.analchem.1c02463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The chemical derivatization of multiple lipid classes was developed using benzoyl chloride as a nonhazardous derivatization agent at ambient conditions. The derivatization procedure was optimized with standards for 4 nonpolar and 8 polar lipid classes and measured by reversed-phase ultrahigh-performance liquid chromatography-tandem mass spectrometry. The derivatization and nonderivatization approaches were compared on the basis of the calibration curves of 22 internal standards from 12 lipid classes. The new method decreased the limit of detection 9-fold for monoacylglycerols (0.9-1.0 nmol/mL), 6.5-fold for sphingoid base (0.2 nmol/mL), and 3-fold for diacylglycerols (0.9 nmol/mL). The sensitivity expressed by the ratio of calibration slopes was increased 2- to 10-fold for almost all investigated lipid classes and even more than 100-fold for monoacylglycerols. Moreover, the benzoylation reaction produces a more stable derivative of cholesterol in comparison to the easily in-source fragmented nonderivatized form and enabled the detection of fatty acids in a positive ion mode, which does not require polarity switching as for the nonderivatized form. The intralaboratory comparison with an additional operator without previous derivatization experiences shows the simplicity, robustness, and reproducibility. The stability of the derivatives was determined by periodical measurements during a one month period and five freeze/thaw cycles. The fully optimized derivatization method was applied to human plasma, which allows the detection of 169 lipid species from 11 lipid classes using the high confidence level of identification in reversed-phase (RP)-ultra high performance liquid chromatography (UHPLC)/mass spectrometry (MS). Generally, we detected more lipid species for monoacylglycerols, diacylglycerols, and sphingoid bases in comparison with previously reported papers without the derivatization.
Collapse
Affiliation(s)
- Ondřej Peterka
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Robert Jirásko
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Zuzana Vaňková
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Michaela Chocholoušková
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Denise Wolrab
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Jiří Kulhánek
- University of Pardubice, Institute of Organic Chemistry and Technology, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Filip Bureš
- University of Pardubice, Institute of Organic Chemistry and Technology, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Michal Holčapek
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic
| |
Collapse
|
7
|
An N, Zhu QF, Wang YZ, Xiong CF, Hu YN, Feng YQ. Integration of Chemical Derivatization and in-Source Fragmentation Mass Spectrometry for High-Coverage Profiling of Submetabolomes. Anal Chem 2021; 93:11321-11328. [PMID: 34369157 DOI: 10.1021/acs.analchem.1c02673] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In-source fragmentation-based high-resolution mass spectrometry (ISF-HRMS) is a potential analytical technique, which is usually used to profile some specific compounds that can generate diagnostic neutral loss (NL) or fragment ion (FI) in ion source inherently. However, the ISF-HRMS method does not work for those compounds that cannot inherently produce diagnostic NL or FI in ion source. In this study, a derivatization-based in-source fragmentation-information-dependent acquisition (DISF-IDA) strategy was proposed for profiling the metabolites with easily labeled functional groups (submetabolomes) by liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry (LC-ESI-Q-TOF MS). As a proof-of-concept study, 36 carboxylated compounds labeled with N,N-dimethylethylenediamine (DMED) were selected as model compounds to examine performance of DISF-IDA strategy in screening the carboxylated metabolites and acquiring their MSn spectra. In ESI source, the DEMD-derived carboxylated compounds were fragmented to produce characteristic neutral losses of 45.0578, 63.0684, and/or 88.1000 Da that were further used as diagnostic features for screening the carboxylated metabolites by DISF-IDA-based LC-Q-TOF MS. Furthermore, high-resolution MSn spectra of the model compounds were also obtained within a single run of DISF-IDA-based LC-Q-TOF MS analysis, which contributed to the improvement of the annotation confidence. To further verify its applicability, DISF-IDA strategy was used for profiling carboxylated submetabolome in mice feces. Using this strategy, a total of 351 carboxylated metabolites were detected from mice feces, of which 178 metabolites (51% of the total) were positively or putatively identified. Moreover, DISF-IDA strategy was also demonstrated to be applicable for profiling other submetabolomes with easily labeled functional groups such as amino, carbonyl, and cis-diol groups. Overall, our proposed DISF-IDA strategy is a promising technique for high-coverage profiling of submetabolomes with easily labeled functional groups in biological samples.
Collapse
Affiliation(s)
- Na An
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Quan-Fei Zhu
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yan-Zhen Wang
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Cai-Feng Xiong
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yu-Ning Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, PR China.,School of Health Sciences, Wuhan University, Wuhan 430071, PR China
| |
Collapse
|