1
|
Leelasattarathkul T, Trakoolwilaiwan T, Khachornsakkul K. A gold nanomaterial-integrated distance-based analytical device for uric acid quantification in human urine samples. Analyst 2024; 149:5518-5526. [PMID: 39420824 DOI: 10.1039/d4an01139b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In this article, we present the first demonstration of a distance-based paper analytical device (dPAD) for uric acid quantification in human urine samples with instrument-free readout and user-friendliness for the rapid diagnosis and prognosis of various related diseases. By employing gold nanoparticles (AuNPs) as a peroxidase-like nanozyme, our proposed technique eliminates the utilization of horseradish peroxidase (HRP), making the device cost-effective and stable. In our dPAD, uric acid in the sample is oxidized by the uricase enzyme and subsequently catalysed with AuNPs in the sample zone, generating hydroxyl radicals (˙OH). Then, the produced ˙OH reacts with 3,3'-diaminobenzidine (DAB) to form poly DAB (oxDAB), resulting in a coloured distance signal in the detection zone of the dPAD. The variation of the distance of the observed red-brown colour is directly proportional to the uric acid concentration. Our sensor exhibited a linear range from 0.50 to 6.0 mmol L-1 (R2 = 0.9922) with a detection limit (LOD) of 0.25 mmol L-1, covering the clinical range of uric acid in urine. Hence, there is no need for additional sample preparation or dilution. Additionally, this assay is highly selective, with no interferences. We also found that this approach could accurately and precisely determine uric acid in human control samples with the recovery ranging from 99.37 to 100.35 with the highest RSD of 4.05%. Our method is comparable with the use of a commercially available uric acid sensor at a 95% confidence interval. Consequently, the developed dPAD offers numerous advantages such as cost-effectiveness, simplicity, and ease of operation with unskilled individuals. Furthermore, this concept can be applied for extensive biosensing applications in monitoring other biomarkers as an alternative analytical point-of-care (POC) device.
Collapse
Affiliation(s)
- Tapparath Leelasattarathkul
- Division of Chemistry, Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok, 10120 Thailand.
| | - Thithawat Trakoolwilaiwan
- Division of Chemistry, Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok, 10120 Thailand.
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120 Thailand
| | - Kawin Khachornsakkul
- Division of Chemistry, Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok, 10120 Thailand.
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
2
|
Romay L, Nuñez-Marinero P, Perales-Rondon JV, Heras A, Del Campo FJ, Colina A. New screen-printed electrodes for Raman spectroelectrochemistry. Determination of p-aminosalicylic acid. Anal Chim Acta 2024; 1325:343095. [PMID: 39244301 DOI: 10.1016/j.aca.2024.343095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 08/11/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND The availability of new surface enhanced Raman scattering (SERS) substrates is essential to develop quantitative analytical methods. Electrochemistry is an easy, fast and reproducible methodology to prepare SERS substrates on screen-printed electrodes (SPEs). RESULTS This work proposes new SPEs based on a three-electrode system all made of silver. Using the same ink for the whole electrode system facilitates the fabrication process, reduces production costs, and leads to excellent analytical performance. The results showed that Raman enhancement depends strongly on the type of silver ink. To demonstrate the capabilities of the new electrodes developed, 4-aminosalicylic acid was determined in complex matrices and in the presence of strong interfering compounds such as salicylic acid and acetylsalicylic acid. The proposed analytical method is based on the electrochemical surface oxidation enhanced Raman scattering (EC-SOERS) strategy. AgCl nanocrystals are generated on the working electrode surface, which amplify the Raman signal of 4-aminosalicylic acid. Good figures of merit were obtained both in the absence and in the presence of the interfering compounds, achieving a correct estimation of a 4-aminosalicylic test sample in complex matrices. SIGNIFICANCE The new SPEs have been demonstrated to be very sensitive and reproducible which, together to the high specificity of the Raman signal, makes this methodology very attractive for chemical analysis.
Collapse
Affiliation(s)
- Luis Romay
- Department of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001, Burgos, Spain
| | - Pello Nuñez-Marinero
- BCMaterials, Basque Center for Materials, Applications and Nanostructures. UPV/EHU Parque Científico, E-48940, Leioa, Bizkaia, Spain
| | - Juan V Perales-Rondon
- Department of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001, Burgos, Spain; Hydrogen and Power-to-X Department, Iberian Centre for Research in Energy Storage, Polígono 13, Parcela 31, «El Cuartillo», E-10004, Cáceres, Spain
| | - Aranzazu Heras
- Department of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001, Burgos, Spain
| | - F Javier Del Campo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures. UPV/EHU Parque Científico, E-48940, Leioa, Bizkaia, Spain; IKERBASQUE, Fundación Vasca para la Ciencia, E-48009, Bilbao, Spain.
| | - Alvaro Colina
- Department of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001, Burgos, Spain.
| |
Collapse
|
3
|
Hernandez S, Perez-Estebanez M, Cheuquepan W, Perales-Rondon JV, Heras A, Colina A. Raman, UV-Vis Absorption, and Fluorescence Spectroelectrochemistry for Studying the Enhancement of the Raman Scattering Using Nanocrystals Activated by Metal Cations. Anal Chem 2023; 95:16070-16078. [PMID: 37871281 PMCID: PMC10633809 DOI: 10.1021/acs.analchem.3c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Raman signal enhancement is fundamental to develop different analytical tools for chemical analysis, interface reaction studies, or new materials characterization, among others. Thus, phenomena such as surface-enhanced Raman scattering (SERS) have been used for decades to increase the sensitivity of Raman spectroscopy, leading to a huge development of this field. Recently, an alternative method to SERS for the amplification of Raman signals has been reported. This method, known as electrochemical surface oxidation-enhanced Raman scattering (EC-SOERS), has been experimentally described. However, to date, it has not yet been fully understood. In this work, new experimental data that clarify the origin of the Raman enhancement in SOERS are provided. The use of a complete and unique set of combined spectroelectrochemistry techniques, including time-resolved operando UV-vis absorption, fluorescence, and Raman spectroelectrochemistry, reveals that such enhancement is related to the generation of dielectric or semiconductor nanocrystals on the surface of the electrode and that the interaction between the target molecule and the dielectric substrate is mediated by metal cations. According to these results, the interaction metal electrode-nanocrystal-metal cation-molecule is proposed as being responsible for the Raman enhancement in Ag and Cu substrates. Elucidation of the origin of the Raman enhancement will help to promote the rational design of SOERS substrates as an attractive alternative to the well-known SERS phenomenon.
Collapse
Affiliation(s)
- Sheila Hernandez
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - Martin Perez-Estebanez
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - William Cheuquepan
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
- Bernal
Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Department
of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Juan V. Perales-Rondon
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - Aranzazu Heras
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - Alvaro Colina
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| |
Collapse
|
4
|
Itoh T, Procházka M, Dong ZC, Ji W, Yamamoto YS, Zhang Y, Ozaki Y. Toward a New Era of SERS and TERS at the Nanometer Scale: From Fundamentals to Innovative Applications. Chem Rev 2023; 123:1552-1634. [PMID: 36745738 PMCID: PMC9952515 DOI: 10.1021/acs.chemrev.2c00316] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 02/08/2023]
Abstract
Surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS) have opened a variety of exciting research fields. However, although a vast number of applications have been proposed since the two techniques were first reported, none has been applied to real practical use. This calls for an update in the recent fundamental and application studies of SERS and TERS. Thus, the goals and scope of this review are to report new directions and perspectives of SERS and TERS, mainly from the viewpoint of combining their mechanism and application studies. Regarding the recent progress in SERS and TERS, this review discusses four main topics: (1) nanometer to subnanometer plasmonic hotspots for SERS; (2) Ångström resolved TERS; (3) chemical mechanisms, i.e., charge-transfer mechanism of SERS and semiconductor-enhanced Raman scattering; and (4) the creation of a strong bridge between the mechanism studies and applications.
Collapse
Affiliation(s)
- Tamitake Itoh
- Health
and Medical Research Institute, National
Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, 761-0395Kagawa, Japan
| | - Marek Procházka
- Faculty
of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, 121 16Prague 2, Czech Republic
| | - Zhen-Chao Dong
- Hefei
National Research Center for Physical Sciences at the Microscale, University of Science and Technique of China, Hefei230026, China
| | - Wei Ji
- College
of Chemistry, Chemical Engineering, and Resource Utilization, Northeast Forestry University, Harbin145040, China
| | - Yuko S. Yamamoto
- School
of Materials Science, Japan Advanced Institute
of Science and Technology (JAIST), Nomi, 923-1292Ishikawa, Japan
| | - Yao Zhang
- Hefei
National Research Center for Physical Sciences at the Microscale, University of Science and Technique of China, Hefei230026, China
| | - Yukihiro Ozaki
- School of
Biological and Environmental Sciences, Kwansei
Gakuin University, 2-1,
Gakuen, Sanda, 669-1330Hyogo, Japan
- Toyota
Physical and Chemical Research Institute, Nagakute, 480-1192Aichi, Japan
| |
Collapse
|
5
|
Platinum nanoparticles confined in metal-organic frameworks as excellent peroxidase-like nanozymes for detection of uric acid. Anal Bioanal Chem 2023; 415:649-658. [PMID: 36443450 DOI: 10.1007/s00216-022-04453-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Abstract
High levels of uric acid (UA) in humans can cause a range of diseases, and traditional assays that rely on uric acid enzymes to break down uric acid are limited by the inherent deficiencies of natural enzymes. Fortunately, the rapid development of nanozymes in recent years is expected to solve the above-mentioned problems. Hence, we used a host-guest strategy to synthesize a platinum nanoparticle confined in a metal-organic framework (Pt NPs@ZIF) that can sensitively detect UA levels in human serum. Unlike previously reported free radical-catalyzed oxidation systems, its unique electron transfer mechanism confers excellent peroxidase-like activity to Pt NPs@ZIF. In addition, UA can selectively inhibit the chromogenic reaction of TMB, thus reducing the absorbance of the system. Therefore, using the peroxidase-like activity of Pt NPs@ZIF and using TMB as a chromogenic substrate, UA can be detected directly without relying on natural enzymes. The results showed a relatively wide detection range (10-1000 μM) and a low detection limit (0.2 μM). Satisfactory results were also obtained for UA in human serum. This study with simple operation and rapid detection offers a promising method for efficiently detecting UA in serum.
Collapse
|
6
|
Kong X, Liang H, An W, Bai S, Miao Y, Qiang J, Wang H, Zhou Y, Zhang Q. Rapid identification of early renal damage in asymptomatic hyperuricemia patients based on urine Raman spectroscopy and bioinformatics analysis. Front Chem 2023; 11:1045697. [PMID: 36762194 PMCID: PMC9905717 DOI: 10.3389/fchem.2023.1045697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Objective: The issue of when to start treatment in patients with hyperuricemia (HUA) without gout and chronic kidney disease (CKD) is both important and controversial. In this study, Raman spectroscopy (RS) was used to analyze urine samples, and key genes expressed differentially CKD were identified using bioinformatics. The biological functions and regulatory pathways of these key genes were preliminarily analyzed, and the relationship between them as well as the heterogeneity of the urine components of HUA was evaluated. This study provides new ideas for the rapid evaluation of renal function in patients with HUA and CKD, while providing an important reference for the new treatment strategy of HUA disease. Methods: A physically examined population in 2021 was recruited as the research subjects. There were 10 cases with normal blood uric acid level and 31 cases with asymptomatic HUA diagnosis. The general clinical data were collected and the urine samples were analyzed by Raman spectroscopy. An identification model was also established by using the multidimensional multivariate method of orthogonal partial least squares discriminant analysis (OPLS-DA) model for statistical analysis of the data, key genes associated with CKD were identified using the Gene Expression Omnibus (GEO) database, and key biological pathways associated with renal function damage in CKD patients with HUA were analyzed. Results: The Raman spectra showed significant differences in the levels of uric acid (640 cm-1), urea, creatinine (1,608, 1,706 cm-1), proteins/amino acids (642, 828, 1,556, 1,585, 1,587, 1,596, 1,603, 1,615 cm-1), and ketone body (1,643 cm-1) (p < 0.05). The top 10 differentially expressed genes (DEGs) associated with CKD (ALB, MYC, IL10, FOS, TOP2A, PLG, REN, FGA, CCNA2, and BUB1) were identified. Compared with the differential peak positions analyzed by the OPLS-DA model, it was found that the peak positions of glutathione, tryptophan and tyrosine may be important markers for the diagnosis and progression of CKD. Conclusion: The progression of CKD was related to the expression of the ALB, MYC, IL10, PLG, REN, and FGA genes. Patients with HUA may have abnormalities in glutathione, tryptophan, tyrosine, and energy metabolism. The application of Raman spectroscopy to analyze urine samples and interpret the heterogeneity of the internal environment of asymptomatic HUA patients can be combined with the OPLS-DA model to mine the massive clinical and biochemical examination information on HUA patients. The results can also provide a reference for identifying the right time for intervention for uric acid as well as assist the early detection of changes in the internal environment of the body. Finally, this approach provides a useful technical supplement for exploring a low-cost, rapid evaluation and improving the timeliness of screening. Precise intervention of abnormal signal levels of internal environment and energy metabolism may be a potential way to delay renal injury in patients with HUA.
Collapse
Affiliation(s)
- Xiaodong Kong
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Haoyue Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wei An
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Sheng Bai
- Department of Ultrasound, Xiangya Hospital Central South University, Changsha, Hunan, China
| | | | - Junlian Qiang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Haoyu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China,*Correspondence: Qiang Zhang, ; Yuan Zhou,
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China,*Correspondence: Qiang Zhang, ; Yuan Zhou,
| |
Collapse
|
7
|
Markin AV, Arzhanukhina AI, Markina NE, Goryacheva IY. Analytical performance of electrochemical surface-enhanced Raman spectroscopy: A critical review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Raman spectroelectrochemical determination of clopyralid in tap water. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Ibáñez D, González-García MB, Hernández-Santos D, Fanjul-Bolado P. Spectroelectrochemical Enzyme Sensor System for Acetaldehyde Detection in Wine. BIOSENSORS 2022; 12:1032. [PMID: 36421150 PMCID: PMC9688840 DOI: 10.3390/bios12111032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
A new spectroelectrochemical two-enzyme sensor system has been developed for the detection of acetaldehyde in wine. A combination of spectroscopy and electrochemistry improves the analytical features of the electrochemical sensor because the optical information collected with this system is only associated with acetaldehyde and avoids the interferents also present in wines as polyphenols. Spectroelectrochemical detection is achieved by the analysis of the optical properties of the K3[Fe(CN)6]/K4[Fe(CN)6] redox couple involved in the enzymatic process: aldehyde dehydrogenase catalyzes the aldehyde oxidation using β-nicotinamide adenine dinucleotide hydrate (NAD+) as a cofactor and, simultaneously, diaphorase reoxidizes the NADH formed in the first enzymatic process due to the presence of K3[Fe(CN)6]. An analysis of the characteristic UV-vis bands of K3[Fe(CN)6] at 310 and 420 nm allows the detection of acetaldehyde, since absorption bands are only related to the oxidation of this substrate, and avoids the contribution of other interferents.
Collapse
|
10
|
Soare T, Iordache AM, Nicolae G, Iordache SM, Baciu C, Marinescu S, Rizac RI, Militaru M. Identification of Uric Acid Crystals Accumulation in Human and Animal Tissues Using Combined Morphological and Raman Spectroscopy Analysis. Diagnostics (Basel) 2022; 12:diagnostics12112762. [PMID: 36428822 PMCID: PMC9689726 DOI: 10.3390/diagnostics12112762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Gout is a metabolic condition, common to animals and humans, issuing from the excessive accumulation of end products of proteins degradation. In this study, histopathological and cytological examinations, combined with Raman spectroscopy, have been performed to investigate tissue samples from reptiles, chickens, and humans, presenting lesions produced by uric acid accumulation. As a result of classic processing and staining techniques commonly used in the anatomopathological diagnosis, uric acid crystals lose their structural characteristics, thus making difficult a precise diagnostic. Therefore, complementary diagnostic methods, such as Raman spectroscopy, are needed. This study compares from several perspectives the above mentioned diagnostic methods, concluding that Raman spectroscopy provides highlights in the diagnosis of gout in humans and animals, also adding useful information to differential diagnosis of lesions.
Collapse
Affiliation(s)
- Teodoru Soare
- Department of Pathology, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Splaiul Independentei Street, No. 105, Sector 5, 050097 Bucharest, Romania
| | - Ana Maria Iordache
- Optospintronics Department, National Institute for Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - George Nicolae
- Department of Pathology, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Splaiul Independentei Street, No. 105, Sector 5, 050097 Bucharest, Romania
| | - Stefan-Marian Iordache
- Optospintronics Department, National Institute for Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
- Correspondence: (S.-M.I.); (R.I.R.)
| | - Cosmin Baciu
- Department 14 Orthopedy-Traumatology-ATI, University of Medicine and Pharmacy Carol Davilla (UMFCD), Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania
- Clinical Emergency Hospital (SCUB) Floreasca Route, No. 8, Sector 1, 014461 Bucharest, Romania
| | - Silviu Marinescu
- Department 11-Plastic and Reconstructive Surgery, Pediatric Surgery, University of Medicine and Pharmacy Carol Davilla (UMFCD), Eroii Sanitari Bvd., No. 8, Sector 5, 050471 Bucharest, Romania
- Discipline of Plastic Surgery and Reconstructive Microsurgery, Emergency Clinical Hospital “Bagdasar-Arseni”, Berceni Street, No. 12, Sector 4, 041915 Bucharest, Romania
| | - Raluca Ioana Rizac
- Department of Pathology, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Splaiul Independentei Street, No. 105, Sector 5, 050097 Bucharest, Romania
- Correspondence: (S.-M.I.); (R.I.R.)
| | - Manuella Militaru
- Department of Pathology, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Splaiul Independentei Street, No. 105, Sector 5, 050097 Bucharest, Romania
| |
Collapse
|
11
|
Han Y, Bian X, Liang M, Li T, Zhu L, Zhao X, You R. Terahertz Enhanced Sensing of Uric Acid Based on Metallic Slot Array Metamaterial. MICROMACHINES 2022; 13:1902. [PMID: 36363923 PMCID: PMC9694246 DOI: 10.3390/mi13111902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
An enzyme-free terahertz uric acid sensor based on a metallic slot array metamaterial was proposed and realized both theoretically and experimentally. The sensing model was verified in simulation and femtosecond laser processing technology was employed to ablate slots in the copper plate to fabricate metamaterials. Analytes were tested with liquid phase deposition on the metamaterial by a terahertz frequency domain spectroscopy system. Gradient concentrations of uric acid, ascorbic acid, and a mixture of them were measured separately with a good linear response. A significant decrease in sensitivity was observed in the ascorbic acid assay compared with the uric acid assay. The test results of the mixture also proved that our device is resistant to ascorbic acid. It is a simple and effective method for monitoring uric acid concentrations and the strategy of eliminating interference while modulating the resonance peak location mentioned here can be rationally projected for the development of other sensors.
Collapse
Affiliation(s)
- Yuke Han
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing 100015, China
| | - Xiaomeng Bian
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing 100015, China
| | - Misheng Liang
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing 100015, China
| | - Tianshu Li
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing 100015, China
| | - Lianqing Zhu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing 100015, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| | - Xiaoguang Zhao
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Rui You
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing 100015, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| |
Collapse
|
12
|
Moldovan R, Milenko K, Vereshchagina E, Iacob BC, Schneider K, Farcău C, Bodoki E. EC-SERS Detection of Thiabendazole in Apple Juice Using Activated Screen-Printed Electrodes. Food Chem 2022; 405:134713. [DOI: 10.1016/j.foodchem.2022.134713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/08/2022] [Accepted: 10/19/2022] [Indexed: 11/04/2022]
|
13
|
Xu J, Zhang B, Zhang Y, Mai L, Hu W, Chen CJ, Liu JT, Zhu G. Recent advances in disease diagnosis based on electrochemical-optical dual-mode detection method. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Moldovan R, Vereshchagina E, Milenko K, Iacob BC, Bodoki AE, Falamas A, Tosa N, Muntean CM, Farcău C, Bodoki E. Review on combining surface-enhanced Raman spectroscopy and electrochemistry for analytical applications. Anal Chim Acta 2022; 1209:339250. [PMID: 35569862 DOI: 10.1016/j.aca.2021.339250] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
The discovery of surface enhanced Raman scattering (SERS) from an electrochemical (EC)-SERS experiment is known as a historic breakthrough. Five decades have passed and Raman spectroelectrochemistry (SEC) has developed into a common characterization tool that provides information about the electrode-electrolyte interface. Recently, this technique has been successfully explored for analytical purposes. EC was found to highly improve the performances of SERS sensors, providing, among others, controlled adsorption of analytes and increased reproducibility. In this review, we highlight the potential of EC-SERS sensors to be implemented for point-of-need (PON) analyses as miniaturized devices, and their ability to revolutionize fields like quality control, diagnosis or environmental and food safety. Important developments have been achieved in Raman spectroelectrochemistry, which now represents a promising alternative to conventional analytical methods and interests more and more researchers. The studies included in this review open endless possibilities for real-life EC-SERS analytical applications.
Collapse
Affiliation(s)
- Rebeca Moldovan
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349, Cluj-Napoca, Romania
| | - Elizaveta Vereshchagina
- Department of Microsystems and Nanotechnology (MiNaLab), SINTEF Digital, Gaustadalléen 23C, 0373, Oslo, Norway
| | - Karolina Milenko
- Department of Microsystems and Nanotechnology (MiNaLab), SINTEF Digital, Gaustadalléen 23C, 0373, Oslo, Norway
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349, Cluj-Napoca, Romania
| | - Andreea Elena Bodoki
- General and Inorganic Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, 12, Ion Creangă, 400010, Cluj-Napoca, Romania
| | - Alexandra Falamas
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Nicoleta Tosa
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Cristina M Muntean
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Cosmin Farcău
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania.
| | - Ede Bodoki
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349, Cluj-Napoca, Romania.
| |
Collapse
|
15
|
A Comparison of Uric Acid Optical Detection Using as Sensitive Materials an Amino-Substituted Porphyrin and Its Nanomaterials with CuNPs, PtNPs and Pt@CuNPs. Processes (Basel) 2021. [DOI: 10.3390/pr9112072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hybrid nanomaterials consisting in 5,10,15,20-tetrakis(4-amino-phenyl)-porphyrin (TAmPP) and copper nanoparticles (CuNPs), platinum nanoparticles (PtNPs), or both types (Pt@CuNPs) were obtained and tested for their capacity to optically detect uric acid from solutions. The introduction of diverse metal nanoparticles into the hybrid material proved their capacity to improve the detection range. The detection was monitored by using UV-Vis spectrophotometry, and differences between morphology of the materials were performed using atomic force microscopy (AFM). The hybrid material formed between porphyrin and PtNPs hasthe best and most stable response for uric acid detection in the range of 6.1958 × 10−6–1.5763 × 10−5 M, even in the presence of very high concentrations of the interference species present in human environment.
Collapse
|
16
|
Cheuquepan W, Hernandez S, Perez-Estebanez M, Romay L, Heras A, Colina A. Electrochemical generation of surface enhanced Raman scattering substrates for the determination of folic acid. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
|
18
|
Hernandez S, Perales-Rondon JV, Heras A, Colina A. Enhancement factors in electrochemical surface oxidation enhanced Raman scattering. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Flowers PA, Dong X, Bounds JG. Kinetic Spectroelectrochemical Assay for Uric Acid in Human Urine. ELECTROANAL 2021. [DOI: 10.1002/elan.202060251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Paul A. Flowers
- Department of Chemistry and Physics University of North Carolina at Pembroke Pembroke NC 28372 USA
| | - Xin Dong
- Department of Chemistry University of Minnesota Minneapolis MN 55455 USA
| | - Jackson G. Bounds
- Department of Chemistry & Biochemistry University of North Carolina at Wilmington Wilmington NC 28403 USA
| |
Collapse
|
20
|
Lu F, Yang Y, Liu Y, Wang F, Ji X, He Z. Point-of-care testing (POCT) of patients with a high concentration of uric acid by using alginate hydrogel microspheres embedded with CdZnTeS QDs and urate oxidase (Alg@QDs-UOx MSs). Analyst 2021; 146:949-955. [DOI: 10.1039/d0an02029j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A more convenient method for POCT of patients with a high concentration of uric acid by using Alg@QDs-UOx MSs is developed.
Collapse
Affiliation(s)
- Fan Lu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Yeling Yang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Yucheng Liu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Fubing Wang
- Department of Laboratory Medicine
- Zhongnan Hospital of Wuhan University
- Wuhan 430071
- China
| | - Xinghu Ji
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Zhike He
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
21
|
Integrated EC-SERS Chip with Uniform Nanostructured EC-SERS Active Working Electrode for Rapid Detection of Uric Acid. SENSORS 2020; 20:s20247066. [PMID: 33321761 PMCID: PMC7764591 DOI: 10.3390/s20247066] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
Toxemia of pregnancy is a very dangerous disease for pregnant women. The mortality rate of toxemia of pregnancy is close to 10% to 15%. Early detection of pregnancy toxemia is to monitoring uric acid concentration in urine. The current mainstream method for detecting uric acid requires an enzyme (urate oxidase), which needs to be stored in a low-temperature environment, and the method requires complex chemical steps, which takes a longer time and more samples. In this study, we propose an integrated miniature three-electrode electrochemical surface-enhanced Raman spectroscopy chip (EC-SERS chip) suitable for rapid EC-SERS detection applications. The integrated microfluidic reservoir on the chip makes it easy to use, which is very suitable for rapid detection applications. The SERS active working electrode for the proposed integrated EC-SERS chip is a nanocone array polycarbonate (PC) substrate decorated with an evenly distributed and tightly packed array of gold nanospheres. It showed good uniformity and can be easily reproduced. The integrated EC-SERS chip is very small compared to the traditional electrochemical cell, which reduces the sample volume required for the testing. In addition, the chip is for one-time use only. It eliminates the need to clean electrochemical cells for reuse, thereby reducing the possibility of contamination and inaccurate detection. Various low-concentration Rhodamine 6G (R6G) solutions were tested to verify the performance of the developed EC-SERS chip. Experimental results showed that the proposed EC-SERS chip has a strong enhancement factor of up to 8.5 × 106 and a very good EC-SERS uniformity (the relative standard deviation of EC-SERS intensity is as low as 1.41%). The EC-SERS chip developed has been further tested for the detection of uric acid in synthetic urine. The results showed that the EC-SERS signal intensity has a highly linear relationship with the logarithm of the uric acid concentration in synthetic urine, which indicates that the developed EC-SERS chip is suitable for the quantitative detection of uric acid in synthetic urine. Therefore, the developed EC-SERS chip is very promising to be used in routine and early diagnosis of pregnancy toxemia and may be used in many other medical tests, food safety, and biotechnology applications.
Collapse
|
22
|
Oliveira LG, Lemos SG, Fragoso WD. Simultaneous determination of benzenediol isomers in tap water by second-order calibration and voltabsorptometry. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Perez-Estebanez M, Hernandez S, Perales-Rondon JV, Gomez E, Heras A, Colina A. Chemical selectivity in electrochemical surface oxidation enhanced Raman scattering. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Electrochemical SERS and SOERS in a single experiment: A new methodology for quantitative analysis. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135561] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|