1
|
Sibanda N, Pfukwa H, Bungu PE, Pasch H. Advanced tools for molecular characterization of bio-based and biodegradable polymers. Anal Bioanal Chem 2024; 416:3665-3675. [PMID: 38517490 PMCID: PMC11180630 DOI: 10.1007/s00216-024-05255-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
Bio-based and biodegradable materials play a vital role in a sustainable and green economy. These materials must exhibit properties that are similar to or better than the properties of oil- or coal-based materials and require sophisticated synthesis technologies and detailed knowledge of structure-property correlations. For comprehensive molecular structure elucidation, advanced analytical methods, including coupled and hyphenated techniques that combine advanced fractionation and information-rich spectroscopic detectors, are an indispensable tool. One important tool for fractionating complex polymers regarding molecular size is size exclusion chromatography. For fractionating polymers with regard to chemical composition, solvent (or temperature) gradient HPLC has been developed. The combination of different liquid chromatography methods in comprehensive two-dimensional HPLC setups is another important tool. Today, a toolbox of HPLC methods is in place that enables the fractionation of complex bio-based and biodegradable polymers according to the most important molecular parameters including molecular size, composition, functionality, and branching. Here, an overview of the different techniques and some major applications is presented. Some representative developments in the field are discussed, and different techniques, experimental protocols, and applications are highlighted.
Collapse
Affiliation(s)
- Ndumiso Sibanda
- Department of Chemistry and Polymer Science, University of Stellenbosch, Stellenbosch, 7602, South Africa
| | - Helen Pfukwa
- Department of Chemistry and Polymer Science, University of Stellenbosch, Stellenbosch, 7602, South Africa
| | - Paul Eselem Bungu
- Department of Correlative Characterization, Institute of Functional Materials for Sustainability, Helmholtz Center Hereon, Kantstrasse 55, 14513, Teltow, Germany
| | - Harald Pasch
- Department of Correlative Characterization, Institute of Functional Materials for Sustainability, Helmholtz Center Hereon, Kantstrasse 55, 14513, Teltow, Germany.
| |
Collapse
|
2
|
Abstract
Metabolomics aims to profile the extensive array of metabolites that exists in different types of matrices using modern analytical techniques. These techniques help to separate, identify, and quantify the plethora of chemical compounds at various analytical platforms. Hence, ion mobility spectrometry (IMS) has emerged as an advanced analytical approach, exclusively owing to the 3D separation of metabolites and their isomers. Furthermore, separated metabolites are identified based on their mass fragmentation pattern and CCS (collision cross-section) values. The IMS provides an advanced alternative dimension to separate the isomeric metabolites with enhanced throughput with lesser chemical noise. Thus, the present review highlights the types, factors affecting the resolution, and applications of IMMS (Ion mobility mass spectrometry) for isomeric separations, and ionic contaminants in the plant samples. Furthermore, an overview of IMS-based applications for the identification of plant metabolites (volatile and non-volatile) over the last few decades has been discussed, followed by future assumptions for creating IM-based databases. Such approaches could be significant to accelerate and improve our knowledge of the vast chemical diversity found in plants.
Collapse
Affiliation(s)
- Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, India
| | - Shruti Sharma
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
3
|
Métoyer B, Renouf E, Jourdes M, Mérillon JM, Téguo PW. Isolation of Hydrolyzable Tannins from Castanea sativa Using Centrifugal Partition Chromatography. JOURNAL OF NATURAL PRODUCTS 2024; 87:652-663. [PMID: 38359463 DOI: 10.1021/acs.jnatprod.3c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Castanea sativa wood is a rich source of hydrolyzable tannins, known for their diverse bioactivities. To investigate these bioactive properties further, it is crucial to isolate and characterize hydrophilic compounds effectively. To address this issue, we developed a centrifugal partition chromatography (CPC) method and applied it to an aqueous C. sativa wood extract. We determined the partition coefficients (KD) of the six major compounds using four butanol-/water-based biphasic solvent systems. Initially, we utilized the n-butanol/propanol/water (3:1:4, v/v/v) systems for the first fractionation step. Subsequently, we employed the water/methyl tert-butyl ether/butanol/acetone (8:5:3:4, v/v/v/v) system to fractionate moderately and highly hydrophilic fractions. We calculated the KD values for major compounds of the most hydrophilic fractions using the butanol/ethanol/water (4:1:5, v/v/v) and butanol/isopropanol/water (2:1:3, v/v/v) systems. In total, we isolated 23 compounds through a combination of CPC, size exclusion chromatography, and preparative HPLC. Among these compounds, six have never been previously described. We characterized them by 1D and 2D NMR experiments and high-resolution mass spectroscopy acquisitions.
Collapse
Affiliation(s)
- Benjamin Métoyer
- Polyphénols Biotech-ADERA, Unité de Recherche Œnologie, UMR 1366 INRAE, ISVV, 33882 Villenave-d'Ornon, France
| | - Elodie Renouf
- Polyphénols Biotech-ADERA, Unité de Recherche Œnologie, UMR 1366 INRAE, ISVV, 33882 Villenave-d'Ornon, France
| | - Michael Jourdes
- Unité de Recherche Œnologie, UMR 1366 INRAE, ISVV, Université de Bordeaux, 33882 Villenave-d'Ornon, France
| | - Jean-Michel Mérillon
- Polyphénols Biotech-ADERA, Unité de Recherche Œnologie, UMR 1366 INRAE, ISVV, 33882 Villenave-d'Ornon, France
- Unité de Recherche Œnologie, UMR 1366 INRAE, ISVV, Université de Bordeaux, 33882 Villenave-d'Ornon, France
| | - Pierre Waffo Téguo
- Polyphénols Biotech-ADERA, Unité de Recherche Œnologie, UMR 1366 INRAE, ISVV, 33882 Villenave-d'Ornon, France
- Unité de Recherche Œnologie, UMR 1366 INRAE, ISVV, Université de Bordeaux, 33882 Villenave-d'Ornon, France
| |
Collapse
|
4
|
Guo R, Zhong Q, Liu J, Bai P, Wang Z, Kou J, Chen P, Zhang J, Zhang B. Polarity-extended liquid chromatography-triple quadrupole mass spectrometry for simultaneous hydrophilic and hydrophobic metabolite analysis. Anal Chim Acta 2023; 1277:341655. [PMID: 37604610 DOI: 10.1016/j.aca.2023.341655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/02/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023]
Abstract
Although various metabolomic methods have been reported in recent years, simultaneous detection of hydrophilic and hydrophobic metabolites in a single analysis remains a technical challenge. In this study, based on the combination of hydrophilic interaction liquid chromatography (HILIC) and reversed phase liquid chromatography (RPLC), an online two-dimensional liquid chromatography/triple quadrupole mass spectrometry method (2D-LC/TQMS) was developed for the simultaneous analysis of hydrophilic and hydrophobic metabolites of various biological samples. The method can measure 417 biologically important metabolites (e.g., amino acids and peptides, pyrimidines, purines, monosaccharides, fatty acids and conjugates, organic dicarboxylic acids, and others) with logP values ranging from -10.3 to 21.9. The metabolites are involved in a variety of metabolic pathways (e.g., purine metabolism, pyrimidine metabolism, tyrosine metabolism, galactose metabolism, gluconeogenesis, and TCA cycle). The developed method has good intra- and inter-day reproducibility (RSD of retention time <2%, RSD of peak area <30%), good linearity (R2 > 0.9) and wide linear range (from 0.0025 μg/mL to 5 μg/mL). The applicability of the method was tested using different biological samples (i.e., plasma, serum, urine, fecal, seminal plasma and liver) and it was found that 208 (out of 417) identical metabolites were detected in all biological samples. Furthermore, the metabolomic method was applied to a case/control study of urinary of bladder cancer. Thirty differential metabolites were identified that were involved in carbohydrate and amino acid metabolism.
Collapse
Affiliation(s)
- Rui Guo
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qisheng Zhong
- Guangzhou Analytical Center Analytical & Measuring Instruments Division, Shimadzu (China) Co., LTD, Guangzhou, 510656, China
| | - Jiaqi Liu
- Guangzhou Analytical Center Analytical & Measuring Instruments Division, Shimadzu (China) Co., LTD, Guangzhou, 510656, China
| | - Peiming Bai
- Zhongshan Hospital Affiliated of Xiamen University, Xiamen, 361004, China
| | - Zongpeng Wang
- Jinjiang Jingchun Technology Ltd., Quanzhou, 362200, China
| | - Jieling Kou
- ScienceLife (Xiamen) Technology Co., Ltd., Xiamen, 361000, China
| | - Peijie Chen
- Zhongshan Hospital Affiliated of Xiamen University, Xiamen, 361004, China.
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Bo Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
5
|
Muller M, de Villiers A. A detailed evaluation of the advantages and limitations of online RP-LC×HILIC compared to HILIC×RP-LC for phenolic analysis. J Chromatogr A 2023; 1692:463843. [PMID: 36780845 DOI: 10.1016/j.chroma.2023.463843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
The combination of hydrophilic interaction chromatography (HILIC) and reversed-phase liquid chromatography (RP-LC) has proved effective in the LC × LC analysis of polyphenols due to the high degree of orthogonality associated with these separation modes for various classes of phenolic compounds. However, despite the growing number of such applications, HILIC is almost exclusively used as the first dimension (1D) separation mode, and RP-LC in the second dimension (2D). This is somewhat surprising in light of the potential advantages of swapping these separation modes. In this contribution, we present a detailed evaluation of the potential of online RP-LC × HILIC-MS for the analysis of phenolic compounds, comparing the performance of this system to the more established HILIC × RP-LC-MS configuration. Method development was performed using a predictive optimisation program, and fixed solvent modulation was employed to combat the solvent incompatibility between HILIC and RP-LC mobile phases. Red wine, rooibos tea, Protea and chestnut phenolic extracts containing a large diversity of phenolic compound classes were analysed by both HILIC × RP-LC- and RP-LC × HILIC-MS in order to compare the separation performance. Overall, the kinetic performance of HILIC × RP-LC was found to be clearly superior, with higher peak capacities and better resolution obtained for the majority of samples compared to RP-LC × HILIC analyses using similar column dimensions. Dilution of the 1D solvent combined with large volume injections proved insufficient to focus especially phenolic acids in the 2D HILIC separation, which resulted in severe 2D peak distortion for these compounds, and negatively impacted on method performance. On the other hand, a noteworthy improvement in the sensitivity of RP-LC × HILIC-MS analyses was observed due to higher ESI-MS response for the 2D HILIC mobile phase and greater sample loading capacity of the 1D RP-LC column, brought on by the high solubility of phenolic samples in aqueous solutions. As a result, a significantly higher number of compounds were detected in the RP-LC × HILIC-MS separations. These findings point to the potential advantage of RP-LC × HILIC as a complementary configuration to HILIC × RP-LC for phenolic analysis.
Collapse
Affiliation(s)
- Magriet Muller
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - André de Villiers
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
6
|
de Bruin CR, Hennebelle M, Vincken JP, de Bruijn WJC. Separation of flavonoid isomers by cyclic ion mobility mass spectrometry. Anal Chim Acta 2023; 1244:340774. [PMID: 36737151 DOI: 10.1016/j.aca.2022.340774] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
Analytical techniques, such as liquid chromatography coupled to mass spectrometry (LC-MS) or nuclear magnetic resonance (NMR), are widely used for characterization of complex mixtures of (isomeric) proteins, carbohydrates, lipids, and phytochemicals in food. Food can contain isomers that are challenging to separate, but can possess different reactivity and bioactivity. Catechins are the main phenolic compounds in tea; they can be present as various stereoisomers, which differ in their chemical properties. Currently, there is a lack of fast and direct methods to monitor interconversion and individual reactivity of these epimers (e.g. epicatechin (EC) and catechin (C)). In this study, cyclic ion mobility mass spectrometry (cIMS-MS) was explored as a potential tool for the separation of catechin epimers. Formation of sodium and lithium adducts enhanced IMS separation of catechin epimers, compared to deprotonation and protonation. Baseline separation of the sodium adducts of catechin epimers was achieved. Moreover, we developed a fast method for the identification and semi-quantification of cIMS-MS separated catechin epimers. With this method, it is possible to semi-quantify the ratio between EC and C (1:5 to 5:1, within 50-1200 ng mL-1) in food samples, such as tea. Finally, the newly developed approach for cIMS-MS separation of flavonoids was demonstrated to be successful in separation of two sets of positional isomers (i.e. morin, tricetin, and quercetin; and kaempferol, fisetin, luteolin, and scutellarein). To conclude, we showed that both epimers and positional isomers of flavonoids can be separated using cIMS-MS, and established the potential of this method for challenging flavonoid separations.
Collapse
Affiliation(s)
- Carlo Roberto de Bruin
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Marie Hennebelle
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Wouter J C de Bruijn
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
7
|
Improved Analysis of Isomeric Polyphenol Dimers Using the 4th Dimension of Trapped Ion Mobility Spectrometry—Mass Spectrometry. Molecules 2022; 27:molecules27134176. [PMID: 35807423 PMCID: PMC9268536 DOI: 10.3390/molecules27134176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Dehydrodicatechins resulting from (epi)catechin oxidation have been investigated in different foods and natural products, but they still offer some analytical challenges. The purpose of this research is to develop a method using ultra-high performance liquid chromatography coupled with trapped ion mobility spectrometry and tandem mass spectrometry (UHPLC−ESI−TIMS−QTOF−MS/MS) to improve the characterization of dehydrodicatechins from model solutions (oxidation dimers of (+)-catechin and/or (−)-epicatechin). Approximately 30 dehydrodicatechins were detected in the model solutions, including dehydrodicatechins B with β and ε-interflavanic configurations and dehydrodicatechins A with γ-configuration. A total of 11 dehydrodicatechins B, based on (−)-epicatechin, (+)-catechin, or both, were tentatively identified in a grape seed extract. All of them were of β-configuration, except for one compound that was of ε-configuration. TIMS allowed the mobility separation of chromatographically coeluted isomers including dehydrodicatechins and procyanidins with similar MS/MS fragmentation patterns that would hardly be distinguished by LC-MS/MS alone, which demonstrates the superiority of TIMS added to LC-MS/MS for these kinds of compounds. To the best of our knowledge, this is the first time that ion mobility spectrometry (IMS) was applied to the analysis of dehydrodicatechins. This method can be adapted for other natural products.
Collapse
|
8
|
Lusvardi G, Fraulini F, D’Addato S, Zambon A. Loading with Biomolecules Modulates the Antioxidant Activity of Cerium-Doped Bioactive Glasses. ACS Biomater Sci Eng 2022; 8:2890-2898. [PMID: 35696677 PMCID: PMC9937534 DOI: 10.1021/acsbiomaterials.2c00283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to identify new bioactive glasses (BGs) with optimal antioxidant properties, we carried out an evaluation of a series of cerium-doped BGs [Ce-BGs─H, K, and mesoporous bioactive glasses (MBGs)] loaded with different biomolecules, namely, gallic acid, polyphenols (POLY), and anthocyanins. Quantification of loading at variable times highlighted POLY on MBGs as the system with the highest loading. The ability to dismutate hydrogen peroxide (catalase-like activity) of the BGs evaluated is strongly correlated with cerium doping, while it is marginally decreased compared to the parent BG upon loading with biomolecules. Conversely, unloaded Ce-BGs show only a marginal ability to dismutate the superoxide anion (SOD)-like activity, while upon loading with biomolecules, POLY in particular, the SOD-like activity is greatly enhanced for these materials. Doping with cerium and loading with biomolecules give complementary antioxidant properties to the BGs investigated; combined with the persistent bioactivity, this makes these materials prime candidates for upcoming studies on biological systems.
Collapse
Affiliation(s)
- Gigliola Lusvardi
- Department
of Chemical and Geological Sciences, University
of Modena and Reggio Emilia, Via G.Campi 103, Modena 41125, Italy,
| | - Francesca Fraulini
- Department
of Chemical and Geological Sciences, University
of Modena and Reggio Emilia, Via G.Campi 103, Modena 41125, Italy
| | - Sergio D’Addato
- Department
of Physical, Information and Mathematical Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/a, Modena 41125, Italy,Istituto
Nanoscienze−CNR, Via G. Campi 213/a, Modena 41125, Italy
| | - Alfonso Zambon
- Department
of Chemical and Geological Sciences, University
of Modena and Reggio Emilia, Via G.Campi 103, Modena 41125, Italy,
| |
Collapse
|
9
|
Ristinmaa AS, Coleman T, Cesar L, Langborg Weinmann A, Mazurkewich S, Brändén G, Hasani M, Larsbrink J. Structural diversity and substrate preferences of three tannase enzymes encoded by the anaerobic bacterium Clostridium butyricum. J Biol Chem 2022; 298:101758. [PMID: 35202648 PMCID: PMC8958541 DOI: 10.1016/j.jbc.2022.101758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Tannins are secondary metabolites that are enriched in the bark, roots, and knots in trees and are known to hinder microbial attack. The biological degradation of water-soluble gallotannins, such as tannic acid, is initiated by tannase enzymes (EC 3.1.1.20), which are esterases able to liberate gallic acid from aromatic-sugar complexes. However, only few tannases have previously been studied in detail. Here, for the first time, we biochemically and structurally characterize three tannases from a single organism, the anaerobic bacterium Clostridium butyricum, which inhabits both soil and gut environments. The enzymes were named CbTan1-3, and we show that each one exhibits a unique substrate preference on a range of galloyl ester model substrates; CbTan1 and 3 demonstrated preference toward galloyl esters linked to glucose, while CbTan2 was more promiscuous. All enzymes were also active on oak bark extractives. Furthermore, we solved the crystal structure of CbTan2 and produced homology models for CbTan1 and 3. In each structure, the catalytic triad and gallate-binding regions in the core domain were found in very similar positions in the active site compared with other bacterial tannases, suggesting a similar mechanism of action among these enzymes, though large inserts in each enzyme showcase overall structural diversity. In conclusion, the varied structural features and substrate specificities of the C. butyricum tannases indicate that they have different biological roles and could further be used in development of new valorization strategies for renewable plant biomass.
Collapse
Affiliation(s)
- Amanda Sörensen Ristinmaa
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Tom Coleman
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Leona Cesar
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Scott Mazurkewich
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Merima Hasani
- Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden; Division of Forest Products and Chemical Engineering, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Johan Larsbrink
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
10
|
Masike K, de Villiers A, de Beer D, Joubert E, Stander MA. Application of direct injection-ion mobility spectrometry-mass spectrometry (DI-IMS-MS) for the analysis of phenolics in honeybush and rooibos tea samples. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Aliaño-González MJ, Gabaston J, Ortiz-Somovilla V, Cantos-Villar E. Wood Waste from Fruit Trees: Biomolecules and Their Applications in Agri-Food Industry. Biomolecules 2022; 12:238. [PMID: 35204739 PMCID: PMC8961605 DOI: 10.3390/biom12020238] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
In the European Union (EU), a total of 11,301,345 hectares are dedicated to the cultivation of fruit trees, mainly olive orchards, grapevines, nut trees (almond, walnut, chestnut, hazelnut, and pistachio), apple and pear trees, stone fruit trees (peach, nectarine, apricot, cherry, and plum), and citrus fruit trees (orange, clementine, satsuma, mandarin, lemon, grapefruit, and pomelo). Pruning these trees, together with plantation removal to a lesser extent, produces a huge amount of wood waste. A theoretical calculation of the wood waste in the European Union estimates approximately 2 and 25 million tons from wood plantation removal and pruning, respectively, per year. This wood waste is usually destroyed by in-field burning or crushing into the soil, which result in no direct economic benefits. However, wood from tree pruning, which is enriched in high added-value molecules, offers a wide spectrum of possibilities for its valorization. This review focuses on the contribution of wood waste to both sustainability and the circular economy, considering its use not only as biomass but also as a potential source of bioactive compounds. The main bioactive compounds found in wood are polyphenols, terpenes, polysaccharides, organic compounds, fatty acids, and alkaloids. Polyphenols are the most ubiquitous compounds in wood. Large amounts of hydroxytyrosol (up to 25 g/kg dw), resveratrol (up to 66 g/kg dw), protocatechuic acid (up to 16.4 g/kg), and proanthocyanins (8.5 g/kg dw) have been found in the wood from olive trees, grapevines, almond trees and plum trees, respectively. The bioactivity of these compounds has been demonstrated at lower concentrations, mainly in vitro studies. Bioactive compounds present antioxidant, antimicrobial, antifungal, biostimulant, anti-inflammatory, cardioprotective, and anticarcinogenic properties, among others. Therefore, wood extracts might have several applications in agriculture, medicine, and the food, pharmaceutical, nutraceutical, and cosmetics industries. For example, olive tree wood extract reduced thrombin-induced platelet aggregation in vitro; grapevine tree wood extract acts a preservative in wine, replacing SO2; chestnut tree wood extract has antifungal properties on postharvest pathogens in vitro; and stone tree wood extracts are used for aging both wines and brandies. Moreover, the use of wood waste contributes to the move towards both a more sustainable development and a circular economy.
Collapse
Affiliation(s)
- Maria Jose Aliaño-González
- IFAPA Rancho de la Merced, Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, Junta de Andalucía, 11471 Jerez de la Frontera, Spain;
- Departamento de Química Analítica, Facultad de Ciencias, Universidad de Cádiz, 11510 Cadiz, Spain
| | - Julien Gabaston
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain;
| | - Victor Ortiz-Somovilla
- IFAPA Alameda del Obispo, Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, Junta de Andalucía, Avenida Menéndez Pidal, 14004 Córdoba, Spain;
| | - Emma Cantos-Villar
- IFAPA Rancho de la Merced, Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, Junta de Andalucía, 11471 Jerez de la Frontera, Spain;
| |
Collapse
|
12
|
Liu J, Wang K, Li Y, Zhou B, Tseng K, Zhang X, Su Y, Sun W, Guo Y. Rapid Discrimination of Citrus reticulata 'Chachi' by Electrospray Ionization-Ion Mobility-High-Resolution Mass Spectrometry. Molecules 2021; 26:7015. [PMID: 34834108 PMCID: PMC8622672 DOI: 10.3390/molecules26227015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
A common idea is that some dishonest businessmen often disguise Citrus reticulata Blanco varieties as Citrus reticulata 'Chachi', which places consumers at risk of economic losses. In this work, we combined high-resolution ion mobility (U-shaped mobility analyzer) with high-resolution mass spectrometry to rapidly distinguish Citrus reticulata 'Chachi' from other Citrus species. The samples were analyzed directly through simple extraction and the analytes were separated in one second. It only took about 1 min to perform a cycle of sample analysis and data acquisition. The results showed that polymethoxylated flavones and their isomers were separated easily by the ion mobility analyzer and preliminarily identified according to the accurate mass. Moreover, the collision cross-section values of all analytes, which could be used as auxiliary parameters to characterize and identify the compounds in the samples, were measured. Twenty-four samples were grouped as two clusters by multivariate analysis, which meant that Citrus reticulata 'Chachi' could be effectively differentiated. It was confirmed that the developed method had the potential to rapidly separate polymethoxylated flavones and distinguish between Citrus reticulata 'Chachi' and other Citrus reticulata Blanco varieties.
Collapse
Affiliation(s)
- Juan Liu
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China;
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; (Y.L.); (B.Z.)
| | - Keke Wang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China; (K.W.); (K.T.); (X.Z.)
| | - Yuling Li
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; (Y.L.); (B.Z.)
| | - Bowen Zhou
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; (Y.L.); (B.Z.)
| | - Kuofeng Tseng
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China; (K.W.); (K.T.); (X.Z.)
| | - Xiaoqiang Zhang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China; (K.W.); (K.T.); (X.Z.)
| | - Yue Su
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China;
| | - Wenjian Sun
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China; (K.W.); (K.T.); (X.Z.)
| | - Yinlong Guo
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; (Y.L.); (B.Z.)
| |
Collapse
|
13
|
Song XC, Canellas E, Dreolin N, Nerin C, Goshawk J. Discovery and Characterization of Phenolic Compounds in Bearberry ( Arctostaphylos uva-ursi) Leaves Using Liquid Chromatography-Ion Mobility-High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10856-10868. [PMID: 34493038 DOI: 10.1021/acs.jafc.1c02845] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The characterization and quantification of phenolic compounds in bearberry leaves were performed using hyphenated ion mobility spectroscopy (IMS) and a quadrupole time-of-flight mass spectrometer. A higher identification confidence level was obtained by comparing the measured collision cross section (TWCCSN2) with predicted values using a machine learning algorithm. A total of 88 compounds were identified, including 14 arbutin derivatives, 33 hydrolyzable tannins, 6 flavanols, 26 flavonols, 9 saccharide derivatives, and glycosidic compounds. Those most reliably reproduced in all samples were quantified against respective standards. Arbutin (47-107 mg/g), 1,2,3,4,6-pentagalloylglucose (6.6-12.9 mg/g), and quercetin 3-galactoside/quercetin 3-glucoside (2.7-5.7 mg/g) were the most abundant phenolic components in the leaves. Quinic acid and ellagic acid were also detected at relatively high concentrations. The antioxidant activity of the most abundant compounds was evaluated. A critical view of the advantages and limitations of traveling wave IMS and CCS for the discovery of natural products is given.
Collapse
Affiliation(s)
- Xue-Chao Song
- Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, CPS-University of Zaragoza, Torres Quevedo Building, María de Luna 3, 50018 Zaragoza, Spain
| | - Elena Canellas
- Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, CPS-University of Zaragoza, Torres Quevedo Building, María de Luna 3, 50018 Zaragoza, Spain
| | - Nicola Dreolin
- Waters Corporation, Altrincham Road, SK9 4AX Wilmslow, U.K
| | - Cristina Nerin
- Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, CPS-University of Zaragoza, Torres Quevedo Building, María de Luna 3, 50018 Zaragoza, Spain
| | - Jeff Goshawk
- Waters Corporation, Altrincham Road, SK9 4AX Wilmslow, U.K
| |
Collapse
|
14
|
Bobasa EM, Phan ADT, Netzel ME, Cozzolino D, Sultanbawa Y. Hydrolysable tannins in Terminalia ferdinandiana Exell fruit powder and comparison of their functional properties from different solvent extracts. Food Chem 2021; 358:129833. [PMID: 33933967 DOI: 10.1016/j.foodchem.2021.129833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 11/18/2022]
Abstract
This study identified and quantified hydrolysable tannins (HTs) in Terminalia ferdinandiana Exell (Kakadu plum) fruit, freeze dried powder extracted with 80% aqueous acetone (AA) and 80% aqueous acidified ethanol (AAE), using UHPLC-Q/Orbitrap/MS/MS. The vitamin C and ellagic acid were quantified by UHPLC-PDA. A total of seven HTs were identified: corilagin, 3,4,6-tri-O-galloyl-β-d-glucose, elaeocarpusin, chebulinic acid, chebulagic acid, helioscopin B, and punicalagin, with five classified as ellagitannins. The two extracts AA and AAE, comprised of gallic acid (2.5 and 2.2 mg/g DW), punicalagins α and β (2.8 and 1.3 mg/g DW), respectively, and both contained ellagic acid (~4 g/100 g DW). These extracts showed high antioxidant properties and strong antimicrobial effects against methicillin-resistant Staphylococcus aureus clinical isolate, Staphylococcus aureus, and Shewanella putrefaciens. These results suggest that Kakadu plum fruit is a rich, edible source of ellagitannins, ellagic acid and vitamin C with potential applications in food, cosmetic and nutraceutical industries.
Collapse
Affiliation(s)
- Eshetu M Bobasa
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - Anh Dao Thi Phan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 39 Kessels Road, Coopers Plains, QLD 4108, Australia; ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plans 4108, Australia
| | - Michael E Netzel
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 39 Kessels Road, Coopers Plains, QLD 4108, Australia; ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plans 4108, Australia
| | - Daniel Cozzolino
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 39 Kessels Road, Coopers Plains, QLD 4108, Australia; ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plans 4108, Australia
| | - Yasmina Sultanbawa
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 39 Kessels Road, Coopers Plains, QLD 4108, Australia; ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plans 4108, Australia.
| |
Collapse
|
15
|
An RP-LC-UV-TWIMS-HRMS and Chemometric Approach to Differentiate between Momordicabalsamina Chemotypes from Three Different Geographical Locations in Limpopo Province of South Africa. Molecules 2021; 26:molecules26071896. [PMID: 33801575 PMCID: PMC8036689 DOI: 10.3390/molecules26071896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 11/23/2022] Open
Abstract
Momordica balsamina leaf extracts originating from three different geographical locations were analyzed using reversed-phase liquid chromatography (RP-LC) coupled to travelling wave ion mobility (TWIMS) and high-resolution mass spectrometry (HRMS) in conjunction with chemometric analysis to differentiate between potential chemotypes. Furthermore, the cytotoxicity of the three individual chemotypes was evaluated using HT-29 colon cancer cells. A total of 11 molecular species including three flavonol glycosides, five cucurbitane-type triterpenoid aglycones and three glycosidic cucurbitane-type triterpenoids were identified. The cucurbitane-type triterpenoid aglycones were detected in the positive ionization mode following dehydration [M + H − H2O]+ of the parent compound, whereas the cucurbitane-type triterpenoid glycosides were primarily identified following adduct formation with ammonia [M + NH4]+. The principle component analysis (PCA) loadings plot and a variable influence on projection (VIP) analysis revealed that the isomeric pair balsaminol E and/or karavilagen E was the key molecular species contributing to the distinction between geographical samples. Ultimately, based on statistical analysis, it is hypothesized that balsaminol E and/or karavilagen E are likely responsible for the cytotoxic effects in HT-29 cells.
Collapse
|
16
|
Masike K, Stander MA, de Villiers A. Recent applications of ion mobility spectrometry in natural product research. J Pharm Biomed Anal 2021; 195:113846. [PMID: 33422832 DOI: 10.1016/j.jpba.2020.113846] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
Ion mobility spectrometry (IMS) is a rapid separation technique capable of extracting complementary structural information to chromatography and mass spectrometry (MS). IMS, especially in combination with MS, has experienced inordinate growth in recent years as an analytical technique, and elicited intense interest in many research fields. In natural product analysis, IMS shows promise as an additional tool to enhance the performance of analytical methods used to identify promising drug candidates. Potential benefits of the incorporation of IMS into analytical workflows currently used in natural product analysis include the discrimination of structurally similar secondary metabolites, improving the quality of mass spectral data, and the use of mobility-derived collision cross-section (CCS) values as an additional identification criterion in targeted and untargeted analyses. This review aims to provide an overview of the application of IMS to natural product analysis over the last six years. Instrumental aspects and the fundamental background of IMS will be briefly covered, and recent applications of the technique for natural product analysis will be discussed to demonstrate the utility of the technique in this field.
Collapse
Affiliation(s)
- Keabetswe Masike
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Maria A Stander
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa; Central Analytical Facility, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - André de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
17
|
Causon TJ, Hann S. Uncertainty Estimations for Collision Cross Section Determination via Uniform Field Drift Tube-Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2102-2110. [PMID: 32812758 DOI: 10.1021/jasms.0c00233] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Uniform field drift tube ion mobility-mass spectrometry (DTIM-MS) has emerged as a valuable tool for a range of analytical applications. In focus here are standardized collisional cross section values from DTIM-MS (DTCCS) as a candidate identification point for various analytical workflows. Of critical importance in establishing this parameter as a valid identification point is a rugged estimation of uncertainties according to the procedures used for their derivation. Relying on the assumption of the zero-field limit, the primary method of measurement for DTCCS values involves experimental determination of arrival times of an ion measured at several different field strengths transiting a drift tube filled with high purity drift gas, while a method using measurements of external calibrants at a single field strength is employed to allow for online measurements of transient signals (e.g., chromatographic peaks). Both approaches are here considered with respect to the uncertainty of input experimental variables (temperature, pressure, voltages, physical constants) and the steps of the calibration function employed. Estimations of uncertainty were performed according to EURACHEM with Monte Carlo simulations and reveal that existing consensus calibration standards from experimental stepped-field IM-MS determinations have estimated expanded uncertainties in the range of 2.7 to 4.6% (k = 2). Application of these standards for calibration considering these input uncertainties reveals uncertainty estimates of 4.7-9.1% (k = 2) for measured values using an established single-field calibration approach. Finally, directions for improving this situation via new experimental efforts toward standard reference and calibration materials are presented.
Collapse
Affiliation(s)
- Tim J Causon
- Institute of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Stephan Hann
- Institute of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, Vienna 1190, Austria
| |
Collapse
|
18
|
Picache JA, May JC, McLean JA. Chemical Class Prediction of Unknown Biomolecules Using Ion Mobility-Mass Spectrometry and Machine Learning: Supervised Inference of Feature Taxonomy from Ensemble Randomization. Anal Chem 2020; 92:10759-10767. [DOI: 10.1021/acs.analchem.0c02137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jaqueline A. Picache
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jody C. May
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - John A. McLean
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
19
|
Venter P, Pasch H, de Villiers A. Comprehensive analysis of tara tannins by reversed-phase and hydrophilic interaction chromatography coupled to ion mobility and high-resolution mass spectrometry. Anal Bioanal Chem 2019; 411:6329-6341. [DOI: 10.1007/s00216-019-01931-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/15/2019] [Accepted: 05/17/2019] [Indexed: 11/29/2022]
|