1
|
Ben Moussa F, Kutner W, Beduk T, Sena-Torralba A, Mostafavi E. Electrochemical bio- and chemosensors for cancer biomarkers: Natural (with antibodies) versus biomimicking artificial (with aptamers and molecularly imprinted polymers) recognition. Talanta 2024; 267:125259. [PMID: 37806110 DOI: 10.1016/j.talanta.2023.125259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
Electrochemical (EC) bio- and chemosensors are highly promising for on-chip and point-of-care testing (POST) devices. They can make a breakthrough in early cancer diagnosis. Most current EC sensors for cancer biomarkers' detection and determination use natural antibodies as recognition units. However, those quickly lose their biorecognition ability upon exposure to harsh environments, comprising extreme pH, humidity, temperature, etc. So-called "plastic antibodies," including aptamers and molecularly imprinted polymers (MIPs), are hypothesized to be a smart alternative to antibodies. They have attracted the interest of the sensor research community, offering a low cost-to-performance ratio with high stability, an essential advantage toward their commercialization. Herein, we critically review recent technological advances in devising and fabricating EC bio- and chemosensors for cancer biomarkers, classifying them according to the type of recognition unit used into three categories, i.e., antibody-, aptamer-, and MIP-based EC sensors for cancer biomarkers. Each sensor fabrication strategy has been discussed, from the devising concept to cancer sensing applications, including using different innovative nanomaterials and signal transduction strategies. Moreover, employing each recognition unit in the EC sensing of cancer biomarkers has been critically compared in detail to enlighten each recognition unit's advantages, effectiveness, and limitations.
Collapse
Affiliation(s)
- Fatah Ben Moussa
- Process Engineering Laboratory, Applied Sciences Faculty, Kasdi Merbah University, Ouargla, 30000, Algeria.
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland; Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wo ycickiego 1/3, 01-815, Warsaw, Poland
| | - Tutku Beduk
- Silicon Austria Labs GmbH: Sensor Systems, Europastrasse 12, 9524, Villach, Austria
| | - Amadeo Sena-Torralba
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
2
|
Huang X, Miao J, Xu X, Cao D, Liu L, Wei Q, Cao W. Dual-mode electrochemical immunoassay for Non-small cell lung cancer detection based on CoSe2-GO-Au and poly(MB)-Au. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Zhao C, Xie Z, Ma C, Deng X, Hong C, Sun S. Highly Stable Hybrid Ligand Double-Enhanced Electrochemiluminescence for Sensitive Detection of Cu2+. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Tang C, Wang P, Zhou K, Ren J, Wang S, Tang F, Li Y, Liu Q, Xue L. Electrochemical immunosensor based on hollow porous Pt skin AgPt alloy/NGR as a dual signal amplification strategy for sensitive detection of Neuron-specific enolase. Biosens Bioelectron 2022; 197:113779. [PMID: 34781176 DOI: 10.1016/j.bios.2021.113779] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 12/26/2022]
Abstract
Neuron-specific enolase (NSE) is a specific marker for small cell carcinoma (SCLC). Sandwich-type electrochemical immunosensors are powerful for biomarker analysis, and the electrocatalytic activity of the signal amplification platform and the performance of the substrate are critical to their sensitivity. In this work, N atom-doped graphene functionalized with hollow porous Pt-skin Ag-Pt alloy (HP-Ag/Pt/NGR) was designed as a dual signal amplifier. The hollow porous Pt skin structure improves the atomic utilization and the larger internal cavity spacing significantly increases the number of electroactive centers, thus exhibiting more extraordinary electrocatalytic activity and durability for H2O2 reduction. Using NGR with good catalytic activity as the support material of HP-Ag/Pt, the double amplification of the current signal is realized. For the substrate, polypyrrole-poly(3,4-ethylenedioxythiophene) (PPy-PEDOT) nanotubes were synthesized by a novel chemical polymerization route, which effectively increased the interfacial electron transfer rate. By coupling Au nanoparticles (Au NPs) with PPy-PEDOT, the immune activity of biomolecules is maintained and the conductivity is further enhanced. Under optimal conditions, the linear range was 50 fg mL-1 - 100 ng mL-1, and the limit of detection (LOD) was 18.5 fg mL-1. The results confirm that the developed immunosensor has great promise for the early clinical diagnosis of SCLC.
Collapse
Affiliation(s)
- Chunyuan Tang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China.
| | - Kaiwei Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Jie Ren
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Shujun Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Feng Tang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Li Xue
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| |
Collapse
|
5
|
Feng J, Chu C, Dang K, Yao T, Ma Z, Han H. Responsive-released strategy based on lead ions-dependent DNAzyme functionalized UIO-66-NH 2 for tumor marker. Anal Chim Acta 2021; 1187:339170. [PMID: 34753583 DOI: 10.1016/j.aca.2021.339170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022]
Abstract
Signal labeling on electrode interface is an important step during the construction of immunosensor and most signal substances are directly affixed on the immunoprobe or substrate so that some problems such as flimsy labeling method and interference of insulating proteins on electrode surface have been existed to affect their readout. In order to solve above problems in electrochemical immunoassay, a lead ions-decodable autocephalous signal integrator based on UIO-66-NH2 was proposed for the detection of prostate specific antigen (PSA). Briefly, a lead ions-dependent DNAzyme functionalized UIO-66-NH2, in which methylene blue was encapsulated, was independently dispersed in solution phase to be closely associated with the lead sulfide labeled sandwich bioconjugates, and internal methylene blue molecules can be sustained released once a cationic exchange reaction was occurred between lead sulfide label and adscititious silver ions. Based on this designing, immunoassay for PSA was effectively connected with the dynamic behavior of methylene blue molecules through the cleavage of DNAzyme on MOFs surface and performed a wide linear range from 1 pg mL-1 to 10 ng mL-1 and a satisfactory detection limit with 0.34 pg mL-1. The proposed strategy was expected to offer more valuable information for the application of MOFs in early and accurate cancer diagnosis.
Collapse
Affiliation(s)
- Jiejie Feng
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Changshun Chu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Kun Dang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Tao Yao
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
6
|
Jiang J, Xia J, Zang Y, Diao G. Electrochemistry/Photoelectrochemistry-Based Immunosensing and Aptasensing of Carcinoembryonic Antigen. SENSORS (BASEL, SWITZERLAND) 2021; 21:7742. [PMID: 34833818 PMCID: PMC8624776 DOI: 10.3390/s21227742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022]
Abstract
Recently, electrochemistry- and photoelectrochemistry-based biosensors have been regarded as powerful tools for trace monitoring of carcinoembryonic antigen (CEA) due to the fact of their intrinsic advantages (e.g., high sensitivity, excellent selectivity, small background, and low cost), which play an important role in early cancer screening and diagnosis and benefit people's increasing demands for medical and health services. Thus, this mini-review will introduce the current trends in electrochemical and photoelectrochemical biosensors for CEA assay and classify them into two main categories according to the interactions between target and biorecognition elements: immunosensors and aptasensors. Some recent illustrative examples are summarized for interested readers, accompanied by simple descriptions of the related signaling strategies, advanced materials, and detection modes. Finally, the development prospects and challenges of future electrochemical and photoelectrochemical biosensors are considered.
Collapse
Affiliation(s)
| | | | - Yang Zang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China; (J.J.); (J.X.); (G.D.)
| | | |
Collapse
|
7
|
Mei L, Zhao W, Zhang L, Zhang M, Song Y, Liang J, Sun Y, Chen S, Li H, Hong C. The application of the inexpensive and synthetically simple electrocatalyst CuFe-MoC@NG in immunosensors. Analyst 2021; 146:5421-5428. [PMID: 34355712 DOI: 10.1039/d1an00840d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, we used inexpensive and synthetically simple electrocatalysts as replacements for conventional precious metal materials to reduce hydrogen peroxide (H2O2). We for the first time developed N-doped graphene-coated CuFe@MoC using one-step calcination of binary Prussian blue analogues (PBAs) with Mo6+ cationic grafting precursors. The synergistic interaction of CuFe PBA and MoC increased the catalytically active sites for H2O2 reduction. The catalyst was optimized in terms of the ratio of CuFe PBA to Mo6+, PVP content, and calcination temperature to improve its catalytic activity. When it was used to construct an electrochemical immunosensor for carcinoembryonic antigen (CEA) detection, polydopamine (CuFe-MoC@NG@PDA) was coated on its outer surface to increase the antibody loading and MoS2-Au NPs were used as substrates to improve Ab1 immobilization and accelerate electron transfer at the electrode interface, thereby improving the response signal of the immunosensor. Its concentration was linearly related to the response signal from 10 fg mL-1 to 80 ng mL-1, and the lowest limit of detection was 3 fg mL-1. In addition, the immunosensor has acceptable selectivity and high stability. All data indicate that nanocomposites have electrocatalytic applications.
Collapse
Affiliation(s)
- Lisha Mei
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sandwich-type electrochemical immunosensor for CEA detection using magnetic hollow Ni/C@SiO2 nanomatrix and boronic acid functionalized CPS@PANI@Au probe. Talanta 2021; 225:122006. [DOI: 10.1016/j.talanta.2020.122006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 01/18/2023]
|
9
|
Liu L, Yang A, Luo W, Liu H, Liu X, Zhao W. Ultrasensitive detection of cyclin D1 by a self-enhanced ECL immunosensor based on Bi 2S 3 quantum dots. Analyst 2021; 146:2057-2064. [PMID: 33538277 DOI: 10.1039/d0an02296a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bismuth sulfide quantum dots (Bi2S3 QDs), which have excellent optical and thermoelectric properties, represent a green and non-toxic semiconductor material that has been widely used in catalysis and photoelectric conversion devices. At present, research on this material has gradually expanded into the biological field. Herein, the biomineralization method mediated by bovine serum albumin (BSA) was utilized to synthesize Bi2S3 QDs with monodispersity, excellent colloidal stability, and good biocompatibility. This is the first study on the electrochemiluminescence (ECL) characteristics of Bi2S3 QDs and related ECL mechanisms in detail. In addition, on the basis of Bi2S3 QDs, an ECL immunosensor was used for the ultrasensitive measurement of cyclin D1 (CCND1). The composite material, namely Au@Cu-Bi2S3 QDs was used as a high-sensitivity ECL probe, in which AuNPs were connected with Bi2S3 QDs through a copper(ii) ion bridge. PDA-AgNPs made of dopamine (DA) and silver nanoparticles (AgNPs) were utilized as a carrier for fixing the primary antibody (Ab1), ultimately presenting a relatively wide detection range of 10 fg mL-1-1 μg mL-1. Moreover, quite a low detection limit (6.34 fg mL-1) was also obtained for an assay of CCND1. Results indicated that the immunosensor can provide a potential platform with fine stability and creditable reproducibility for clinical diagnosis.
Collapse
Affiliation(s)
- Lixiao Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | | | | | | | | | | |
Collapse
|
10
|
Electrochemical biosensors for measurement of colorectal cancer biomarkers. Anal Bioanal Chem 2021; 413:2407-2428. [PMID: 33666711 DOI: 10.1007/s00216-021-03197-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is associated with one of the highest rates of mortality among cancers worldwide. The early detection and management of CRC is imperative. Biomarkers play an important role in CRC screening tests, CRC treatment, and prognosis and clinical management; thus rapid and sensitive detection of biomarkers is helpful for early detection of CRC. In recent years, electrochemical biosensors for detecting CRC biomarkers have been widely investigated. In this review, different electrochemical detection methods for CRC biomarkers including immunosensors, aptasensors, and genosensors are summarized. Further, representative examples are provided that demonstrate the advantages of electrochemical sensors modified by various nanomaterials. Finally, the limitations and prospects of biomarkers and electrochemical sensors in detection are also discussed. Graphical abstract.
Collapse
|
11
|
Zhao C, Ma C, Li W, Song Y, Hong C, Qi Y. Differences in Performance of Immunosensors Constructed Based on CeO2-Simulating Auxiliary Enzymes. ACS Biomater Sci Eng 2021; 7:1058-1064. [DOI: 10.1021/acsbiomaterials.0c01680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Chulei Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, No. 221, Beisi Road, Xinjiang Uygur Autonomous Region, Shihezi 832000, China
| | - Chaoyun Ma
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, No. 221, Beisi Road, Xinjiang Uygur Autonomous Region, Shihezi 832000, China
| | - Wenjun Li
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, No. 221, Beisi Road, Xinjiang Uygur Autonomous Region, Shihezi 832000, China
| | - Yiju Song
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, No. 221, Beisi Road, Xinjiang Uygur Autonomous Region, Shihezi 832000, China
| | - Chenglin Hong
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, No. 221, Beisi Road, Xinjiang Uygur Autonomous Region, Shihezi 832000, China
| | - Yu Qi
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, No. 221, Beisi Road, Xinjiang Uygur Autonomous Region, Shihezi 832000, China
| |
Collapse
|
12
|
Zhang F, Huang F, Gong W, Tian F, Wu H, Ding S, Li S, Luo R. Multi-branched PdPt nanodendrites decorated amino-rich Fe-based metal-organic framework as signal amplifier for ultrasensitive electrochemical detection of prolactin. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
An immunosensor detects carcinoembryonic antigen by dual catalytic signal enhancer-hydrogen peroxide based on in-situ reduction of silver nanoparticles with dopamine and graphene high-load cobalt tetroxide. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Zhao H, Du X, Dong H, Jin D, Tang F, Liu Q, Wang P, Chen L, Zhao P, Li Y. Electrochemical immunosensor based on Au/Co-BDC/MoS 2 and DPCN/MoS 2 for the detection of cardiac troponin I. Biosens Bioelectron 2020; 175:112883. [PMID: 33341318 DOI: 10.1016/j.bios.2020.112883] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022]
Abstract
The content of cardiac troponin I (CTnI) in human blood is the key factor in judging acute myocardial infarction (AMI). In order to detect the content of CTnI, we constructed a sandwich-type electrochemical immunosensor based on hydrogen peroxide (H2O2) as a signal source. Dendritic platinum-copper alloy nanoparticles (DPCN) loaded on molybdenum disulfide (MoS2) nanosheets (DPCN/MoS2) as secondary antibodies (Ab2) label provided signal amplification. The hollow three-dimensional (3D) pyramid-shaped structure of DPCN exposed abundant active sites and exhibited excellent catalytic properties. MoS2 nanosheets with flower-like structure and a larger specific surface area can effectively load more DPCN. The combination of MoS2 and DPCN enhanced the catalytic performance of DPCN/MoS2 towards H2O2 reduction and realized signal amplification. For the substrate material, the two-dimensional (2D) metal-organic framework (Co-BDC, 1,4-benzenedicarboxylate is abbreviated as BDC) was hybridized with MoS2 nanosheets to load gold nanoparticles (Au NPs). The obtained Au/Co-BDC/MoS2 had low catalytic activity and excellent electrical conductivity, which was used to load primary antibodies (Ab1) to effectively enhance the sensitivity. Under the best conditions, we constructed the immunosensor with the detection range of 10 fg/mL to 100 ng/mL and the limit of detection (LOD) of 3.02 fg/mL. At the same time, the content of CTnI in human serum was tested with satisfactory results. Therefore, the constructed immunosensor has important significance in the sensitive and accurate detection of CTnI and early diagnosis of AMI.
Collapse
Affiliation(s)
- Huan Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Xin Du
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Hui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Delin Jin
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Feng Tang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China.
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Lei Chen
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Peiqing Zhao
- Zibo Central Hospital, Shandong University, Zibo, 255036, PR China.
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| |
Collapse
|
15
|
Dong H, Cao L, Zhao H, Liu S, Liu Q, Wang P, Xu Z, Wang S, Li Y, Zhao P, Li Y. “Gold-plated” IRMOF-3 and sea cucumber-like Pd@PtRh SNRs based sandwich-type immunosensor for dual-mode detection of PCT. Biosens Bioelectron 2020; 170:112667. [DOI: 10.1016/j.bios.2020.112667] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022]
|
16
|
Abstract
In recent years, advances in immunosensor device fabrication have significantly expanded the use of this technology in a broad range of applications including clinical diagnosis, food analysis, quality control, environmental studies and industrial monitoring. The most important aspect in fabrication is to obtain a design that provides a low detection limit. The utilization of nanomaterials as a label, catalyst and biosensing transducer is, perhaps, the most popular approach in ultrasensitive devices. This chapter reviews recent advances in immunosensor fabrication and summarizes the most recent studies. Strategies employed to significantly improve sensitivity and specificity of immunosensor technology and the advantages and limitations thereof are explored.
Collapse
Affiliation(s)
- Muhammet Aydin
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Elif Burcu Aydin
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
17
|
Song Y, Qiao J, Li W, Ma C, Chen S, Li H, Hong C. Bimetallic PtCu nanoparticles supported on molybdenum disulfide-functionalized graphitic carbon nitride for the detection of carcinoembryonic antigen. Mikrochim Acta 2020; 187:538. [PMID: 32876849 DOI: 10.1007/s00604-020-04498-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
A molybdenum disulfide based graphite phase carbon nitride (MoS2/g-C3N4) which is supported by a platinum-copper nanoparticle (PtCu) Z-type catalyst was created in this study. The catalyst exploits optoelectronic synergistic effect with large surface area, good catalysis, and biocompatibility to amplify the signal. The electrode impedance of the synthesized MoS2/g-C3N4-PtCu was reduced five times in visible light compared with dark conditions, thereby improving the detection of carcinoembryonic antigen (CEA). At a voltage of - 0.4 V, the immunoprobe constructed with this material is used for CEA detection. A linear relationship between 100 fg mL-1 and 80 ng mL-1 concentrations was achieved with a minimum detection limit of 33 fg mL-1 (S/N = 3). The recovery rate was 103-104%, and the relative standard deviation was 2.9-3.8%. This implies that the sandwich immunosensors have good reproducibility, selectivity, and stability and can be used in various applications. Graphical Abstract.
Collapse
Affiliation(s)
- Yiju Song
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Jingwen Qiao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Wenjun Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Chaoyun Ma
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Siyu Chen
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Hongling Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | - Chenglin Hong
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
18
|
Zhao C, Ma C, Wu M, Li W, Song Y, Hong C, Qiao X. A novel electrochemical immunosensor based on CoS2 for early screening of tumor marker carcinoembryonic antigen. NEW J CHEM 2020. [DOI: 10.1039/c9nj05745e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, PANI–HRP nanoparticles integrate biometric recognition and signal amplification functions in one body, which can be converted to each other without consuming the material itself.
Collapse
Affiliation(s)
- Chulei Zhao
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- China
| | - Chaoyun Ma
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- China
| | - Mei Wu
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- China
| | - Wenjun Li
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- China
| | - Yiju Song
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- China
| | - Chenglin Hong
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- China
| | - Xiuwen Qiao
- School of Chemistry and Chemical Engineering
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- China
| |
Collapse
|
19
|
|
20
|
Dong H, Cao L, Tan Z, Liu Q, Zhou J, Zhao P, Wang P, Li Y, Ma W, Dong Y. A Signal Amplification Strategy of CuPtRh CNB-Embedded Ammoniated Ti3C2 MXene for Detecting Cardiac Troponin I by a Sandwich-Type Electrochemical Immunosensor. ACS APPLIED BIO MATERIALS 2019; 3:377-384. [DOI: 10.1021/acsabm.9b00863] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People’s Republic of China
| | - Linlin Cao
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, People’s Republic of China
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo 255036, People’s Republic of China
| | - Zhaoling Tan
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People’s Republic of China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People’s Republic of China
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People’s Republic of China
| | - Pingping Zhao
- Collage of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, People’s Republic of China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People’s Republic of China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People’s Republic of China
| | - Wanshan Ma
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, People’s Republic of China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People’s Republic of China
| |
Collapse
|