1
|
Aladaghlo Z, Sahragard A, Fakhari A, Salarinejad N, Movahed SK, Dabiri M. Fe 3O 4@nitrogen-doped carbon@Pd core-double shell nanotubes as a novel nanosorbent for ultrasonic assisted dispersive magnetic solid phase extraction of organophosphorus pesticides. Talanta 2025; 281:126911. [PMID: 39317067 DOI: 10.1016/j.talanta.2024.126911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
In this study, an ultrasonic assisted dispersive magnetic solid phase extraction leveraging Fe3O4@nitrogen-doped carbon@Pd core-double shell nanotubes was developed for the extraction of organophosphorus pesticides (OPPs) in trace levels from real samples. Incorporation of Pd species into the structure of the nanosorbent could enhance its interactions with sulfur groups in the structure of OPPs. X-ray photoelectron spectroscopy and X-ray diffraction, brunauer-emmett-teller, field emission scanning electron microscopy, and high-resolution transmission electron microscopy were used to characterize the nanosorbent after its synthesis. Then, effective variables on the extraction efficiency of OPPs using the nanosorbent were optimized. These parameters included 2-propanol as the adsorption solvent; the sample pH of 7.0; the sorbent quantity of 10 mg; and the extraction and desorption times of 3 min. Under optimized conditions, linear ranges with determination coefficients (R2) higher than 0.99, low detection limits of 0.30 ng mL-1, high preconcentration factors (423-470) and relatively high extraction recoveries (84-94 %) were obtained. The proposed extraction system was then successfully applied to the analysis of OPPs in fruits, vegetables, water, and agricultural soil samples, yielding relative recoveries from 90.4 to 107 %.
Collapse
Affiliation(s)
- Zolfaghar Aladaghlo
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran.
| | - Ali Sahragard
- FI-TRACE Group, Department of Chemistry, Faculty of Science, University of the Balearic Islands, Carretera de Valldemossa Km 7.5, E-07122, Palma de Mallorca, Illes Balears, Spain
| | - Alireza Fakhari
- Faculty of Chemistry, Shahid Beheshti University G. C., P.O. Box 1983963113, Evin, Tehran, Iran.
| | - Neda Salarinejad
- Faculty of Chemistry, Shahid Beheshti University G. C., P.O. Box 1983963113, Evin, Tehran, Iran
| | | | - Minoo Dabiri
- Faculty of Chemistry, Shahid Beheshti University G. C., P.O. Box 1983963113, Evin, Tehran, Iran
| |
Collapse
|
2
|
Mu M, Zhu S, Gao Y, Zhang N, Wang Y, Lu M. Efficient enrichment and sensitive detection of polychlorinated biphenyls using nanoflower MIL-on-UiO as solid-phase microextraction fiber coating. Food Chem 2024; 459:140276. [PMID: 38981380 DOI: 10.1016/j.foodchem.2024.140276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
The sensitive detection of polychlorinated biphenyls (PCBs) is crucial for protecting the environment and human health. Herein, we constructed a Materials Institute Lavoisier 88B (MIL-88B)-on-University of Oslo 66 (UiO-66) composite (MIL-on-UiO) with a unique nanoflower morphology, in which highly stable UiO-66 is the precursor, with MIL-88B grown on its surface. MIL-on-UiO was used as a fiber coating for headspace solid-phase microextraction to enrich PCBs. Experimental results demonstrated that MIL-on-UiO provided better enrichment performance for PCBs than single components due to multiple interactions, including π-π stacking, halogen bonding, pore-filling, and steric hindrance effects. The method established using the MIL-on-UiO-based SPME fiber coating provided a good linear relationship in the range of 0.001-50 ng·mL-1, with limits of detection ranging from 0.0002 to 0.002 ng·mL-1 and enrichment factors between 3530 and 7420. In addition, the method was used to detect trace PCBs in water and orange juice achieving satisfactory recoveries (81%-111%).
Collapse
Affiliation(s)
- Mengyao Mu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Shiping Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Yanmei Gao
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Ning Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China.
| | - Youmei Wang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
3
|
Chao Y, Deng N, Zhou Z. A review of recent advances in metal-organic frameworks materials for zero-energy passive adsorption of chemical pollutants in indoor environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175926. [PMID: 39218109 DOI: 10.1016/j.scitotenv.2024.175926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/26/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Approximately 75-90 % of a person's lifetime is spent inside increasingly airtight buildings, where indoor pollutant levels typically exceed those outdoors. Poor indoor air quality can lead to allergies, respiratory diseases, and even cancer, and can also reduce the longevity of buildings. Passive adsorption materials play a crucial role in reducing indoor pollutants. This review highlights the latest advances in using Metal-organic Frameworks (MOFs) as passive adsorption materials for indoor pollutant capture and outlines the principles for developing high-performance adsorbents. It provides a comparative analysis of the development and performance of MOFs and composite adsorbent materials, highlighting their respective advantages and limitations in indoor pollutant adsorption technology. The article proposes strategies to address these challenges and offers a comprehensive review of current practical adsorption devices. Finally, aiming to advance commercialization of MOFs, the anticipated development of indoor pollutant adsorption technology is discussed in this paper.
Collapse
Affiliation(s)
- Yuechao Chao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Na Deng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Zhihua Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
4
|
Tao Q, Ma P, Chen B, Qu X, Fu H. Hierarchically spherical assembly of carbon nanorods derived from metal-organic framework as solid-phase microextraction coating for nitrated polycyclic aromatic hydrocarbon analysis. J Chromatogr A 2024; 1736:465352. [PMID: 39255650 DOI: 10.1016/j.chroma.2024.465352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are pervasive contaminants in aquatic environments. They are characterized by persistence, toxicity, bioaccumulation, and long-range transport, significantly threatening human health. The development of sensitive methods for nitro-PAH analysis in environmental samples is in great need. This study developed a novel carbonaceous SPME coating derived from metal-organic framework (MOF), namely a spherical assembly consisting of carbon nanorods with hierarchical porosity (HP-MOF-C), for the extraction and determination of nitro-PAHs in waters. The HP-MOF-C coated fiber demonstrated superior nitro-PAH extraction efficiencies, with enrichment factors 2∼70 times higher than commercial fibers. This enhancement was due to the strong hydrophobic, π-π electron coupling/stacking, and π-π electron donor-acceptor interactions between the carbonaceous framework of HP-MOF-C and the nitro-PAHs. Moreover, the unique hierarchical porous structure of HP-MOF-C accelerated the diffusion of nitro-PAHs, further facilitating their enrichment. The fiber also exhibited good thermal stability, remarkable chemical stabilities against common acid, base, and polar/non-polar solvents, and long service life (> 150 SPME cycles). The nitro-PAH determination method based on HP-MOF-C coating yielded wide linear ranges, low detection limits (0.4∼5.0 ng L-1), satisfactory repeatability and reproducibility, and good recoveries in real water samples. The proposed method was considered to be green according to the Analytical GREEnness assessment. The present study not only offers an efficient SPME coating for the enrichment of nitro-PAHs, but also provides insights into the design of porous coating materials.
Collapse
Affiliation(s)
- Qingwen Tao
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Pu Ma
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Beining Chen
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu 210046, China.
| |
Collapse
|
5
|
Zhu S, Song Z, Wang Y, Zhu J, Hao Y, Lou X, Lu M. Defective porous urchin-like ZnO/NiO microspheres-coated solid-phase microextraction fiber for analysis of trace polychlorinated biphenyls in milk. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136362. [PMID: 39486328 DOI: 10.1016/j.jhazmat.2024.136362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Owing to the high lipophilicity of polychlorinated biphenyls (PCB), they easily accumulate in dairy products. Although usually present at very low levels, they pose a serious threat to human health. Therefore, developing a sensitive and reliable method for detecting PCB in dairy products is crucial. Herein, Herein, a metal-organic framework (MOF) material named with bimetallic nodes and double ligands was prepared as a precursor using a one-pot hydrothermal method. Defective porous urchin-like ZnO/NiO, derived from these MOF-based precursors (ZnNi-MOF-NH2) as a sacrificial template, was synthesized via pyrolysis to remove heat-sensitive ligands. To the best of our knowledge, this urchin-like nanostructured ZnO/NiO hybrid was utilized as a solid-phase microextraction (SPME) coating for the first time. Headspace SPME (HS-SPME) was developed for non-contact extraction of PCB in milk prior to gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis. Under optimal conditions, the HS-SPME-GC-MS/MS method exhibited a wide linear range (0.01-1000 ng·L-1), low limits of detection (0.003-0.025 ng·L-1), and high enrichment factors (5714-9906). Additionally, the performance of the ZnO/NiO SPME fiber coating showed no noticeable decrease after 175 uses. The method was applied to trace PCB analysis in milk samples, yielding recoveries of 70.3-114.1 %. The ZnO/NiO derived from MOF-based material provides a promising candidate for SPME coatings to extract PCB and other analogs.
Collapse
Affiliation(s)
- Shiping Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Zhen Song
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Youmei Wang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Jiawen Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Yingge Hao
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Xuejing Lou
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
6
|
Riboni N, Ribezzi E, Bianchi F, Careri M. Supramolecular Materials as Solid-Phase Microextraction Coatings in Environmental Analysis. Molecules 2024; 29:2802. [PMID: 38930867 PMCID: PMC11206577 DOI: 10.3390/molecules29122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Solid-phase microextraction (SPME) has been widely proposed for the extraction, clean-up, and preconcentration of analytes of environmental concern. Enrichment capabilities, preconcentration efficiency, sample throughput, and selectivity in extracting target compounds greatly depend on the materials used as SPME coatings. Supramolecular materials have emerged as promising porous coatings to be used for the extraction of target compounds due to their unique selectivity, three-dimensional framework, flexible design, and possibility to promote the interaction between the analytes and the coating by means of multiple oriented functional groups. The present review will cover the state of the art of the last 5 years related to SPME coatings based on metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular macrocycles used for environmental applications.
Collapse
Affiliation(s)
- Nicolò Riboni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy; (E.R.); (M.C.)
| | | | - Federica Bianchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy; (E.R.); (M.C.)
| | | |
Collapse
|
7
|
Rozaini MNH, Khoo KS, Abdah MAAM, Ethiraj B, Alam MM, Anwar AF, Yunus NM, Liew CS, Lim JW, Ho CD, Tong WY. Potential application of 2D nano-layered MXene in analysing and remediating endocrine disruptor compounds and heavy metals in water. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:111. [PMID: 38466501 DOI: 10.1007/s10653-024-01917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
With the advancement of technologies and growth of the economy, it is inevitable that more complex processes are deployed, producing more heterogeneous wastewater that comes from biomedical, biochemical and various biotechnological industries. While the conventional way of wastewater treatment could effectively reduce the chemical oxygen demand, pH and turbidity of wastewater, trace pollutants, specifically the endocrine disruptor compounds (EDCs) that exist in µg L-1 or ng L-1 have further hardened the detection and removal of these biochemical pollutants. Even in small amounts, EDC could interfere human's hormone, causing severe implications on human body. Hence, this review elucidates the recent insights regarding the effectiveness of an advanced 2D material based on titanium carbide (Ti3C2Tx), also known as MXene, in detecting and removing EDCs. MXene's highly tunable feature also allows its surface chemistry to be adjusted by adding chemicals with different functional groups to adsorb different kinds of EDCs for biochemical pollution mitigation. At the same time, the incorporation of MXene into sample matrices also further eases the analysis of trace pollutants down to ng L-1 levels, thereby making way for a more cleaner and comprehensive wastewater treatment. In that sense, this review also highlights the progress in synthesizing MXene from the conventional method to the more modern approaches, together with their respective key parameters. To further understand and attest to the efficacy of MXene, the limitations and current gaps of this potential agent are also accentuated, targeting to seek resolutions for a more sustainable application.
Collapse
Affiliation(s)
- Muhammad Nur' Hafiz Rozaini
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | | | - Baranitharan Ethiraj
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Science, King Khalid University, 61421, Abha, Saudi Arabia
| | - Aliya Fathima Anwar
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Normawati M Yunus
- Centre of Research in Ionic Liquids (CORIL), Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Chin Seng Liew
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia.
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India.
| | - Chii-Dong Ho
- Department of Chemical and Materials Engineering, Tamkang University, Tamsui, 251301, New Taipei, Taiwan
| | - Woei-Yenn Tong
- Universiti Kuala Lumpur, Institute of Medical Science Technology, A1-1, Jalan TKS 1, Taman Kajang Sentral, 43000, Kajang, Selangor, Malaysia.
| |
Collapse
|
8
|
Shirkhodaie M, Seidi S, Shemirani F. ZIF67-derived porous carbon-reinforced electrospun nanofiber as an extractive phase for on-chip micro-solid-phase extraction of antifungals from biological fluids prior to liquid chromatography tandem mass spectrometry. Mikrochim Acta 2023; 191:10. [PMID: 38052979 DOI: 10.1007/s00604-023-06103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
With a view to improving applicability as a sorbent while overcoming the challenges associated with its powdery nature, cobalt-doped zeolitic imidazolate framework (ZIF 67)-derived nanoporous carbon (Co-NPC) was employed as an additive in nanofiber through the process of electrospinning. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) surface area analysis were used to characterize the resulting nanocomposite. A microfluidic chip device with four layers, including two layers entailing spiral channels, was designed and employed to assess the analytical performance of the fabricated Co-NPC-reinforced electrospun composite. To do so, a folded piece of electrospun composite was sandwiched between two layers with spiral channels. Therefore, both sides of the folded composite acted as a sorptive phase to extract antifungal drugs as target analytes. The significant factors affecting the efficiency of the extraction process were investigated and optimized. Subsequently, the technique was verified through the utilization of liquid chromatography-tandem mass spectrometry (LC-MS/MS) by employing optimal parameters. The optimal conditions were applied to evaluate the figures of merit. A linear range was obtained for antifungal drugs within the range 0.25-200.0 ng ml-1 with an R2 value of ≥ 0.9914. The method demonstrated detection limits ranging between 0.08 and 0.40 ng ml-1. The intra-day and inter-day precisions were less than 6.9%. Relative recoveries exhibited variations between 91.4-106.8%, 95.9-103.6%, and 96.4-109.3% for ketoconazole, clotrimazole, and miconazole, respectively. The proposed approach yielded satisfactory results, demonstrating its efficiency.
Collapse
Affiliation(s)
- Mahsa Shirkhodaie
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Shahram Seidi
- Department of Analytical Chemistry, Faculty of Chemistry , K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Postal Code 15418-49611, Iran.
- Nanomaterial, Separation and Trace Analysis Research Lab, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Postal Code 15418-49611, Iran.
| | - Farzaneh Shemirani
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| |
Collapse
|
9
|
Majeed SA. Recent advances in metal-organic framework/carbon nanotube nanocomposites for developing analytical applications. NANOSCALE 2023. [PMID: 37378958 DOI: 10.1039/d3nr01074k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Nanoscience shows promise for scientific advancement in many sectors, such as biology, energy, materials, environment, and manufacturing. Nanocomposites are mixtures of two or more materials, one of which is nanosized particles. The composites are expected to show combined features resulting in general enhancements in their physical and chemical properties. Metal-organic frameworks (MOFs) are coordination polymers that have attracted attention from researchers in recent years due to their porosity and controllable functionality. Another example of interesting nanomaterials is carbon nanotubes (CNTs) which are also known for their mechanical and thermal properties. Incorporation of both these materials into a nanocomposite has shown an enhancement in properties and conquered challenges in the defects of construction. This mini-review sheds light on the recent synthetic approaches and characterization of MOF-CNT nanocomposites in order to access porous selective nanocomposites that can improve analyte detection in environmental matrixes and biological systems. A summary of the chemical composition of nanocomposites, analytes in the target, and analytical techniques used is provided.
Collapse
Affiliation(s)
- Shereen A Majeed
- National Unit for Environmental Research and Services (NUERS), Research Sector, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait.
| |
Collapse
|
10
|
Chen S, Yu Z, Zhang W, Chen H, Ding Q, Xu J, Yu Q, Zhang L. Carboxylated mesoporous carbon hollow spheres for the efficient solid-phase microextraction of aromatic amines. Analyst 2023; 148:2527-2535. [PMID: 37140019 DOI: 10.1039/d3an00376k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
An efficient and stable fiber coating is of great importance for solid-phase microextraction (SPME). In this study, carboxylated mesoporous carbon hollow spheres (MCHS-COOH) were developed as an efficient SPME coating of polar aromatic amines (AAs) for the first time. The MCHS-COOH coating material with high specific surface area (1182.32 m2 g-1), large pore size (10.14 nm), and rich oxygen-containing groups was fabricated via a facile H2O2 post-treatment. The as-prepared MCHS-COOH-coated fiber exhibited fast adsorption rate and excellent extraction properties, mainly due to its π-π interactions, hollow structure, and abundant affinity sites (carboxyl groups). Subsequently, coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS), a sensitive method with low limits of detection (0.08-2.0 ng L-1), a wide linear range (0.3-500.0 ng L-1), and good repeatability (2.0-8.8%, n = 6) was developed for the analysis of AAs. The developed method was validated against three river water samples, with satisfactory relative recoveries being obtained. The above results demonstrated that the prepared MCHS-COOH-coated fiber exhibited good adsorption capacity, suggesting a promising application to monitor trace polar compounds in real environment.
Collapse
Affiliation(s)
- Shixiang Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Zejun Yu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Wenmin Zhang
- Department of Chemical and Biological Technology, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Hui Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Qingqing Ding
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Jinhua Xu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Qidong Yu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Lan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
11
|
Wang X, Tarahomi M, Sheibani R, Xia C, Wang W. Progresses in lignin, cellulose, starch, chitosan, chitin, alginate, and gum/carbon nanotube (nano)composites for environmental applications: A review. Int J Biol Macromol 2023; 241:124472. [PMID: 37076069 DOI: 10.1016/j.ijbiomac.2023.124472] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Water sources are becoming increasingly scarce, and they are contaminated by industrial, residential, and agricultural waste-derived organic and inorganic contaminants. These contaminants may pollute the air, water, and soil in addition to invading the ecosystem. Because carbon nanotubes (CNTs) can undergo surface modification, they can combine with other substances to create nanocomposites (NCs), including biopolymers, metal nanoparticles, proteins, and metal oxides. Furthermore, biopolymers are significant classes of organic materials that are widely used for various applications. They have drawn attention due to their benefits such as environmental friendliness, availability, biocompatibility, safety, etc. As a result, the synthesis of a composite made of CNT and biopolymers can be very effective for a variety of applications, especially those involving the environment. In this review, we reported environmental applications (including removal of dyes, nitro compounds, hazardous materialsو toxic ions, etc.) of composites made of CNT and biopolymers such as lignin, cellulose, starch, chitosan, chitin, alginate, and gum. Also, the effect of different factors such as the medium pH, the pollutant concentration, temperature, and contact time on the adsorption capacity (AC) and the catalytic activity of the composite in the reduction or degradation of various pollutants has been systematically explained.
Collapse
Affiliation(s)
- Xuan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Mehrasa Tarahomi
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh San'ati, Mahshahr, Khouzestan, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh San'ati, Mahshahr, Khouzestan, Iran.
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Weidong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
12
|
Kori AH, Jagirani MS, Soylak M. Graphene-Based Nanomaterials: A Sustainable Material for Solid-Phase Microextraction (SPME) for Environmental Applications. ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2173221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Abdul Hameed Kori
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Muhammad Saqaf Jagirani
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
- Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkey
| |
Collapse
|
13
|
Yu Z, Chen H, Zhang W, Ding Q, Yu Q, Fang M, Zhang L. Room temperature synthesis of flower-like hollow covalent organic framework for efficient enrichment of microcystins. RSC Adv 2023; 13:4255-4262. [PMID: 36760277 PMCID: PMC9891098 DOI: 10.1039/d2ra06901f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
The morphology of nanomaterials is one of essential factors for their unique properties. Herein, a hollow covalent organic framework with a flower-like structure (HFH-COF) was synthesized at room temperature. The synthesized HFH-COF has a very large specific surface area, mesoporous structure, excellent chemical stability, and good crystallinity. The special morphology endowed HFH-COF with high specific surface area utilization and rapid mass transfer rate, resulting in faster equilibration time and better extraction performance than spherical COF (S-COF). Subsequently, combined with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), an efficient and sensitive method was established for microcystins (MCs) detection. The developed method has low detection limits (0.6-0.8 pg mL-1), wide linear ranges (1.5-1000.0 pg mL-1, R ≥ 0.9993), and acceptable reproducibility (RSD ≤ 7.6%, n = 6). Real biological samples were analyzed by the developed method, and trace levels of MC-YR, MC-RR and MC-LR were detected. The results indicate that the synthesized HFH-COF is an ideal sorbent for efficient extraction of MCs from complex biological samples.
Collapse
Affiliation(s)
- Zhenli Yu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University Fuzhou Fujian 350002 China +86-591-22866135 +86-591-22866135
| | - Hui Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University Fuzhou Fujian 350002 China +86-591-22866135 +86-591-22866135
| | - Wenming Zhang
- School of Chemical and Biological Technology, Minjiang Teachers CollegeFuzhouFujian350108China
| | - Qingqing Ding
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University Fuzhou Fujian 350002 China +86-591-22866135 +86-591-22866135
| | - Qidong Yu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University Fuzhou Fujian 350002 China +86-591-22866135 +86-591-22866135
| | - Min Fang
- School of Chemical and Biological Technology, Minjiang Teachers CollegeFuzhouFujian350108China
| | - Lan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University Fuzhou Fujian 350002 China +86-591-22866135 +86-591-22866135
| |
Collapse
|
14
|
Li W, Gu Y, Liu Z, Hua R, Wu X, Xue J. Development of a polyurethane-coated thin film solid phase microextraction device for multi-residue monitoring of pesticides in fruit and tea beverages. J Sep Sci 2023; 46:e2200661. [PMID: 36373185 DOI: 10.1002/jssc.202200661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022]
Abstract
A novel solid-phase microextraction device coated with an efficient and cheap thin film of polyurethane was developed for trace determination of 13 widely used pesticides in fruit and tea beverages. A round-shaped polyurethane film covering the bottom of a glass vial was fabricated as the sorbent to exhibit a superior capacity for preconcentrating target compounds and reducing matrix interferences. After optimization of the key parameters including the film type, extraction time, solution pH, ionic strength, desorption solvent, and conditions, this device allowed an efficient adsorption-desorption cycle for the pesticides accomplished in one vial. Coupled with gas chromatography-electron capture detection, the polyurethane-coated thin film microextraction method was successfully established and applied for the analysis of real fruit and tea drinks, showing low limits of detection (0.001-0.015 μg/L), wide linear ranges (1.0-500.0 μg/L, r2 > 0.9931), good relative recoveries (77.2%-106.3%) and negligible matrix effects (86.1%-107.5%) for the target pesticides. The proposed approach revealed strong potential of extending its application by flexibly modifying the type or size of the coating film. This study provides insights into the enrichment of contaminants from complex samples using inexpensive and reusable microextraction devices that can limit the environmental and health impact of the sample preparation protocol.
Collapse
Affiliation(s)
- Wenhui Li
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province, Anhui Agricultural University, Hefei, P. R. China
| | - Ying Gu
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province, Anhui Agricultural University, Hefei, P. R. China
| | - Zikun Liu
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province, Anhui Agricultural University, Hefei, P. R. China
| | - Rimao Hua
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province, Anhui Agricultural University, Hefei, P. R. China
| | - Xiangwei Wu
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province, Anhui Agricultural University, Hefei, P. R. China
| | - Jiaying Xue
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province, Anhui Agricultural University, Hefei, P. R. China
| |
Collapse
|
15
|
Li X, Ji W, Wang R, Zhang L, Miao R, Wang S. Imprinted covalent organic frameworks prepared by thiol-ene click reaction for selective solid-phase microextraction of aminoglycosides from milk and honey. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
ZHANG W, LI Q, FANG M, ZHANG L. [Hollow bimetal-organic framework material as solid-phase microextraction fiber coating for highly sensitive detection of polycyclic aromatic hydrocarbons]. Se Pu 2022; 40:1022-1030. [PMID: 36351811 PMCID: PMC9654618 DOI: 10.3724/sp.j.1123.2022.05001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the most harmful persistent organic pollutants that possess high carcinogenicity and teratogenicity; hence, establishing a highly sensitive analytical method for monitoring PAHs in environmental samples is an urgent need. However, due to the low PAHs content in environmental samples and the complex matrix of the samples, it is difficult to directly determine the amount of PAHs using the existing analytical instruments. Therefore, an essential pretreatment of environmental samples should be carried out before instrumental analysis. In most pretreatment techniques, the extraction efficiency depends on the characteristics of the extraction materials. Currently, metal-organic framework materials (MOFs), which are porous materials self-assembled by metal ions and organic ligands, are used as solid-phase microextraction (SPME) coating materials for the extraction of PAHs. However, the following problems limit the application of MOFs in the SPME field: (1) MOF coating materials often require a long equilibration time for extraction because the it is difficult for the target to reach the deep adsorption sites; (2) In addition, most MOFs are formed by the coordination of single metal ions with organic monomers. The single type of open metal active sites is not conducive for realizing high extraction performance. In this study, a hollow bimetal-organic framework (H-BiMOF) was synthesized by the solvothermal method and characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), nitrogen adsorption-desorption analysis, thermogravimetric analysis, etc. The TEM images and XRD patterns demonstrated the successful synthesis of H-BiMOF with a hollow structure, which was formed through the competitive coordination between benzoic acid and water. The H-BiMOF material showed type-Ⅳ isotherms with a surface area of 1437 m2/g and excellent thermal stability. Subsequently, a H-BiMOF-coated SPME fiber was prepared by the physical adhesion method and used to extract trace PAHs from environmental samples. Due to the hollow structure of H-BiMOF, the prepared fibers offer the advantages of high utilization of specific surface area as well as short mass transfer distance, so that the extraction process quickly reaches equilibrium. At the same time, the introduction of bimetals provides a variety of metal active sites, which improves the extraction efficiency of the fiber against electron-rich cloud targets such as PAHs. The prepared fiber also had good service life, with at least 150 cycles. Combined with gas chromatography-tandem mass spectrometry (GC-MS/MS), a new method for the determination of PAHs in environmental water samples was established. Single factor experiments were performed to investigate the effects of the SPME conditions on the analytical performance. Under the optimal conditions, the established method showed low limits of detection (0.01-0.08 ng/L), wide linear range (0.03-500.0 ng/L), good linearity (correlation coefficients≥0.9986), and acceptable reproducibility (relative standard deviations≤9.8%, n=5). Finally, typical water samples were analyzed by the established method. Four environmental water samples were collected from Dianchi Lake, Poyang Lake, Taihu Lake, and Xihu Lake in China. No benzo(a)anthracene (BaA) and chrysene (CHR) were detected in any of the water samples. However, 17.9 ng/L of fluorene (FLU) and 5.3 ng/L of phenanthrene (PHE) were found in the Poyang Lake sample; 11.3 ng/L of fluoranthene (FLA) and 24.2 ng/L of pyrene (PYR) were found in the Taihu Lake sample; 50.0 ng/L of FLU, 19.5 ng/L of PHE, 14.9 ng/L of anthracene (ANT), 34.2 ng/L of FLA, and 44.5 ng/L of PYR were found in the Xihu Lake sample. The contents of the PAHs detected in all the lake water samples were lower than the Chinese National Standard GB 5749-2006 (2000.0 ng/L). The results of this study indicate that the developed method is suitable for the sensitive detection of trace levels of PAHs in real environmental water samples.
Collapse
|
17
|
Hou S, Wang X, Lian L, Zhu B, Yue B, Lou D. Determination of Polychlorinated Biphenyls in Water Samples Using a Needle Trap Device Combined with Gas Chromatography. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.pb8772h2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In this study, a fiber-packed needle trap device (NTD) was developed by packing heat-resistant fibers with a polyethylene glycol sol-gel coating into a 21-gauge, stainless steel needle. The polyethylene glycol sol-gel coating has numerous advantages, including uniform roughness and a large specific surface area. The prepared NTD was used for headspace extraction of five polychlorinated biphenyls (PCBs) in water samples, determined by gas chromatography with a flame ionization detector (GC-FID). The main experimental parameters, including the extraction and desorption conditions, ionic strength, and fiber bundles, were investigated to improve the extraction efficiency. After optimization, satisfactory linearity (r > 0.99) in the concentration range of 0.02–500 μg/L was obtained, and the enrichment factor of NTD for the five PCBs was between 1150 and 9537 times. The limit of detection (S/N = 3) of five PCBs were measured in ranges of 0.0021–0.01 μg/L. Furthermore, the fiber-packed NTD has excellent durability, and can be reused for 60 cycles. After being stored at room temperature for three days, the storage ability of the NTD had a loss of PCBs less than 10%, and the relative standard deviation (RSD) was less than 10%. When analyzing the PCBs in real water samples, good accuracies (spiked recoveries were in the range of 92.19–98.56%) and precision (the RSD was lower than 12.8%) was obtained.
Collapse
Affiliation(s)
| | | | - Lili Lian
- Jilin Institute of Chemical Technology
| | - Bo Zhu
- Jilin Institute of Chemical Technology
| | | | - Dawei Lou
- Jilin Institute of Chemical Technology
| |
Collapse
|
18
|
Dong ZM, Zhang P, Sun T, Xia Q, Wu JF, Zhao GC. In Situ Synthetic ZIF-8/Carbon Aerogel Composites as Solid-Phase Microextraction Coating for the Detection of Phthalic Acid Esters in Water Samples. Gels 2022; 8:gels8100610. [PMID: 36286111 PMCID: PMC9602289 DOI: 10.3390/gels8100610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/11/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
In this study, a hybrid composite featuring zeolitic imidazolate framework-8/carbon aerogel (ZIF-8/CA) was synthesized via in situ nucleation and growth of ZIF-8 nanoparticles inside carbon aerogels. The novel material was used as the solid-phase microextraction (SPME) coating for the five phthalic acid esters (PAEs) detection by coupling with a gas chromatography–flame ionization detector (GC-FID). Compared with bare carbon aerogel, the ZIF-8/CA presented the best performance, which is attributed to the unique advantages between the high surface area of CA and high hydrophobic properties, the thermal stability of ZIF-8, and their synergistic adsorption effects, such as molecular penetration, hydrogen bond, and π–π stacking interactions. Under the optimized conditions, the as-proposed ZIF-8/CA fiber provided a wide linearity range from 0.2 to 1000 μg L−1 and a low detection limit of 0.17–0.48 μg L−1 for PAEs analysis. The intra-day and inter-day of signal fiber and the fiber–fiber relative standard deviations were observed in the ranges of 3.50–8.16%, 5.02–10.57%, and 5.66–12.11%, respectively. The method was applied to the determination of five PAEs in plastic bottled and river water samples.
Collapse
Affiliation(s)
- Zong-Mu Dong
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241000, China
- Correspondence: (Z.-M.D.); (G.-C.Z.); Tel.: +86-553-5910724 (Z.-M.D.)
| | - Peiyi Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Tong Sun
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
- Anhui Baomei Light Alloy Co., Ltd., Chizhou 242800, China
| | - Qian Xia
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Jian-Feng Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241000, China
| | - Guang-Chao Zhao
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
- Correspondence: (Z.-M.D.); (G.-C.Z.); Tel.: +86-553-5910724 (Z.-M.D.)
| |
Collapse
|
19
|
Selective enrichment and determination of polychlorinated biphenyls in milk by solid-phase microextraction using molecularly imprinted phenolic resin fiber coating. Anal Chim Acta 2022; 1227:340328. [DOI: 10.1016/j.aca.2022.340328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
|
20
|
Jalili V, Ghanbari Kakavandi M, Ghiasvand A, Barkhordari A. Microextraction techniques for sampling and determination of polychlorinated biphenyls: A comprehensive review. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Agasti N, Gautam V, Priyanka, Manju, Pandey N, Genwa M, Meena P, Tandon S, Samantaray R. Carbon nanotube based magnetic composites for decontamination of organic chemical pollutants in water: A review. APPLIED SURFACE SCIENCE ADVANCES 2022; 10:100270. [DOI: 10.1016/j.apsadv.2022.100270] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
|
22
|
Wang Y, Lian L, Wang X, Yue B, Ding L, Lou D. Velvet-like carbon nitride as a solid-phase microextraction fiber coating for determination of polycyclic aromatic hydrocarbons by gas chromatography. J Chromatogr A 2022; 1671:462993. [DOI: 10.1016/j.chroma.2022.462993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/08/2022] [Accepted: 03/23/2022] [Indexed: 11/24/2022]
|
23
|
Chen Z, Wang J, Li Q, Wu Y, Liu Y, Ding Q, Chen H, Zhang W, Zhang L. Hollow zirconium-porphyrin-based metal-organic framework for efficient solid-phase microextraction of naphthols. Anal Chim Acta 2022; 1200:339586. [DOI: 10.1016/j.aca.2022.339586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/29/2022] [Accepted: 02/05/2022] [Indexed: 11/29/2022]
|
24
|
Yu J, Jiang X, Lu Z, Han Q, Chen Z, Liang Q. In situ self-assembly of three-dimensional porous graphene film on zinc fiber for solid-phase microextraction of polychlorinated biphenyls. Anal Bioanal Chem 2022; 414:5585-5594. [PMID: 35288764 DOI: 10.1007/s00216-022-04003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/10/2022] [Accepted: 03/02/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Jiayan Yu
- Beijing Key Lab of Microanalytical Methods & Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Science Building D308, Beijing, 100084, China
| | - Xue Jiang
- Beijing Key Lab of Microanalytical Methods & Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Science Building D308, Beijing, 100084, China.,College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Zenghui Lu
- Beijing Key Lab of Microanalytical Methods & Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Science Building D308, Beijing, 100084, China
| | - Qiang Han
- Beijing Key Lab of Microanalytical Methods & Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Science Building D308, Beijing, 100084, China.
| | - Zhenling Chen
- The Second Research Institute of Civil Aviation Administration of China, Chengdu, 610041, China
| | - Qionglin Liang
- Beijing Key Lab of Microanalytical Methods & Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Science Building D308, Beijing, 100084, China
| |
Collapse
|
25
|
Guo D, Zhou X, Muhammad N, Huang S, Zhu Y. An overview of poly (amide-amine) dendrimers functionalized chromatographic separation materials. J Chromatogr A 2022; 1669:462960. [PMID: 35305456 DOI: 10.1016/j.chroma.2022.462960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 01/04/2023]
Abstract
Chromatography is one of the most important separation techniques in analytical chemistry. In which, the separation materials are the core for good separation results. Poly (amide-amine) dendrimers with regular three-dimensional structure, abundant terminal groups, controllable molecule chains, and unique cavities appear to have a positive impact on chromatographic separation materials. In the past decades, poly (amide-amine) grafted adsorbents and stationary phases have presented high grafting efficiency, controllable surface structure, good dispersion, and wide practical applications. In this review, the prepared poly (amide-amine) functionalized separation materials and their applications are systematically summarized. Functions, significance, structure-actvity relationships and benefits of poly (amide-amine) dendrimers in the proposed separation materials are discussed in detail. And we hope to provide a useful reference for the future development of chromatographic separation materials and inspire new discoveries in the study of poly (amide-amine) functionalized materials.
Collapse
Affiliation(s)
- Dandan Guo
- Institute of Drug Discovery and Technology, Ningbo University, Ningbo 315211, China; Qian Xuesen Collaborative Research Center for Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China; Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Xiaoqian Zhou
- Institute of Drug Discovery and Technology, Ningbo University, Ningbo 315211, China
| | - Nadeem Muhammad
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China; Department of Environmental Engineering, Wuchang University of Technology, Wuhan 430223, China
| | - Shaohua Huang
- Institute of Drug Discovery and Technology, Ningbo University, Ningbo 315211, China; Qian Xuesen Collaborative Research Center for Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China.
| | - Yan Zhu
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China.
| |
Collapse
|
26
|
Xu S, Liu H, Long A, Li H, Chen C, Feng S, Fan J. Carbon Dot-Decorated Graphite Carbon Nitride Composites for Enhanced Solid-Phase Microextraction of Chlorobenzenes from Water. NANOMATERIALS 2022; 12:nano12030335. [PMID: 35159684 PMCID: PMC8838722 DOI: 10.3390/nano12030335] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/25/2023]
Abstract
In this work, carbon dot-decorated graphite carbon nitride composites (CDs/g-C3N4) were synthesized and innovatively used as a SPME coating for the sensitive determination of chlorobenzenes (CBs) from water samples, coupled with gas chromatography-mass spectrometry. The CDs/g-C3N4 coating presented superior extraction performance in comparison to pristine g-C3N4, owing to the enhancement of active groups by CDs. The extraction capacities of as-prepared SPME coatings are higher than those of commercial coatings due to the functions of nitrogen-containing and oxygen-containing group binding, π-π stacking, and hydrophobic interactions. Under optimized conditions, the proposed method exhibits a wide linearity range (0.25-2500 ng L-1), extremely low detection of limits (0.002-0.086 ng L-1), and excellent precision, with relative standard deviations of 5.3-9.7% for a single fiber and 7.5-12.6% for five fibers. Finally, the proposed method was successfully applied for the analysis of CBs from real river water samples, with spiked recoveries ranging from 73.4 to 109.1%. This study developed a novel and efficient SPME coating material for extracting organic pollutants from environmental samples.
Collapse
Affiliation(s)
- Shengrui Xu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; (H.L.); (H.L.); (C.C.)
- Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution and Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China;
- Correspondence: (S.X.); (S.F.)
| | - Hailin Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; (H.L.); (H.L.); (C.C.)
| | - Anying Long
- 113 Geological Brigade, Guizhou Bureau of Geology and Mineral Resources, Liupanshui 553000, China;
| | - Huimin Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; (H.L.); (H.L.); (C.C.)
| | - Changpo Chen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; (H.L.); (H.L.); (C.C.)
| | - Suling Feng
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; (H.L.); (H.L.); (C.C.)
- Correspondence: (S.X.); (S.F.)
| | - Jing Fan
- Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution and Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China;
| |
Collapse
|
27
|
Zhang X, Han L, Li M, Qin P, Li D, Zhou Q, Lu M, Cai Z. Nitrogen-rich carbon nitride as solid-phase microextraction fiber coating for high-efficient pretreatment of polychlorinated biphenyls from environmental samples. J Chromatogr A 2021; 1659:462655. [PMID: 34749185 DOI: 10.1016/j.chroma.2021.462655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 01/14/2023]
Abstract
A two-dimensional nitrogen-rich carbon nitrogen (C3N5) material was prepared via a facile high temperature thermal polymerization. For the first time, the C3N5 was used as fiber coating of solid-phase microextraction (SPME) to extract and preconcentrate polychlorinated biphenyls (PCBs) before gas chromatography (GC) analysis. The X-ray diffraction, N2 adsorption-desorption, Fourier transform-infrared spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy were performed to investigate structure, functional groups, thermal stability, bonding type, element composition, and atomic ratio of C3N5. The two-dimensional planar stacking structure was further verified by scanning electron microscopy and transmission electron microscopy. Five PCBs including PCB-4, PCB-12, PCB-29, PCB-52 and PCB-101 were selected as targets to evaluate performance of SPME fiber. Under the optimal conditions, the method showed a good linear range from 0.01 to 1000 ng/mL with the correlation coefficients (R2) higher than 0.9990. Enrichment factors of the method were obtained from 2045 to 3080. The limits of detection (LODs, S/N = 3) and limits of quantification (LOQs, S/N = 10) were calculated as 0.0031-0.0111 ng/mL and 0.01-0.05 ng/mL, respectively. The precisions of intra-day and inter-day were obtained with the relative standard deviations (RSDs) at 1.5-6.6% and 0.8-6.9%, respectively. The fiber-to-fiber producibility was achieved with RSDs ranged from 3.5% to 11.4%. The method was applied to detect PCBs in river water and soil samples. The contents were calculated at 0.040-0.147 ng/mL in water and 0.520-3.218 ng/g in soil. The C3N5 as SPME fiber coating material may be applied to extract and preconcentrate other environmental pollutants which have similar chemical structures with PCBs.
Collapse
Affiliation(s)
- Xiaowan Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Lizhen Han
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Mengyuan Li
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Peige Qin
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Dan Li
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Qian Zhou
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR
| |
Collapse
|
28
|
Su L, Zhang N, Tang J, Zhang L, Wu X. In-situ fabrication of a chlorine-functionalized covalent organic framework coating for solid-phase microextraction of polychlorinated biphenyls in surface water. Anal Chim Acta 2021; 1186:339120. [PMID: 34756254 DOI: 10.1016/j.aca.2021.339120] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/21/2021] [Indexed: 01/20/2023]
Abstract
The functionalization of covalent organic frameworks (COFs) identifies significant potential for developing selective coating materials for solid-phase microextraction (SPME). Herein, a chlorine-functionalized covalent organic framework (CF-COF) was in-situ synthesized by employing triformylphloroglucinol (Tp) and 2,5-dichloro-1,4-phenylenediamine (2,5-DCA) as monomers on an amino-functionalized stainless steel wire. The obtained CF-COF coated fiber exhibited a higher enrichment capacity for polychlorinated biphenyls (PCBs) than commercial fibers and non-chlorinated COF fiber, owing to a more hydrophobic surface, size-matching effect, a large number of micropores and the π-π stacking interactions between COF coating and analytes. As a practical application, the CF-COF coated fiber was applied to the headspace extraction of 17 PCBs prior to their quantification by GC/MS. The established analytical method offered a good linearity in the range of 0.1-1000 ng L-1, low detection limits of 0.0015-0.0088 ng L-1, and satisfactory enhancement factors (EFs) of 699-4281. The repeatability for single fiber and the fiber-to-fiber reproducibility was lower than 9.26% and 9.33%, respectively. The proposed method was verified to be sensitive, selective, and applicable for the analysis of ultra-trace PCBs in environmental surface water samples with the recoveries ranged from 78.7% to 124.0%.
Collapse
Affiliation(s)
- Lishen Su
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Ning Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Jingpu Tang
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Lan Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Xiaoping Wu
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
29
|
Guo Y, Zhang W, Chen H, Ding Q, Li Q, Zhang L. In situ fabrication of nitrogen doped graphitic carbon networks coating for high-performance extraction of pyrethroid pesticides. Talanta 2021; 233:122542. [PMID: 34215045 DOI: 10.1016/j.talanta.2021.122542] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
The tailor-prepare solid phase microextraction (SPME) coatings with stable and excellent properties to effectively extract analytes from sample matrix still remains a challenge. Herein, a nitrogen doped graphitic carbon networks (NG-CNTW) coated fiber was fabricated by direct carbonization of nanosized ZIF-67 crystals (nano-ZIF-67) that grown on stainless steel wire. The NG-CNTW coated fiber coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS) was applied for enrichment and determination of pyrethroids. The NG-CNTW coating exhibited high surface area and hierarchical porous structures that facilitate diffusion and accessibility of target molecules. Simultaneously, the nitrogen doped and highly graphitic structures endow the coating with high adsorption affinity for aromatic compounds. Under optimum conditions, the SPME-GC-MS/MS method presented wide range of linearity performance (0.08-200.0 ng g-1), low limits of detection (0.02-0.5 ng g-1) and good repeatability (RSD < 9.6%) for 8 kinds of pyrethroids. Furthermore, the proposed method was successfully applied in the determination of pyrethroids in grape and cauliflower samples, as the results were in the range of 3.16-15.06 ng g-1and 2.08-9.29 ng g-1, respectively. This work not only provides a new method by fabricating carbon nanomaterial coatings in situ derived from MOFs, but also shows great potential of MOFs derivative materials in environmental analysis field.
Collapse
Affiliation(s)
- Yuheng Guo
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenmin Zhang
- Division of Chemical and Biological Engineering, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Hui Chen
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qingqing Ding
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qingqing Li
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Lan Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
30
|
Qin P, Han L, Zhang X, Li M, Li D, Lu M, Cai Z. MIL-101(Fe)-derived magnetic porous carbon as sorbent for stir bar sorptive-dispersive microextraction of sulfonamides. Mikrochim Acta 2021; 188:340. [PMID: 34523015 DOI: 10.1007/s00604-021-04993-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/18/2021] [Indexed: 01/07/2023]
Abstract
Using MIL-101(Fe) as the source of carbon and Fe, a magnetic porous carbon (MPC) material with Fe3C nanoparticles encapsulated in porous carbon was prepared through one-pot pyrolysis under N2 atmosphere. With MPC as adsorption material, a stir bar sorptive-dispersive microextraction (SBSDME) method was proposed to extract and preconcentrate sulfonamides (SAs) prior to HPLC-DAD determination. To investigate their extraction ability, different MPC materials were prepared under different carbonization temperatures (600, 700, 800, 900, and 1000 °C). The material prepared under 900 °C (MPC-900) exhibited the highest extraction ability for SAs. The as-prepared MPC materials were also characterized by Raman spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, zeta potential, and other techniques. The main parameters that affect extraction were systematically studied. Under optimal conditions, favorable linearity (R2 ≥ 0.9938) and detection limits (0.02-0.04 ng mL-1) of sulfonamides were obtained. The average recoveries for spiked milk and lake water samples ranged from 76.9 to 109% and from 75.4 to 118% with RSDs of 3.10-9.63% and 1.71-11.3%, respectively. Sulfameter and sulfisoxazole were detected in milk sample. Sulfisoxazole was detected in the lake water sample. The MPC-900 material demonstrated excellent reusability. It can be reused 24 times with peak areas having no obvious decline. The method can be applied to extract ultra-trace compounds in complex sample matrices. Schematic presentation of a stir bar sorptive-dispersive microextraction (SBSDME) by using magnetic porous carbon (MPC) composites as sorbent combined with high-performance liquid chromatography for sensitive analysis of sulfonamides in milk and lake water samples.
Collapse
Affiliation(s)
- Peige Qin
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Lizhen Han
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Xiaowan Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Mengyuan Li
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Dan Li
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| |
Collapse
|
31
|
ZHANG W, LI Q, FANG M, GAO J, CHEN Z, ZHANG L. [Research progress in application of metal-organic framework-derived materials to sample pretreatment]. Se Pu 2021; 39:941-949. [PMID: 34486833 PMCID: PMC9404035 DOI: 10.3724/sp.j.1123.2021.05017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 11/25/2022] Open
Abstract
Sample pretreatment technology plays a vital role throughout the analysis of complex samples. Sample pretreatment can not only increase the concentration of trace targets in the sample, but also effectively eliminate interference from the sample matrix in instrumental analysis. Adsorbent materials are a key component of sample pretreatment technology. Therefore, the development of efficient and stable new adsorbent materials has acquired significance in research on pretreatment technology. Porous materials are advantageous for use in diverse applications, such as in adsorbents, when they possess controllable nanostructures, a tailored pore surface chemistry, and abundant porosity, and are inexpensive. Particularly in recent years, porous materials derived from metal-organic frameworks (MOFs) feature excellent properties, such as diverse morphology and structure, adjustable pore size, high specific surface area, good thermal stability, and chemical resistance. MOF-derived materials, when used as adsorbents for sample pretreatment, offer the following advantages: (1) The porous materials derived from MOFs typically possess a larger specific surface area than other porous materials. This characteristic is beneficial to improve the extraction capacity and extraction efficiency via an increase in the contact area between the materials and targets; (2) The microscopic porous structure of MOF-derived materials can be easily tuned (by controlling the temperature and time during pyrolysis, gas atmosphere, and heating rate), which is conducive to improve the selectivity of sample pretreatment methods; (3) The metal active sites can be evenly distributed. Owing to the ordered distribution of metal ions in the precursor MOFs and a good periodic framework structure, the metal active sites of the derivatives formed can still maintain a corresponding distance. These metal active sites will not form agglomerates and affect the extraction performance; conversely, other porous materials often require extremely complicated processes to achieve a uniform distribution; (4) Heteroatoms such as nitrogen and sulfur can be easily doped on the framework of MOF-derived porous materials. This doping enables the materials to induce additional interactions such as hydrogen bonding and π-π stacking for adsorbing target analytes. The excellent properties of MOF-derived materials make them promising for use in sample pretreatment. Novel sample pretreatment methods that use MOF-derived materials are constantly being developed. However, the use of MOF-derived materials is limited by the complex preparation process and high production cost of MOF precursors, along with difficulties in mass production. Further, the precise design or functionalization of MOF-derived materials according to the characteristics of targets is a new direction with immense challenges as well as application potential. This review summarizes the application of MOF-derived materials in sample pretreatment methods, including dispersive solid phase extraction (dSPE), magnetic solid phase extraction (MSPE), solid phase microextraction (SPME), stir bar sorptive extraction (SBSE), and dispersive micro solid phase extraction (DMSPE). The preparation methods, functional control, and enrichment efficiencies of various MOF-derived materials are also reviewed. Finally, the application prospects of MOF-derived materials in sample pretreatment are discussed to provide a clear outlook and reference for further related research.
Collapse
|
32
|
Li Y, Dong G, Li J, Xiang J, Yuan J, Wang H, Wang X. A solid-phase microextraction fiber coating based on magnetic covalent organic framework for highly efficient extraction of triclosan and methyltriclosan in environmental water and human urine samples. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112319. [PMID: 33993090 DOI: 10.1016/j.ecoenv.2021.112319] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Herein, we synthesized a kind of magnetic covalent organic framework nanohybrids (NiFe2O4@COF), and integrated it with polydimethyl siloxane and silicone rubber curing agent for solid phase microextraction (SPME) fiber coating. The fiber coating demonstrated a porous and uniform surface with the BET specific surface of 169.7 m2 g-1. As for seven environmental analytes, the NiFe2O4@COF-based SPME fiber coating gave the higher extraction recoveries for triclosan (TCS) and methyltriclosn (MTCS) than those of fenpropathrin, bifenthrin, permethrin, fenvalerate and deltamethrin. Several operational parameters were rigorously optimized, such as extraction temperature, extraction time, thermal desorption time, solution pH and salt effect. Combined with the GC-ECD detection, the newly developed microextraction method supplied the wide linear range of 0.1-1000 µg L-1 with the correlation coefficients of > 0.9995. The limits of detection (LODs) and limits of quantitation (LOQs) reached as low as 1-7 ng L-1 and 3.3-23 ng L-1, respectively. The intra-day and inter-day precisions in six replicates (n = 6 ) were < 3.55% and < 5.06%, respectively, and the fiber-to-fiber reproducibility (n = 3) was < 7.64%. To evaluate its feasibility in real samples, the fortified recoveries for TCS and MTCS, at low (0.2 µg L-1), middle (2.0 µg L-1) and high (20.0 µg L-1) levels, varied between 81.9% and 119.1% in tap, river and barreled waters as well as male, female and children urine samples. Especially, it is worth mentioning that the NiFe2O4@COF-based SPME coating fiber can be recycled for at least 150 times with nearly unchanged extraction efficiency. Moreover, the extraction recoveries by the as-fabricated fiber coating were much higher than those by three commercial fibers (PDMS, PDMS/DVB and PDMS/DVB/CAR). Overall, the NiFe2O4@COF-based SPME is a convenient, sensitive, efficient and "green" pretreatment method, thereby possessing important application prospects in trace monitoring of TCS-like pollutants in complex liquid matrices.
Collapse
Affiliation(s)
- Yanyan Li
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Guozhong Dong
- School of Sports Science, Fujian Normal University, Fuzhou 350117, China
| | - Jianye Li
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Jianxing Xiang
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Jingrui Yuan
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xuedong Wang
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
33
|
Cao S, Zhou Y, Xi C, Tang T, Chen Z. Enhanced adsorption of malathion and phoxim by a three-dimensional magnetic graphene oxide-functionalized citrus peel-derived bio-composite. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2951-2962. [PMID: 34110335 DOI: 10.1039/d1ay00498k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
By integrating the steps of direct magnetization and one-pot pyrolysis, a three-dimensional (3D) magnetic graphene oxide-functionalized citrus peel-derived bio-composite (mGOBC) was synthesized and characterized successfully, and it was proved to possess a three-dimensional (3D) porous architecture and graphitic structure. Its potential as an enrichment adsorbent was investigated using adsorption kinetics and adsorption isotherm models to establish an effective analytical method for the determination of organophosphorus pesticides (OPPs) in vegetables. The experimental results indicated that the adsorption was better fitted with the pseudo second order model and Langmuir isotherm model, and the maximum adsorption capacities for malathion and phoxim were 25.26 mg g-1 and 42.31 mg g-1, respectively. It was found that the graphitic structure of mGOBC resulted in π-π EDA (electron donor-acceptor) interaction with the benzene rings, electron-donating N, P, and S atoms in the analytes, which assisted adsorption. Subsequently, Plackett-Burman (P-B) experimental design, central composite design (CCD) and response surface methodology (RSM) were employed to develop an analytical method based on the mGOBC adsorbent. Under optimal conditions, the developed method is accurate and precise. The novel synthesized mGOBC can efficiently achieve removal and trace determination of harmful OPPs.
Collapse
Affiliation(s)
- Shurui Cao
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing 401120, China. and Criminal Investigation School, Southwest University of Political Science and Law, Chongqing 401120, China
| | - Yue Zhou
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Cunxian Xi
- The Inspection Technical Center of Chongqing Customs, Chongqing 400020, China
| | - Tiantian Tang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zhiqiong Chen
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
34
|
Li Q, Zhang W, Guo Y, Chen H, Ding Q, Zhang L. Oxygenated carbon nanotubes cages coated solid-phase microextraction fiber for selective extraction of migrated aromatic amines from food contact materials. J Chromatogr A 2021; 1646:462031. [PMID: 33857834 DOI: 10.1016/j.chroma.2021.462031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
In this study, an oxygenated carbon nanotubes cages (OCNTCs) material was prepared by calcinating zeolitic imidazole framework-67 (ZIF-67) and then oxidizing the resulting material. The OCNTCs was used as a high efficient solid-phase microextraction (SPME) coating to extract aromatic amines (AAs). The obtained fiber exhibited high selectivity for AAs over other organic compounds in food contact materials (FCMs) due to matched pore size and abundant oxygen-containing groups. Subsequently, coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS), a sensitive method with low limits of detection (0.1-2.0 ng L-1), wide linear ranges (0.5-500 ng L -1) and good precision (RSDs ≤ 8.6%) was developed for analysis of AAs. The specific migrated AAs from food simulants that prepared by standardized migration and thermal migration test were successfully analysed by this developed method with satisfactory recoveries (81.6% - 118.1%) and precision (RSDs, 2.1-9.5%). The results demonstrated that the prepared OCNTCs-coated fibers displayed excellent extraction performance, suggesting a promising application to investigate the migration behaviors of AAs.
Collapse
Affiliation(s)
- Qingqing Li
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenmin Zhang
- Division of Chemical and Biological Engineering, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Yuheng Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Hui Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qingqing Ding
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Lan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
35
|
Dong ZM, Cheng L, Sun T, Zhao GC, Kan X. Carbon aerogel as a solid-phase microextraction fiber coating for the extraction and detection of trace tetracycline residues in food by coupling with high-performance liquid chromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:381-389. [PMID: 33404557 DOI: 10.1039/d0ay02140g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A direct immersion solid-phase microextraction method for determining tetracyclines (TCs) was developed by coupling with high-performance liquid chromatography. A carbon aerogel (CA) was synthesized as a fiber coating with high extractive properties and a low density of 0.1855 g cm-3via ambient pressure drying and carbonization. The as-synthesized CA exhibited a high specific surface area and a cross-linked structure; it was characterized via scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller analysis, etc. The extraction performance for six TCs was investigated, and the main experimental parameters were optimized by the Box-Behnken design. Adsorption kinetics, Langmuir and Freundlich models were used to clarify the extraction mechanism. This method showed wide linear ranges of 1-500 μg L-1, low limits of detection of 0.52-1.05 μg L-1, good repeatability of 1.37-12.47%, and satisfactory inter-fiber reproducibility of 8.51-15.81% relative standard deviation for the detection of six TCs. Moreover, this study provided an interesting insight into the detection of TCs residues in food samples.
Collapse
Affiliation(s)
- Zong-Mu Dong
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, PR China.
| | | | | | | | | |
Collapse
|
36
|
Behzadi M. Facile fabrication and application of poly(ortho-phenetidine) nanocomposite coating for solid-phase microextraction of carcinogenic polycyclic aromatic hydrocarbons from wastewaters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111568. [PMID: 33396097 DOI: 10.1016/j.ecoenv.2020.111568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
The waters and wastewaters around industrial areas are heavily polluted and have adverse effects on the ecosystems. The present study is mainly focused on the electropolymerization of ortho-phenetidine and co-deposited on a steel wire along with graphene oxide nanosheets as a novel coating for solid-phase microextraction of polycyclic aromatic hydrocarbons (PAHs) from aqueous media prior to gas chromatography-mass spectrometry. PAHs are composed of multiple aromatic rings which have been linked to skin, lung, bladder and liver. Cancer is a primary human health risk of exposure to PAHs. To obtain a firm and stable coating, several empirical factors relevant to the electrochemical process were investigated. Characterization for chemical structure and surface morphology of the synthesized nanocomposite was conducted with FT-IR spectroscopy and FE-SEM, respectively. XRD and TGA were applied to study the other properties of the nanocomposite. Some essential items involved in microextraction process were also checked in details. Under optimized case, validation parameters were assessed. Wide linearity (0.005-5.0 ng mL-1), low detection limits (0.4-4.3 pg mL-1) and good repeatability (3.6-9.5%) and reproducibility (7.6-11.8%) were achieved. The developed method was utilized to analyze contaminated real samples such as wastewater samples from coal processing industries and agricultural water samples collected from the vicinity of the industry in different seasons and high recoveries were obtained, finally.
Collapse
Affiliation(s)
- Mansoureh Behzadi
- Department of Mining Engineering, High Education Complex of Zarand, Zarand, Iran.
| |
Collapse
|
37
|
Rodas M, Fikarová K, Pasanen F, Horstkotte B, Maya F. Zeolitic imidazolate frameworks in analytical sample preparation. J Sep Sci 2020; 44:1203-1219. [PMID: 33369090 DOI: 10.1002/jssc.202001159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/06/2022]
Abstract
Zeolitic imidazolate frameworks are a class of metal-organic frameworks that are topologically isomorphic with zeolites. Zeolitic imidazolate frameworks are composed of tetrahedrally coordinated metal ions connected by imidazolate linkers and have a high porosity and chemical stability. Here, we summarize the progress made in the application of zeolitic imidazolate frameworks in sample preparation for analytical purposes. This review is focused on analytical methods based on liquid chromatography, gas chromatography, or capillary electrophoresis, where the use of zeolitic imidazolate frameworks has contributed to increasing the sensitivity and selectivity of the method. While bulk zeolitic imidazolate frameworks have been directly used in analytical sample preparation protocols, a variety of strategies for their magnetization or their incorporation into sorbent particles, monoliths, fibers, stir bars, or thin films, have been developed. These modifications have facilitated the handling and application of zeolitic imidazolate frameworks for a number of analytical sample treatments including magnetic solid-phase extraction, solid-phase microextraction, stir bar sorptive extraction, or thin film microextraction, among other techniques.
Collapse
Affiliation(s)
- Melisa Rodas
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences (Chemistry), University of Tasmania, Tasmania, Australia
| | - Kateřina Fikarová
- Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Charles University, Hradec Králové, Czech Republic
| | - Finnian Pasanen
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences (Chemistry), University of Tasmania, Tasmania, Australia
| | - Burkhard Horstkotte
- Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Charles University, Hradec Králové, Czech Republic
| | - Fernando Maya
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences (Chemistry), University of Tasmania, Tasmania, Australia
| |
Collapse
|
38
|
Duo H, Lu X, Wang S, Liang X, Guo Y. Preparation and applications of metal-organic framework derived porous carbons as novel adsorbents in sample preparation. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116093] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Jagirani MS, Soylak M. A review: Recent advances in solid phase microextraction of toxic pollutants using nanotechnology scenario. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105436] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
40
|
Jagirani MS, Soylak M. Review: Microextraction Technique Based New Trends in Food Analysis. Crit Rev Anal Chem 2020; 52:968-999. [PMID: 33253048 DOI: 10.1080/10408347.2020.1846491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Food chemistry is the study and classification of the quality and origin of foods. The identification of definite biomarkers and the determination of residue contaminants such as toxins, pesticides, metals, human and veterinary drugs, which are a very common source of food-borne diseases. The food analysis is continuously demanding the improvement of more robust, sensitive, highly efficient, and economically beneficial analytical approaches to promise the traceability, safety, and quality of foods in the acquiescence with the consumers and legislation demands. The traditional methods have been used at the starting of the 20th century based on wet chemical methods. Now it existing the powerful analytical techniques used in food analysis and safety. This development has led to substantial enhancements in the analytical accuracy, precision, sensitivity, selectivity, thereby mounting the applied range of food applications. In the present decade, microextraction (micro-scale extraction) pays more attention due to its futures such as low consumption of solvent and sample, throughput analysis easy to operate, greener, robotics, and miniaturization, different adsorbents have been used in the microextraction process with unique nature recognized with wide range applications.
Collapse
Affiliation(s)
- Muhammed Saqaf Jagirani
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| |
Collapse
|
41
|
Moinfar S, Khodayari A, Sohrabnezhad S, Aghaei A, Jamil LA. MIL-53(Al)/Fe2O3 nanocomposite for solid-phase microextraction of organophosphorus pesticides followed by GC-MS analysis. Mikrochim Acta 2020; 187:647. [DOI: 10.1007/s00604-020-04621-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022]
|
42
|
Modulated construction of imine-based covalent organic frameworks for efficient adsorption of polycyclic aromatic hydrocarbons from honey samples. Anal Chim Acta 2020; 1134:50-57. [DOI: 10.1016/j.aca.2020.07.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
|
43
|
A new 3D COF with excellent fluorescence response for water and good adsorption performance for polychlorinated biphenyls. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Hajializadeh A, Ansari M, Foroughi MM, Kazemipour M. Ultrasonic assisted synthesis of a novel ternary nanocomposite based on carbon nanotubes/zeolitic imidazolate framework-67/polyaniline for solid-phase microextraction of organic pollutants. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Hou YJ, Deng J, He K, Chen C, Yang Y. Covalent Organic Frameworks-Based Solid-Phase Microextraction Probe for Rapid and Ultrasensitive Analysis of Trace Per- and Polyfluoroalkyl Substances Using Mass Spectrometry. Anal Chem 2020; 92:10213-10217. [DOI: 10.1021/acs.analchem.0c01829] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ya-Jun Hou
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Jiewei Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou 510006, China
| | - Kaili He
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Chao Chen
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Yunyun Yang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| |
Collapse
|
46
|
Hu J, Xiao F, Jin G. Zirconium doping level modulation combined with chalconylthiourea organic frameworks induced enhancement of luminescence applied to cell imaging. NEW J CHEM 2020. [DOI: 10.1039/d0nj02327b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Derivatives of a zirconium metal–organic framework as the center polymer material with a chalconylthiourea polymer (CT) were applied to cell imaging.
Collapse
Affiliation(s)
- Jianpeng Hu
- Department of Urology
- Affiliated People's Hospital of Jiangsu University
- Zhenjiang
- P. R. China
| | - Fuyan Xiao
- School of Pharmacy
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Guofan Jin
- School of Pharmacy
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|