1
|
He Q, Zang S, Zeng Y, Wang B, Song X. A bifunctional fluorescent probe for dual-channel detection of H 2O 2 and HOCl in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125464. [PMID: 39603083 DOI: 10.1016/j.saa.2024.125464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Hydrogen peroxide (H2O2) and hypochlorous acid (HOCl) are critical reactive oxygen species (ROS) that play significant roles in regulating oxidative stress, closely tied to various human diseases. However, investigating their interplay within living cells has been challenging due to the lack of effective tools for simultaneous discrimination. Herein, we present a bifunctional fluorescent probe, PTZ-H-H, capable of simultaneously detecting H2O2 and HOCl in living cells via two distinct fluorescence channels. PTZ-H-H exhibits selective and sensitive responses, emitting red fluorescence in the presence of H2O2 and green fluorescence in response to HOCl, with detection limits of 386 nM and 16.8 nM, respectively. The probe was successfully applied in living cells, enabling real-time monitoring of intracellular H2O2 and HOCl. This study demonstrates the potential of PTZ-H-H as a powerful tool for exploring the dynamic roles of H2O2 and HOCl in various physiological and pathological processes.
Collapse
Affiliation(s)
- Qingguo He
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Shunping Zang
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, PR China.
| | - Yuyang Zeng
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Benhua Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, PR China.
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, PR China.
| |
Collapse
|
2
|
Li Z, Li T, Wang X, Ping J, Peng H. Smartphone-assisted fluorescent microfluidic-chip for sensitive detection of sweat glucose via dual-sensing of O 2/H 2O 2. Talanta 2025; 281:126883. [PMID: 39288585 DOI: 10.1016/j.talanta.2024.126883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
A novel smartphone-assisted fluorescent microfluidic-chip was designed for detecting sweat glucose. The microfluidic chip contained six microchambers, each of which was equipped with a glucose sensing membrane incorporating glucose oxidase (GOD), fluorescent O2 probe PtTFPP and H2O2 probe G1. Based upon O2 consumption and H2O2 generation during glucose catalysis by GOD, the chip produced two fluorescence signals towards glucose under single-wavelength excitation, i.e. green fluorescence in response to H2O2 and red fluorescence to O2. The limit of detection (LOD) based on H2O2 monitoring was 0.005 mM, while the LOD based on O2 monitoring was 0.04 mM. Furthermore, the obtained chip was integrated with a smartphone-based portable platform to record RGB values for point-of-care testing of sweat glucose. Glucose calibration (Y = -3.45 + 1.81∗R + 0.68∗G) at 6-min time point was performed by combining R and G channels signals. The dual-monitoring analysis provided a more accurate and reliable verification of glucose detection. This smartphone-assistant optical microfluidic-chip device holds significant potential for portable self-management of glucose in personalized healthcare and clinical diagnosis.
Collapse
Affiliation(s)
- Zhen Li
- College of Science, Minzu University of China, Beijing, 100081, China
| | - Tianyi Li
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Xiaohui Wang
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China.
| | - Jiantao Ping
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Hongshang Peng
- College of Science, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
3
|
Hu G, Xu HD, Fang J. Sulfur-based fluorescent probes for biological analysis: A review. Talanta 2024; 279:126515. [PMID: 39024854 DOI: 10.1016/j.talanta.2024.126515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
The widespread adoption of small-molecule fluorescence detection methodologies in scientific research and industrial contexts can be ascribed to their inherent merits, including elevated sensitivity, exceptional selectivity, real-time detection capabilities, and non-destructive characteristics. In recent years, there has been a growing focus on small-molecule fluorescent probes engineered with sulfur elements, aiming to detect a diverse array of biologically active species. This review presents a comprehensive survey of sulfur-based fluorescent probes published from 2017 to 2023. The diverse repertoire of recognition sites, including but not limited to N, N-dimethylthiocarbamyl, disulfides, thioether, sulfonyls and sulfoxides, thiourea, thioester, thioacetal and thioketal, sulfhydryl, phenothiazine, thioamide, and others, inherent in these sulfur-based probes markedly amplifies their capacity for detecting a broad spectrum of analytes, such as metal ions, reactive oxygen species, reactive sulfur species, reactive nitrogen species, proteins, and beyond. Owing to the individual disparities in the molecular structures of the probes, analogous recognition units may be employed to discern diverse substrates. Subsequent to this classification, the review provides a concise summary and introduction to the design and biological applications of these probe molecules. Lastly, drawing upon a synthesis of published works, the review engages in a discussion regarding the merits and drawbacks of these fluorescent probes, offering guidance for future endeavors.
Collapse
Affiliation(s)
- Guodong Hu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China.
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, China.
| |
Collapse
|
4
|
Ghohestani E, Tashkhourian J, Hemmateenejad B. Rapid detection and quantification of milk adulterants using a nanoclusters-based fluorescent optical tongue. Food Chem 2024; 456:139973. [PMID: 38852440 DOI: 10.1016/j.foodchem.2024.139973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
A paper-based sensor array consisting of eight nanoclusters (NCs) combined with multivariate analysis was used as a rapid method for the determination of animal sources of milk; goat, camel, sheep and cow. It was also used to detect and quantify three adulterants including sodium hypochlorite, hydrogen peroxide and formaldehyde in milk. The changes in fluorescence intensity of the NCs were quantified using a smartphone when the sensor array was immersed in the milk samples. The device generated a specific colorimetric signature for milk samples from different animals and for different adulterants. This allowed simultaneous identification of animal and adulterant sources with 100% accuracy. The device was found to be capable of accurately measuring the level of contaminants with a detection limit as low as 0.01% using partial least squares regression. In conclusion, a paper-based optical tongue device has been developed for the detection of adulterants in milk with point-of-need capability.
Collapse
|
5
|
Zareen W, Ahmed N, Raza S, Ali Khan M, Shafiq Z. Recent development in dual function fluorescence probes for HOCl and interaction with different bioactive molecules. Talanta 2024; 277:126374. [PMID: 38878514 DOI: 10.1016/j.talanta.2024.126374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 07/19/2024]
Abstract
Reactive oxygen species (ROS), reactive sulfur species (RSS), metal ions, and nitrogen species (RNS) play important roles in a variety of biological processes, such as a signal transduction, inflammation, and neurodegenerative damage. These species, while essential for certain functions, can also induce stress-related diseases. The interrelation between ROS, RSS, Metal ions and RNS underscores the importance of quantifying their concentrations in live cells, tissues, and organisms. The review emphasizes the use of small-molecule-based fluorescent/chemodosimeter probes to effectively measure and map the species' distribution with high temporal and spatial precision, paying particular attention to in vitro and in vivo environments. These probes are recognized as valuable tools contributing to breakthroughs in modern redox biology. The review specifically addresses the relationship of HOCl/ClO‾ (hypochlorous acid/Hypochlorite) with other reactive species. (Dual sensing probes).
Collapse
Affiliation(s)
- Wajeeha Zareen
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Nadeem Ahmed
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Shahid Raza
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Muhammad Ali Khan
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan.
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, 60800, Multan, Pakistan.
| |
Collapse
|
6
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
7
|
An B, Yin Z, Yan H, Cao W, Ye Y. A novel di-functional fluorescent probe for ONOO - and Zn 2+ imaging in cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124275. [PMID: 38615419 DOI: 10.1016/j.saa.2024.124275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/12/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Peroxynitrite (ONOO-) is one of the most significant reactive oxygen species (ROS) in living cells. Zn2+ in living cells plays an essential part in different physiological processes. The abnormal concentration of ONOO- and Zn2+ in living cells are related to many kinds of diseases, such as anemia, epilepsy, diarrhea, Alzheimer's disease, and so on. The relationship of ONOO- and Zn2+ in living cells when the relative disease occurs remains unknown. So we develop the first probe H-1 for detecting ONOO- and Zn2+ at the same time. The probe H-1 shows high selectivity, good anti-interference capability, low detection limit and short response time to ONOO- and Zn2+. When the probe was applied to detect ONOO- and Zn2+ in HeLa cells, we could observe the fluorescence changing in the green and blue channels separately without interference in real time. It has the potential to employ the relation of ONOO- and Zn2+ in some disease mechanism research.
Collapse
Affiliation(s)
- Baoqin An
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhan Yin
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hanlei Yan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wenbo Cao
- School of Basic Medical Science, Zhengzhou University, Zhengzhou 450001, China.
| | - Yong Ye
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Tao Y, Jin Y, Cui Y, Yu T, Ji J, Zhu W, Fang M, Li C. A novel fluorescent probe based on carbazole-thiophene for the recognition of hypochlorite and its applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123912. [PMID: 38266605 DOI: 10.1016/j.saa.2024.123912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/28/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
A carbazole thiophene-aldehyde and 4-methylbenzenesulfonhydrazide conjugate CSH was synthesized by introducing 5-thiophene aldehyde at the 3-position of the carbazole group as the precursor and then condensing it with 4-methylbenzenesulfonhydrazide. CSH has high selectivity and sensitivity towards ClO-, which can specifically identify ClO- by UV-Vis and fluorescence spectroscopy. CSH can rapidly respond to ClO- in the physiological pH range through a fluorescence quenching pattern, accompanied by the color of CSH changing markedly from turquoise to yellowish green under the 365 nm UV light. Probe CSH exhibits a quantitative response to ClO- (0-11 μM) with a low detection limit (1.16 × 10-6 M). Cell imaging experiments have shown that CSH can capture fluorescent signals in the cyan and yellow channels of HeLa cells through fluorescence confocal microscopy, and can successfully identify exogenous ClO- in HeLa cells. In addition, probe CSH can also be used to detect ClO- in environmental water samples. These results indicate that CSH has potential application prospects in the environmental analysis and biological aspects.
Collapse
Affiliation(s)
- Yana Tao
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Yu Jin
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Yuanyuan Cui
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Taotao Yu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Jiayu Ji
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Weiju Zhu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China; AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, PR China.
| | - Min Fang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China; Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University, Hefei 230601, PR China
| | - Cun Li
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, PR China; School of Materials Science and Engineering, Anhui University, Hefei 230601, PR China
| |
Collapse
|
9
|
Chen H, Li D, Zheng Y, Wang K, Zhang H, Feng Z, Huang B, Wen H, Wu J, Xue W, Huang S. Construction of optical dual-mode sensing platform based on green emissive carbon quantum dots for effective detection of ClO - and cellular imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123733. [PMID: 38157745 DOI: 10.1016/j.saa.2023.123733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Hypochlorite (ClO-) is an important redox regulator in reactive oxygen species, which play a considerable role in oxidative stress and related diseases. Hence, accurate and sensitive monitoring of ClO- concentration was urgently needed in the fields of life sciences, food and environment. Bright green fluorescent carbon quantum dots (G-CQDs) were synthesized utilizing one-step hydrothermal method with citric acid and acriflavine precursors. Through TEM, FTIR, XPS and zeta potential characterization procedures, G-CQDs illustrated uniformly dispersed and significant number of -NH2 and -OH on the surface. Meanwhile, the fluorescence and colorimetric analysis exhibited wide linear range and low detection limit response to ClO-. The fluorescence changes of G-CQDs were identified via smartphone to realize mobile sensing of ClO-. Subsequently, G-CQDs was applied for visualization and quantitative detection of ClO- in drinking water samples with satisfactory recovery rate. More importantly, G-CQDs demonstrated good water solubility, optical stability and excellent biocompatibility, which offered a promising analysis approach in cell imaging and exogenous ClO- detection in living cells. G-CQDs illustrated bright prospect and great potential in practical application of ClO- associated disease prevention and early clinical diagnosis.
Collapse
Affiliation(s)
- Huajie Chen
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Dai Li
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Yutao Zheng
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Kui Wang
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - He Zhang
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Zhipeng Feng
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Bolin Huang
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Huiyun Wen
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Jiyong Wu
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan.
| | - Weiming Xue
- School of Chemical Engineering, Northwest University, Xi'an, PR China.
| | - Saipeng Huang
- School of Chemical Engineering, Northwest University, Xi'an, PR China.
| |
Collapse
|
10
|
Shao Y, Sun J, Li P, Gao CY, Yang Y. A triphenylamine-based carbohydrazide hydrazone fluorescent probe for selective detection of hypochlorite and sensing acidic gases. LUMINESCENCE 2024; 39:e4726. [PMID: 38511249 DOI: 10.1002/bio.4726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Hypochlorous acid and its hypochlorite are important reactive oxygen species in the body, and are involved in various physiological processes related to immunity; their rapid detection is of great significance. Here, we synthesized a fluorescent probe (TPAS) by condensation of 4-(diphenylamino)benzaldehyde, carbohydrazide, and salicylaldehyde, which can be used for the detection of ClO- in water and sensing of acidic gas in its solid state. The probe showed strong selective recognition of ClO- in acetonitrile and good tolerance to interference ions. There were good linear responses between the intensity of absorbance and fluorescence and the amount of ClO-. The TPAS solid and its paper strips can emit red fluorescence when exposed to volatile acidic vapours. After being treated with NH3, the red fluorescence can be restored to yellow. The response process of TPAS to ClO- and acid gases was characterized using nuclear magnetic resonance, electrospray ionisation mass spectrometry, transmission electron microscopy, and density functional theory calculations. Furthermore, it can be utilized in analyzing ClO- in commercially available bleaching products; the detection results were basically compatible with the labelled values. In addition, the probe is biocompatible and can be applied for imaging ClO- in zebrafish.
Collapse
Affiliation(s)
- Yuxin Shao
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis; College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao, China
| | - Jingxuan Sun
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis; College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao, China
| | - Peng Li
- Department of Chemistry, Faculty of Science, Beihua University, Jilin, China
| | - Chao-Ying Gao
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis; College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao, China
| | - Yang Yang
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis; College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
11
|
Hua Y, Si X, Li D, Li Z, Xu T. Hydrogen peroxide fluorescent probe-monitored butyric acid inhibition of the ferroptosis process. LUMINESCENCE 2024; 39:e4715. [PMID: 38506397 DOI: 10.1002/bio.4715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 03/21/2024]
Abstract
Short-chain fatty acids, such as butyrate, play pivotal roles in various physiological processes within the human body. Recent advances in understanding cell death pathways, specifically ferroptosis, have unveiled unique opportunities for therapeutic development. Ferroptosis is linked to iron accumulation and oxidative stress, whereas butyrate has emerged as a cellular protector against oxidative stress, potentially inhibiting ferroptosis. Hydrogen peroxide (H2 O2 ) is a key player in oxidative stress, and its monitoring has gained significance in disease mechanisms. We present an innovative fluorescent probe, HOP, capable of dynamically tracking intracellular H2 O2 levels, enabling spatial and temporal visualization. The probe exhibits high accuracy (limit of detection = 0.14 μM) and sensitivity, paving the way for disease diagnosis and treatment innovations. Importantly, HOP displayed minimal toxicity, making it suitable for cellular applications. Cellular imaging experiments demonstrated its ability to penetrate cells and monitor intracellular H2 O2 levels accurately. The HOP probe confirmed H2 O2 as a critical marker in ferroptosis. Our innovative HOP provides a powerful tool for tracking intracellular H2 O2 levels and offers insights into the modulation of ferroptosis, potentially opening new avenues for disease research and therapeutic interventions.
Collapse
Affiliation(s)
- Yuanqing Hua
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xianghuan Si
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongna Li
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhen Li
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tianshu Xu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Lang W, Qin JM, Cao QY. A novel polymer-based probe for fluorescently ratiometric sensing of hydrogen sulfide with multiple applications. Anal Chim Acta 2024; 1286:342051. [PMID: 38049239 DOI: 10.1016/j.aca.2023.342051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/13/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023]
Abstract
Hydrogen sulfide (H2S) as an endogenous signaling molecule, plays an irreplaceable role in many important physiological activities. It is also closely related to sewage treatment, wine quality evaluation, and food spoilage. Herein, we have successfully synthesized a novel polymer-based probe P1 for fluorescently ratiometric sensing of H2S with a high selectivity and sensitivity. By virtue of ring-opening metathesis polymerization (ROMP), P1 was prepared with the disulfide bond linked coumarin-norbornene dyad NB-SS-COU as energy donor, the aggregation-induced emission (AIE) fluorophore anchored norbornene NB-TPE as energy receptor, and the polyethylene glycol (PEG) attached norbornene NB-PEG as a hydrophilic chain. At the 400 nm excitation, P1 displays a bright red emission at 615 nm due to the efficient fluorescence resonance energy transfer (FRET) from energy donor COU to energy acceptor TPE. Upon addition of H2S, it shows strong COU-based blue emission at 473 nm for cleavage of the disulfide bond. We also constructed a smartphone sensing platform to conduct visual quantitative detection of H2S by calculating the B/R (blue/red) emission ratio values. Moreover, P1 can be successfully employed in evaluating the level fluctuations of endogenous and exogenous H2S in living cells, testing water samples/wine samples, and monitoring food freshness.
Collapse
Affiliation(s)
- Wei Lang
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Jia-Mei Qin
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Qian-Yong Cao
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China.
| |
Collapse
|
13
|
Tang J, Zhang K, Ni T, Xu B, Hou B, Liu X, Jiang W. Multiple fluorescence and hydrogen peroxide-responsive properties of novel triphenylamine-benzothiazole derivatives. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4021-4031. [PMID: 37548508 DOI: 10.1039/d3ay01038d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
A novel fluorescent dye molecule - triphenylamine (TPA)-benzothiazole (BZT) - based on excited state intramolecular proton transfer (ESIPT) was prepared by the Suzuki coupling reaction. The photophysical property assay indicates that BZT-TPA appeared in distinguishable colors in mixed solvents with different water contents. Moreover, BZT-TPA exhibited observable AIE behavior. On this basis, a fluorescent probe BZT-TPA-BO was synthesized for detecting H2O2. This probe molecule was found to have excellent selectivity, rapid response, and good linear relationship (R2 = 0.989) for detecting H2O2 in aqueous medium. Through DFT calculation, fluorescence spectrum, nuclear magnetic titration and HR-MS, the mechanism of recognition of H2O2 by the probe BZT-TPA-BO is proposed. In addition, the probe BZT-TPA-BO to some extent exhibited better performance for detecting exogenous H2O2 in HeLa cells.
Collapse
Affiliation(s)
- Jiyu Tang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, P. R. China.
| | - Kaiming Zhang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, P. R. China.
- Key Laboratory of Green Catalysis of Sichuan Institute of High Education, Zigong, Sichuan 643000, P. R. China
| | - Tong Ni
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, P. R. China.
| | - Bin Xu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, P. R. China.
- Key Laboratory of Green Catalysis of Sichuan Institute of High Education, Zigong, Sichuan 643000, P. R. China
| | - Binjie Hou
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, P. R. China.
- Key Laboratory of Green Catalysis of Sichuan Institute of High Education, Zigong, Sichuan 643000, P. R. China
| | - Xiaoqiang Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, P. R. China.
- Key Laboratory of Green Catalysis of Sichuan Institute of High Education, Zigong, Sichuan 643000, P. R. China
| | - Weidong Jiang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, P. R. China.
- Key Laboratory of Green Catalysis of Sichuan Institute of High Education, Zigong, Sichuan 643000, P. R. China
| |
Collapse
|
14
|
Zhang CL, Liu C, Nie SR, Li XL, Wang YM, Zhang Y, Guo JH, Sun YD. Two novel fluorescent probes based on quinolinone for continuous recognition of Al 3+ and ClO . SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122917. [PMID: 37269662 DOI: 10.1016/j.saa.2023.122917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/06/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
On the basis of classical Schiff base reaction, two novel and efficient fluorescent probes (DQNS, DQNS1) were designed and synthesized by introducing Schiff base structure into dis-quinolinone unit for structural modification, which can be used to detect Al3+ and ClO-. Because the power supply capacity of H is weaker than that of methoxy, DQNS shows better optical performance: a large Stokes Shift (132 nm), identify Al3+ and ClO- with high sensitivity and selectivity, low detection limit (29.8 nM and 25 nM) and fast response time (10 min and 10 s). Through the working curve and NMR titration experiment, the recognition mechanism of Al3+ and ClO- (PET and ICT) probes are confirmed. Meanwhile, it is speculated that the probe has continuity for the detection of Al3+ and ClO-. Furthermore, DQNS detection of Al3+ and ClO- was applied to real water samples and living cell imaging.
Collapse
Affiliation(s)
- Cheng-Lu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China.
| | - Chang Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Shi-Ru Nie
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Xiang-Ling Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Yi-Ming Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Jing-Hao Guo
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Yue-Dong Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| |
Collapse
|
15
|
Chen R, Hu T, Xing S, Wei T, Chen J, Li T, Niu Q, Zhang Z, Ren H, Qin X. A dual-responsive fluorescent turn-on sensor for sensitively detecting and bioimaging of hydrazine and hypochlorite in biofluids, live-cells, and plants. Anal Chim Acta 2023; 1239:340735. [PMID: 36628730 DOI: 10.1016/j.aca.2022.340735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Hydrazine (N2H4) and hypochlorite (ClO-) are extremely harmful to the public health, so it is vitally necessary to detect them in living system. Herein, we developed a new phenthiazine-thiobarbituric acid based dual-analyte responsive fluorescent sensor PT for visually distinguishing and detecting N2H4 and ClO-. PT underwent N2H4/ClO--induced CC breakage, achieving olive-drab/brilliant green fluorescence lighting-up response towards N2H4/ClO- with superb specifity, ultra-sensitivity (detection limit: 15.4 nM for N2H4, 13.7 nM for ClO-), and ultra-fast response (N2H4: <15 s, ClO-: <20 s). The mechanisms for sensing N2H4 and ClO- were investigated with support of spectral measurements and DFT investigation. Sensor based paper-strip/silica-gel device was developed for in-field supervision and on-site monitoring of gaseous and aqueous N2H4 and ClO- solution. In addition, the PT was also applied for quantitatively detecting N2H4 and ClO- in soil, food, plants and bio-fluids. Moreover, PT was utilized to visualize exogenous N2H4 and ClO- in living plants and live-cells, demonstrating this sensor utilized as a powerful tool to detect N2H4 and ClO- in biological fields.
Collapse
Affiliation(s)
- Ruiming Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Tingting Hu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Shu Xing
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Tao Wei
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Tianduo Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Qingfen Niu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China.
| | - Zhengyang Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Huijun Ren
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Xiaoxu Qin
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| |
Collapse
|
16
|
Zhang Q, Du H, Xie S, Tian F, Long X, Liu S, Wu Y. Preparation of One-Emission Nitrogen-Fluorine-Doped Carbon Quantum Dots and Their Applications in Environmental Water Samples and Living Cells for ClO - Detection and Imaging. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:7515979. [PMID: 37144174 PMCID: PMC10154095 DOI: 10.1155/2023/7515979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 03/05/2023] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Abstract
Hypochlorite (ClO-) has received extensive attention owing to its significant roles in the immune defense and pathogenesis of numerous diseases. However, excessive or misplaced production of ClO- may pose certain diseases. Thus, to determine its biological functions in depth, ClO- should be tested in biosystems. In this study, a facile, one-pot synthesis of nitrogen-fluorine-doped carbon quantum dots (N, F-CDs) was developed using ammonium citrate tribasic, L-alanine, and ammonium fluoride as raw materials under hydrothermal conditions. The prepared N, F-CDs demonstrate not only strong blue fluorescence emission with a high fluorescence quantum yield (26.3%) but also a small particle size of approximately 2.9 nm, as well as excellent water solubility and biocompatibility. Meanwhile, the as-prepared N, F-CDs exhibit good performance in the highly selective and sensitive detection of ClO-. Thus, a wide concentration response range of 0-600 μM with a low limit of detection (0.75 μM) was favorably obtained for the N, F-CDs. Based on the excellent fluorescence stability, excellent water solubility, and low cell toxicity, the practicality and viability of the fluorescent composites were also successfully verified via detecting ClO- in water samples and living RAW 264.7 cells. The proposed probe is expected to provide a new approach for detecting ClO- in other organelles.
Collapse
Affiliation(s)
- Qianchun Zhang
- School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Minzu Normal University of Xingyi, Xingyi 562400, China
| | - Haijiang Du
- School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Minzu Normal University of Xingyi, Xingyi 562400, China
| | - Siqi Xie
- School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Minzu Normal University of Xingyi, Xingyi 562400, China
| | - Fengling Tian
- School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Minzu Normal University of Xingyi, Xingyi 562400, China
| | - Xixi Long
- School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Minzu Normal University of Xingyi, Xingyi 562400, China
| | - Shan Liu
- School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Minzu Normal University of Xingyi, Xingyi 562400, China
| | - Yun Wu
- School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Minzu Normal University of Xingyi, Xingyi 562400, China
| |
Collapse
|
17
|
Messina MS, Quargnali G, Chang CJ. Activity-Based Sensing for Chemistry-Enabled Biology: Illuminating Principles, Probes, and Prospects for Boronate Reagents for Studying Hydrogen Peroxide. ACS BIO & MED CHEM AU 2022; 2:548-564. [PMID: 36573097 PMCID: PMC9782337 DOI: 10.1021/acsbiomedchemau.2c00052] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
Activity-based sensing (ABS) offers a general approach that exploits chemical reactivity as a method for selective detection and manipulation of biological analytes. Here, we illustrate the value of this chemical platform to enable new biological discovery through a case study in the design and application of ABS reagents for studying hydrogen peroxide (H2O2), a major type of reactive oxygen species (ROS) that regulates a diverse array of vital cellular signaling processes to sustain life. Specifically, we summarize advances in the use of activity-based boronate probes for the detection of H2O2 featuring high molecular selectivity over other ROS, with an emphasis on tailoring designs in chemical structure to promote new biological principles of redox signaling.
Collapse
Affiliation(s)
- Marco S. Messina
- Department
of Chemistry and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Gianluca Quargnali
- Department
of Chemistry and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department
of Chemistry and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Duan N, Yang S. Research Progress on Multifunctional Fluorescent Probes for Biological Imaging, Food and Environmental Detection. Crit Rev Anal Chem 2022; 54:775-817. [PMID: 35849642 DOI: 10.1080/10408347.2022.2098670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
There has been rapid progress in the development of fast, sensitive, cheap and low-cytotoxicity micro-molecule fluorescent probes for application in various fields, including disease diagnosis, food safety and environmental safety. As an analytical tool, dual-function fluorescent probes with dual-emission responses have attracted considerable attention due to their cost-effectiveness and efficiency over single-function sensors. This review primarily describes research progress on multifunctional probes in terms of the reaction type and coordination type, as well as the general design principles of probes. The analytes include reactive oxygen species (ROS), reactive sulfur species (RSS), harmful cations and anions, etc. Multifunctional probes for food, medical and environmental applications are listed for future research. To improve the development of rapid detection methods, trends and strategies in the development of multifunctional fluorescent probes are also discussed.
Collapse
Affiliation(s)
- Ning Duan
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, PR China
| | - Shaoxiang Yang
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, PR China
| |
Collapse
|
19
|
Zhan X, Yu X, Li B, Zhou R, Fang Q, Wu Y. Quantifying H 2O 2 by ratiometric fluorescence sensor platform of N-GQDs/rhodamine B in the presence of thioglycolic acid under the catalysis of Fe 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121191. [PMID: 35366522 DOI: 10.1016/j.saa.2022.121191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/24/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
In the presence of thioglycolic acid (TGA) and under the catalysis of Fe3+, a simple, rapid, sensitive, selective and effective ratiometric fluorescence sensor platform based on the mixed physically blue nitrogen-doped graphene quantum dots (N-GQDs) as probe signals and orange rhodamine B as internal standard signals has been constructed for analysis of H2O2 in human serum. TGA is the key factor for fluorescence response toward H2O2 by N-GQDs and the mechanism is H2O2 reacts speedily with TGA under the catalysis of Fe3+, and produces intermediate of superoxide anions (O2-), which accepts electrons from N-GQDs, and generates graphene oxide, causing the fluorescence quench of N-GQDs. Compared with N-GQDs probe, the sensitivity of the ratiometric fluorescence sensor platform of N-GQDs/rhodamine B for analysis of H2O2 has been improved by nearly 5-folds. Under the optimum conditions, Fλ=580nm/Fλ=440nm has a good linear relationship with the concentration of H2O2 and the detection limit of H2O2 is 0.46 μmol/L with 3.5% RSD. The established sensor platform has been successfully used for probing H2O2 in human serum with satisfactory results. The superior performance of the probe lies in its high selectivity and can be directly employed in detecting H2O2 in serum samples without any sample pretreatment procedures.
Collapse
Affiliation(s)
- Xin Zhan
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Xiaoxiao Yu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Benmengyang Li
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Rui Zhou
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Qingyu Fang
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Yiwei Wu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
20
|
Li M, Wang B, Liu J, Zhang Z, Chen L, Li Y, Yan X. Lipid Droplet-Specific Dual-Response Fluorescent Probe for the Detection of Polarity and H 2O 2 and Its Application in Living Cells. Anal Chem 2022; 94:9732-9739. [PMID: 35763417 DOI: 10.1021/acs.analchem.2c01243] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
H2O2 and polarity are quite important in many physiological and pathological processes, and their relationship is complicated and obscure for researchers. Thus, it is vital and challenging to achieve simultaneous detection of H2O2 and polarity in vivo. Herein, the first naphthalimide-triphenylamine-based dual-site fluorescent probe NATPA is developed for simultaneously imaging intracellular H2O2 and polarity fluctuations. It exhibits excellent sensitivity (LOD = 44 nM), selectivity, and fast response (15 min) to H2O2 and a superior capacity for detecting polarity upon the intramolecular charge transfer (ICT) effect. Besides, the probe displays low cytotoxicity and lipid droplet targeting and is further applied in imaging H2O2 and polarity fluctuations in HepG2 and L-02 cells, so that NATPA is qualified to distinguish cancer cells from normal cells. This research contributes a new design principle for the construction of dual-site fluorescent probes for simultaneously detecting active molecules and polarity.
Collapse
Affiliation(s)
- Mingrui Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Bowei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.,Institute of Shaoxing, Tianjin University, Shaoxing 312300, Zhejiang, P. R. China.,Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang 522000, Guangdong, P. R. China.,Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| | - Jiayi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Zizhuo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Ligong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.,Institute of Shaoxing, Tianjin University, Shaoxing 312300, Zhejiang, P. R. China.,Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang 522000, Guangdong, P. R. China.,Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.,Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang 522000, Guangdong, P. R. China.,Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| | - Xilong Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.,Institute of Shaoxing, Tianjin University, Shaoxing 312300, Zhejiang, P. R. China.,Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang 522000, Guangdong, P. R. China.,Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| |
Collapse
|
21
|
Ai Y, Zhu Z, Ding H, Fan C, Liu G, Pu S. A dual-responsive fluorescent probe for detection of H2S and Cu2+ based on rhodamine-naphthalimide and cell imaging. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Song H, Zhou H, Zhuang Q, Li Z, Sun F, Yuan Z, Lou Y, Zhou G, Zhao Y. IFE based nanosensor composed of UCNPs and Fe(II)-phenanthroline for detection of hypochlorous acid and periodic acid. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Niu P, Liu J, Xu F, Yang L, Li Y, Sun A, Wei L, Liu X, Song X. Dual-Ratiometric Fluorescent Probe for H 2O 2 and HClO in Living Cells and Zebrafish and Application in Alcoholic Liver Injury Monitoring. ACS APPLIED BIO MATERIALS 2022; 5:1683-1691. [PMID: 35358386 DOI: 10.1021/acsabm.2c00058] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Reactive oxygen species (ROS) are an important component for maintaining normal physiological activities in organisms, and abnormal changes in their level are often accompanied by many diseases. As the two most representative components of ROS, HClO and H2O2 play vital roles in many physiological and pathological processes and are interdependent and mutually transformable. Although there is a lot of work that has specifically detected HClO or H2O2, there are few reports on the simultaneous differential detection of HClO and H2O2. Here, we report a ratio-based fluorescent probe capable of simultaneously distinguishing HClO and H2O2 based on making the best use of the untapped potential of coumarin derivatives. This probe was triumphantly put into use in the discriminative identification of HClO and H2O2 in aqueous media with high sensitivity and selectivity, and the probe was appropriate in a wide pH range. Furthermore, the imaging experiment for HClO and H2O2 in cells and zebrafish was eventually proven to be feasible. Importantly, this probe was qualified for monitoring the variation of HClO and H2O2 levels in organisms with alcoholic liver injury.
Collapse
Affiliation(s)
- Peixin Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001 Henan Province, China
| | - Jiaojiao Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001 Henan Province, China
| | - Feifei Xu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Yuhan Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001 Henan Province, China
| | - Ailing Sun
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001 Henan Province, China
| | - Liuhe Wei
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001 Henan Province, China
| | - Xingjiang Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001 Henan Province, China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha, 410083 Hunan Province, China
| |
Collapse
|
24
|
Ahmed N, Zareen W, Ye Y. Recent development in fluorescent probes based on attacking of double bond and masking of functional group. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
25
|
Habibi MM, Mousavi M, Shadman Z, Ghasemi JB. Preparation of a nonenzymatic electrochemical sensor based on g-C3N4/MWO4 (M: Cu, Mn, Co, Ni) composite for the determination of H2O2. NEW J CHEM 2022. [DOI: 10.1039/d1nj05711a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen peroxide (H2O2) has a significant effect on physiological proceedings. In the present research, a g-C3N4-based nanocomposite g-C3N4/MWO4(M: Cu, Mn, Co, Ni) was prepared via the precipitation-calcination method. A...
Collapse
|
26
|
A dual-site colorimetric fluorescent probe for rapid detection of hydrazine/hypochlorite and its application in two-photon fluorescent bioimaging. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
Wang Y, Ma C, Zheng X, Ju M, Fu Y, Zhang X, Shen B. A red emission multiple detection site probe for detecting carboxylesterase 1 based on BODIPY fluorophore. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
28
|
Lu J, Ji L, Yu Y. Rational design of a selective and sensitive "turn-on" fluorescent probe for monitoring and imaging hydrogen peroxide in living cells. RSC Adv 2021; 11:35093-35098. [PMID: 35493133 PMCID: PMC9042858 DOI: 10.1039/d1ra06620j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/16/2021] [Indexed: 12/12/2022] Open
Abstract
As one type of reactive oxygen species (ROS), hydrogen peroxide (H2O2) plays a key role in regulating a variety of cellular functions. Herein, a fluorescent probe N-Py-BO was well designed and synthesized and its ability for detecting H2O2 by fluorescence intensity was evaluated. In the design, the arylboronate ester group was acted as a reaction site for H2O2. Upon reaction with H2O2 under physiological conditions, the boronate moiety in the probe was oxidized, followed by detachment from the probe and as a result, a "turn-on" fluorescence response for H2O2 was acquired. Due to the D-A structure formation between N,N'-dimethylaminobenzene and the -CN group and the linkage by thiophene and C[double bond, length as m-dash]C bonds to increase the conjugate length, this probe showed a remarkable red shift of emission wavelength (650 nm) as well as a large Stokes shift (214 nm). An excellent linear relation with concentrations of H2O2 ranging from 2.0 to 200 μM and a good selectivity over other biological species were obtained. Importantly, taking advantage of the low toxicity and good biocompatibility, the developed probe was successfully applied to monitoring and imaging H2O2 and its level fluctuation in living cells, which provided a powerful tool for evaluation of cellular oxidative stress and understanding the pathophysiological process of H2O2-related diseases.
Collapse
Affiliation(s)
- Jing Lu
- The First Clinical Medical College, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 Jiangsu China
| | - Liang Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 Jiangsu China +86 516 83262138
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 Jiangsu China +86 516 83262138
| |
Collapse
|
29
|
Simultaneous imaging of hypochlorous acid and nitric oxide in live cells based on a dual-channel fluorescent probe. Anal Chim Acta 2021; 1183:338980. [PMID: 34627515 DOI: 10.1016/j.aca.2021.338980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 07/24/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022]
Abstract
Both reactive oxygen species (ROS) and reactive nitrogen species (RNS) are inevitably produced during normal human metabolism. Various ROS and RNS together form tangled networks that play important roles in many physiological and pathological processes. Here we used 1,8-naphthalene diamine as a reactive group to develop a fluorescent probe, N-[2-(6-phenylethynyl)quinolinylmethyl]-1,8-diamino naphthalene (QBN), for HOCl and NO. QBN showed a "turn-on" fluorescent response at 464 nm to HOCl in the range of 0-75 μM with rapid responding time (10 s) and detection limit (0.11 ± 0.03 μM). Furthermore, a "turn-on" fluorescent responses at 512 nm to NO in the range of 0-40 μM with responding time (20 s) and detection limit (25.7 ± 3.4 nM) was found. The response mechanisms of QBN to HOCl and NO were discussed based on mass analysis of the different products. The dual-channel probe was then successfully applied for simultaneous imaging of both exogenous and endogenous HOCl and NO in live cells.
Collapse
|
30
|
Yang SD, Zhao YQ, Zhang F, Liao M, Yang Z, Wang YJ, Yu LL. An Abdominal Registration Technology for Integration of Nanomaterial Imaging-Aided Diagnosis and Treatment. J Biomed Nanotechnol 2021; 17:952-959. [PMID: 34082880 DOI: 10.1166/jbn.2021.3076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Image registration technology is a key technology used in the process of nanomaterial imaging-aided diagnosis and targeted therapy effect monitoring for abdominal diseases. Recently, the deep-learning based methods have been increasingly used for large-scale medical image registration, because their iteration is much less than those of traditional ones. In this paper, a coarse-to-fine unsupervised learning-based three-dimensional (3D) abdominal CT image registration method is presented. Firstly, an affine transformation was used as an initial step to deal with large deformation between two images. Secondly, an unsupervised total loss function containing similarity, smoothness, and topology preservation measures was proposed to achieve better registration performances during convolutional neural network (CNN) training and testing. The experimental results demonstrated that the proposed method severally obtains the average MSE, PSNR, and SSIM values of 0.0055, 22.7950, and 0.8241, which outperformed some existing traditional and unsupervised learning-based methods. Moreover, our method can register 3D abdominal CT images with shortest time and is expected to become a real-time method for clinical application.
Collapse
Affiliation(s)
- Shao-Di Yang
- School of Automation, Central South University, Changsha 410083, China
| | - Yu-Qian Zhao
- School of Automation, Central South University, Changsha 410083, China
| | - Fan Zhang
- School of Automation, Central South University, Changsha 410083, China
| | - Miao Liao
- School of Automation, Central South University, Changsha 410083, China
| | - Zhen Yang
- School of Xiangya Hospital, Central South University, Changsha 410075, China
| | - Yan-Jin Wang
- School of Xiangya Hospital, Central South University, Changsha 410075, China
| | - Ling-Li Yu
- School of Automation, Central South University, Changsha 410083, China
| |
Collapse
|
31
|
Saini A, Singh J, Kumar S. Optically superior fluorescent probes for selective imaging of cells, tumors, and reactive chemical species. Org Biomol Chem 2021; 19:5208-5236. [PMID: 34037048 DOI: 10.1039/d1ob00509j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fluorescent chemical probes have become powerful tools to study biological events in living cells. They provide a great opportunity to quantitatively and qualitatively analyze the physiological and biochemical properties of living cells in real time. The ability of researchers to manipulate these probes for a desired specific purpose has turned many heads in the scientific community. Despite a slow start, fluorescent probe research has seen exponential growth over the last decade in the world. This change required some adventurous and creative scientists from different fields-like biology, medicine, and chemistry-to come together to facilitate the constant expansion of this field. This review article introduces some fundamental concepts related to fluorescent probe designing and development. It also summarizes various fluorescent probes with superior optical properties used in fields like cell biology, cellular imaging, medical research, and cancer diagnosis. It is hoped that this article will encourage more young and creative scientists to contribute their talents to this field.
Collapse
Affiliation(s)
- Abhishek Saini
- Department of Chemistry, Hansraj College, University of Delhi, Delhi-110007, India.
| | - Jyoti Singh
- Department of Chemistry, Hansraj College, University of Delhi, Delhi-110007, India.
| | - Sonu Kumar
- Department of Chemistry, Hansraj College, University of Delhi, Delhi-110007, India.
| |
Collapse
|
32
|
Zhou Y, Wang X, Zhang W, Tang B, Li P. Recent advances in small molecule fluorescent probes for simultaneous imaging of two bioactive molecules in live cells and in vivo. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2041-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
33
|
Insight into Fluorescence Imaging and Bioorthogonal Reactions in Biological Analysis. Top Curr Chem (Cham) 2021; 379:10. [DOI: 10.1007/s41061-020-00323-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
|
34
|
Li M, Fang W, Wang B, Du Y, Hou Y, Chen L, Cui S, Li Y, Yan X. A novel dual-site ICT/AIE fluorescent probe for detecting hypochlorite and polarity in living cells. NEW J CHEM 2021. [DOI: 10.1039/d1nj03558d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel dual-site fluorescent probe (CTPA) was rationally designed and synthesized for the detection of hypochlorite (ClO−) and polarity.
Collapse
Affiliation(s)
- Mingrui Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Wangwang Fang
- Shaoxing Xingxin New Material Co., Ltd, Zhejiang 312369, P. R. China
| | - Bowei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, P. R. China
- Zhejiang Shaoxing Institute of Tianjin University, Shaoxing, Zhejiang, China
| | - Yuchao Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Yuqing Hou
- Zhejiang Lonsen Group Co., Ltd, Zhejiang 312300, P. R. China
| | - Ligong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, P. R. China
- Zhejiang Shaoxing Institute of Tianjin University, Shaoxing, Zhejiang, China
| | - Siqian Cui
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, P. R. China
| | - Xilong Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, P. R. China
- Zhejiang Shaoxing Institute of Tianjin University, Shaoxing, Zhejiang, China
| |
Collapse
|
35
|
Zhou R, Niu L, Hu Y, Qi Q, Huang W, Yang L. A novel dual-function fluorescent probe for the rapid detection of bisulfite and hydrogen peroxide in aqueous solution and living cells. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 248:119226. [PMID: 33296749 DOI: 10.1016/j.saa.2020.119226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 02/05/2023]
Abstract
In this work, Hcy-OB, a novel hemicyanine-based biocompatible dual-function fluorescence probe for bisulfite and H2O2 detection is designed and synthesized. Based on a 1,4-addition reaction, Hcy-OB can be used for bisulfite detection with fast response, high sensitivity and low detection limit (120 nM). In addition, the probe is successfully applied to the detection of bisulfite in aqueous solution. Furthermore, Hcy-OB shows excellent performance for hydrogen peroxide detection with the oxidation of phenylboronic acid. Hcy-OB shows excellent selectivity to H2O2 over other interfering substances with detection limit of H2O2 is calculated to be 70 nM. Most importantly, due to its good cell membrane permeability and low cytotoxicity, Hcy-OB has been applied to monitor and image H2O2 in living cells and mice.
Collapse
Affiliation(s)
- Ruqiao Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Longxing Niu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, PR China
| | - Yuefu Hu
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qingrong Qi
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wencai Huang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
36
|
|
37
|
Ma C, Zhong G, Zhao Y, Zhang P, Fu Y, Shen B. Recent development of synthetic probes for detection of hypochlorous acid/hypochlorite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118545. [PMID: 32521447 DOI: 10.1016/j.saa.2020.118545] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/23/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Hypochlorous acid/hypochlorite (HOCl/OCl-), as one of the most important reactive oxygen species (ROS), plays an important role in various physiological and pathological processes. Nonproperly located or abnormal concentration of OCl-, however, is associated with many diseases. Thus, developing the fluorescent probe for detecting OCl- is of great significance. To this end, in last decade, many fluorescent probes have been developed and applied for detecting HOCl/OCl- in vitro and in vivo. Despite a great progress has achieved, the development and application of near-infrared fluorescent HOCl/OCl- probe still have some challenges. For example, highly specific and sensitive NIR fluorescent HOCl/OCl- probes applied in endogenous OCl- detection and subcellular organelle bioimaging. In this review, we summarized the representative cases of HOCl/OCl- probes with properties that mentioned above. The discussion contains design strategies, detection mechanisms, as well as applications in bioimaging.
Collapse
Affiliation(s)
- Chenggong Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Guoyan Zhong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Yu Zhao
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, United States
| | - Ping Zhang
- "Nanjing Normal University-Zhejiang Kingsun Eco-pack" Union Laboratory, Xianju, Zhejiang 317300, China
| | - Yongqian Fu
- "Nanjing Normal University-Zhejiang Kingsun Eco-pack" Union Laboratory, Xianju, Zhejiang 317300, China; School of Life Science, Taizhou University, Jiaojiang, Zhejiang 318000, China
| | - Baoxing Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
38
|
Dai J, Hou Y, Wu J, Shen B. A Minireview of Recent Reported Carboxylesterase Fluorescent Probes: Design and Biological Applications. ChemistrySelect 2020. [DOI: 10.1002/slct.202002625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jianan Dai
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University No.1, Wenyuan Road China
| | - Yadan Hou
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University No.1, Wenyuan Road China
| | - Jichun Wu
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University No.1, Wenyuan Road China
| | - Baoxing Shen
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University No.1, Wenyuan Road China
| |
Collapse
|
39
|
Zhu Z, Ding H, Wang Y, Fan C, Tu Y, Liu G, Pu S. Rational design of a FRET-based ratiometric fluorescent chemosensor for detecting ClO− with large Stokes based on rhodamine and naphthalimide fluorophores. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|