1
|
Tian YM, Lai HJ, Wu WN, Zhao XL, Wang Y, Fan YC, Xu ZH, James TD. A coumarin-based probe with far-red emission for the ratiometric detection of peroxynitrite in the mitochondria of living cells and mice. Talanta 2025; 284:127272. [PMID: 39591867 DOI: 10.1016/j.talanta.2024.127272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Peroxynitrite (ONOO-) is a transient and reactive oxidant with significant roles in numerous biological processes. Research has established a correlation between excessive mitochondrial ONOO- production and various diseases. As such we developed a mitochondria-targeting, fluorescence-based ratiometric probe using a boronate group for ONOO- recognition and coumarin as the fluorophore. The probe exhibited a 615 nm far-red emission, and a new fluorescence emission at 475 nm developed upon adding ONOO-.The probe possessed high sensitivity and selectivity for ONOO- detection with distinct ratiometric fluorescent output and a low detection limit of 11 nM. Significantly, Probe 1 could monitor ONOO- level fluctuations in biological systems due to its superior spectral properties and low toxicity. Notably, probe 1 has been effectively used for imaging in live HepG2 cells, zebrafish, Arabidopsis thaliana, and liver injury mouse tissues.
Collapse
Affiliation(s)
- Yu-Man Tian
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Hui-Juan Lai
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Wei-Na Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Xiao-Lei Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Yun-Chang Fan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Zhi-Hong Xu
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Xuchang, 461000, China; College of Chemistry, Zhengzhou University, Zhengzhou, 450052, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
2
|
Peng W, Li W, Chai L, Dai Y, Wei Z, Zhan Z. Construction of a sequence activated fluorescence probe for simultaneous detection of γ-glutamyl transpeptidase and peroxynitrite in acute kidney injury. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125066. [PMID: 39216143 DOI: 10.1016/j.saa.2024.125066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Acute kidney injury (AKI) can result in a sudden decline in kidney function and, if not promptly diagnosed and treated, can lead to a high mortality rate. Therefore, there is a critical need for the development of a non-invasive and dependable early diagnostic method for AKI to prevent its progression and deterioration. To address the risk of misdiagnosis or overlooked diagnosis due to reliance on a single biomarker, we developed a novel molecular fluorescent probe (HX-GP) to simultaneously detect and image two biomarkers, γ-Glutamyl transpeptidase (γ-GGT) and Peroxynitrite (ONOO-), in the AKI process. HX-GP can specifically detect γ-GGT in the red fluorescence channel (λem = 613 nm) and ONOO- in the green fluorescence channel (λem = 518 nm). HX-GP demonstrated high sensitivity, selectivity, and rapid response, showing excellent biocompatibility and detection performance. In addition, HX-GP was successful in imaging experiments in a cell model of cisplatin-induced AKI, a result that highlights its potential application value in early diagnosis of AKI.
Collapse
Affiliation(s)
- Wu Peng
- Department of Respiratory and Critical Care Medicine, Department of Laboratory Medicine, West China School of Nursing/Outpatient Department, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Natural and Biomimetic Medicine Research Center, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenlai Li
- Department of Respiratory and Critical Care Medicine, Department of Laboratory Medicine, West China School of Nursing/Outpatient Department, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Natural and Biomimetic Medicine Research Center, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Chai
- Department of Respiratory and Critical Care Medicine, Department of Laboratory Medicine, West China School of Nursing/Outpatient Department, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Natural and Biomimetic Medicine Research Center, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongcheng Dai
- Department of Respiratory and Critical Care Medicine, Department of Laboratory Medicine, West China School of Nursing/Outpatient Department, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Natural and Biomimetic Medicine Research Center, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zeliang Wei
- Department of Respiratory and Critical Care Medicine, Department of Laboratory Medicine, West China School of Nursing/Outpatient Department, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Natural and Biomimetic Medicine Research Center, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zixuan Zhan
- Department of Respiratory and Critical Care Medicine, Department of Laboratory Medicine, West China School of Nursing/Outpatient Department, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Natural and Biomimetic Medicine Research Center, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
4
|
Karak A, Banik D, Ganguly R, Banerjee S, Ghosh P, Maiti A, Mandal D, Mahapatra AK. A Phenanthrenequinone-Based Ratiometric Fluorescent Probe for Rapid Detection of Peroxynitrite with Imaging in Osteoblast Precursor Cells. Chem Res Toxicol 2024; 37:771-778. [PMID: 38658839 DOI: 10.1021/acs.chemrestox.4c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In the current situation, peroxynitrite (ONOO-) is drawing the increasing attention of researchers for its pivotal role in diverse pathological and physiological processes on grounds of robust oxidation and nitrification. Herein, we have successfully designed and synthesized a phenanthrenequinone benzyl borate-based chemosensor for fast and selective detection of ONOO-. The probe PTDP itself had an orange fluorescence, which was changed to strong blue fluorescence upon the addition of ONOO-, indicating the ratiometric response of the probe. This is so because of the cleavage of the benzyl boronate-protecting group of PTDP upon the addition of ONOO- with simultaneous releasing of pyridinyl-based chemosensor PPI. The PTDP showed outstanding performance in the various photophysical studies such as good selectivity, excellent sensitivity with a very low detection limit of 2.74 nM, and a very fast response time (<15 s). Furthermore, for practical applicability, it was successfully applied in the ratiometric detection of ONOO- in osteoblast precursor cells.
Collapse
Affiliation(s)
- Anirban Karak
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah 711 103, India
| | - Dipanjan Banik
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah 711 103, India
| | - Rajdeep Ganguly
- Centre for Healthcare Science, Indian Institute of Engineering Science and Technology, Shibpur,Howrah 711103, India
| | - Shilpita Banerjee
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah 711 103, India
| | - Pintu Ghosh
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah 711 103, India
| | - Anwesha Maiti
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah 711 103, India
| | - Debasish Mandal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala ,Punjab 147004, India
| | - Ajit Kumar Mahapatra
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah 711 103, India
| |
Collapse
|
5
|
Chen X, Wang Y, Zhao XL, Fan YC, Bie HY, Wu WN, Xu ZH. Construction of a dual-excitation ratiometric fluorescent probe for determining peroxynitrite levels in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124084. [PMID: 38442615 DOI: 10.1016/j.saa.2024.124084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/01/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
Peroxynitrite (ONOO-) is a highly reactive oxygen species that plays a critical role in many physiological and pathological processes of cell function. This study aimed to propose a ratiometric fluorescent probe BDHCA derived from coumarin for determining the ONOO- level. ONOO- could specifically induce oxidative cleavage of the conjugated C = C double bond in probe BDHCA, providing a fluorescent ratiometric output. The response of probe BDHCA to ONOO- was selective, fast, and highly sensitive, with a detection limit of 50.3 nM. Biological imaging experiments suggested that probe BDHCA could be used to image ONOO- in living RAW264.7 cells and zebrafish.
Collapse
Affiliation(s)
- Xi Chen
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Xiao-Lei Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Yun-Chang Fan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Hong-Yan Bie
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Wei-Na Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Zhi-Hong Xu
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Xuchang, 461000, PR China; College of Chemistry, Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
6
|
Sun X, Jiang Q, Zhang Y, Su J, Liu W, Lv J, Yang F, Shu W. Advances in fluorescent probe development for bioimaging of potential Parkinson's biomarkers. Eur J Med Chem 2024; 267:116195. [PMID: 38330868 DOI: 10.1016/j.ejmech.2024.116195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease. The clinical symptoms of PD are usually related to motor symptoms, including postural instability, rigidity, bradykinesia, and resting tremors. At present, the pathology of PD is not yet clear. Therefore, revealing the underlying pathological mechanism of PD is of great significance. A variety of bioactive molecules are produced during the onset of Parkinson's, and these bioactive molecules may be a key factor in the development of Parkinson's. The emerging fluorescence imaging technology has good sensitivity and high signal-to-noise ratio, making it possible to deeply understand the pathogenesis of PD through these bioactive molecules. Currently, fluorescent probes targeting PD biomarkers are widely developed and applied. This article categorizes and summarizes fluorescent probes based on different PD biomarkers, systematically introduces their applications in the pathological process of PD, and finally briefly elaborates on the challenges and prospects of these probes. We hope that this review will provide in-depth reference insights for designing fluorescent probes, and contribute to study of the pathogenesis and clinical treatment of PD.
Collapse
Affiliation(s)
- Xiaoqian Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Qingqing Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Yu Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Jiali Su
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Wenqu Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Juanjuan Lv
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China.
| | - Fengtang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China.
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China.
| |
Collapse
|
7
|
Fu Q, Yang X, Wang M, Zhu K, Wang Y, Song J. Activatable Probes for Ratiometric Imaging of Endogenous Biomarkers In Vivo. ACS NANO 2024; 18:3916-3968. [PMID: 38258800 DOI: 10.1021/acsnano.3c10659] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Dynamic variations in the concentration and abnormal distribution of endogenous biomarkers are strongly associated with multiple physiological and pathological states. Therefore, it is crucial to design imaging systems capable of real-time detection of dynamic changes in biomarkers for the accurate diagnosis and effective treatment of diseases. Recently, ratiometric imaging has emerged as a widely used technique for sensing and imaging of biomarkers due to its advantage of circumventing the limitations inherent to conventional intensity-dependent signal readout methods while also providing built-in self-calibration for signal correction. Here, the recent progress of ratiometric probes and their applications in sensing and imaging of biomarkers are outlined. Ratiometric probes are classified according to their imaging mechanisms, and ratiometric photoacoustic imaging, ratiometric optical imaging including photoluminescence imaging and self-luminescence imaging, ratiometric magnetic resonance imaging, and dual-modal ratiometric imaging are discussed. The applications of ratiometric probes in the sensing and imaging of biomarkers such as pH, reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione (GSH), gas molecules, enzymes, metal ions, and hypoxia are discussed in detail. Additionally, this Review presents an overview of challenges faced in this field along with future research directions.
Collapse
Affiliation(s)
- Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
8
|
Yan JL, Liu SS, Wu WN, Zhao XL, Fan YC, Wang Y, Xu ZH. A dihydro-benzo[4,5]imidazo[1,2- c]quinazoline-based probe with aggregation-induced ratiometric emission for the ratiometric fluorescent detection of peroxynitrite in living cells and zebrafish. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5311-5315. [PMID: 37791476 DOI: 10.1039/d3ay01416a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
As a significant kind of reactive oxygen species (ROS), peroxynitrite (ONOO-) plays an indispensable role in many physiological and pathological processes. This study aimed to synthesize a novel dihydro-benzo[4,5]imidazo[1,2-c]quinazoline-based probe 1 for detecting ONOO-. In 99.5% H2O solution, probe 1 displayed a distinct aggregation-induced ratiometric emission (AIRE), and would selectively respond toward ONOO-via a ratiometric fluorescent signal, along with a short response time (<30 s) and ultra-sensitivity (LOD = 17.6 nM). Moreover, the probe was applied for monitoring the concentration fluctuations of ONOO- in HeLa cells and zebrafish.
Collapse
Affiliation(s)
- Jin-Long Yan
- College of Science and Technology, Jiaozuo Normal College, Jiaozuo 454001, PR China
| | - Shuang-Shuang Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Wei-Na Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Xiao-Lei Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Yun-Chang Fan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Zhi-Hong Xu
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, PR China.
- College of Chemistry, Zhengzhou University, Zhengzhou 450052, PR China
| |
Collapse
|
9
|
Chen S, Huang W, Tan H, Yin G, Chen S, Zhao K, Huang Y, Zhang Y, Li H, Wu C. A large Stokes shift NIR fluorescent probe for visual monitoring of mitochondrial peroxynitrite during inflammation and ferroptosis and in an Alzheimer's disease model. Analyst 2023; 148:4331-4338. [PMID: 37547973 DOI: 10.1039/d3an00956d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The excessive formation of peroxynitrite (ONOO-) in mitochondria has been implicated in various pathophysiological processes and diseases. However, owing to short emission wavelengths and small Stokes shifts, previously reported fluorescent probes pose significant challenges for mitochondrial ONOO- imaging in biological systems. In this study, a near-infrared (NIR) fluorescent probe, denoted as DCO-POT, is designed for the visual monitoring of mitochondrial ONOO-, displaying a remarkable Stokes shift of 170 nm. The NIR fluorophore of DCO-CHO is released by DCO-POT upon the addition of ONOO-, resulting in off-on NIR fluorescence at 670 nm. This phenomenon facilitates the high-resolution confocal laser scanning imaging of ONOO- generated in biological systems. The practical applications of DCO-POT as an efficient fluorescence imaging tool are verified in this study. DCO-POT enables the fluorometric visualization of ONOO- in organelles, cells, and organisms. In particular, ONOO- generation is analyzed during cellular and organism-level (zebrafish) inflammation during ferroptosis and in an Alzheimer's disease mouse model. The excellent visual monitoring performance of DCO-POT in vivo makes it a promising tool for exploring the pathophysiological effects of ONOO-.
Collapse
Affiliation(s)
- Shiying Chen
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Wei Huang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Hongli Tan
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Guoxing Yin
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Shengyou Chen
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Kuicheng Zhao
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Yinghui Huang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Youyu Zhang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Haitao Li
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Cuiyan Wu
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, PR China
| |
Collapse
|
10
|
Ji Y, Liu S, Zhang J, Qu L, Wu J, Liu H, Cheng Z. Construction of HPQ-based activatable fluorescent probe for peroxynitrite and its application in ferroptosis and mice model of LPS-induced inflammation. Bioorg Chem 2023; 138:106650. [PMID: 37302314 DOI: 10.1016/j.bioorg.2023.106650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
As one of the important members of reactive oxygen species, ONOO- plays a crucial role in signal transduction, immune response, and other physiological activities. Aberrant changes in ONOO- levels in the living organism are usually associated with many diseases. Therefore, it is important to establish a highly selective and sensitive method for the determination of ONOO- in vivo. Herein, we designed a novel ratio near-infrared fluorescent probe for ONOO- by directly conjugating dicyanoisophorone (DCI) to hydroxyphenyl-quinazolinone (HPQ). Surprisingly, HPQD was unaffected by environmental viscosity and responded rapidly to ONOO- within 40 s. The linear range of ONOO- detection was from 0 μM to 35 μM. Impressively, HPQD did not react with reactive oxygen species and was sensitive to exogenous/endogenous ONOO- in live cells. We also investigated the relationship between ONOO- and ferroptosis and achieved in vivo diagnosis and efficacy evaluation of mice model of LPS-induced inflammation, which showed promising prospects of HPQD in ONOO--related studies.
Collapse
Affiliation(s)
- Yuxiang Ji
- Department of Radiotherapy, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Sha Liu
- Department of Radiotherapy, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Jian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Linruikang Qu
- Department of Radiotherapy, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Jinsheng Wu
- Department of Radiotherapy, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Heng Liu
- Department of Radiotherapy, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
| | - Ziyi Cheng
- Department of Radiotherapy, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
11
|
Cui WL, Wang MH, Yang YH, Wang JY, Zhu X, Zhang H, Ji X. Recent advances and perspectives in reaction-based fluorescent probes for imaging peroxynitrite in biological systems. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
A novel near-infrared fluorescent probe for rapid detection of peroxynitrite with large stokes shift and imaging in living cells. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Gu B, Wu C, Zhang C, He S, Tang S, Li H, Shen Y. A morpholino hydrazone-based lysosome-targeting fluorescent probe with fast response and high sensitivity for imaging peroxynitrite in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120100. [PMID: 34186297 DOI: 10.1016/j.saa.2021.120100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/05/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Peroxynitrite (ONOO-) plays important roles in many pathophysiological processes and its subcellular detection draws increasing attention. In this study, we designed and prepared a novel lysosome-targetable fluorescent probe (E)-2-(benzo[d]thiazol-2- yl)-4-methyl-6-((morpholinoimino)methyl)phenol (BMP) for selective detection of ONOO- in living systems by incorporating a reactive morpholino hydrazone as new ONOO- response site into a benzothiazole derivative as fluorophore. After reaction with ONOO-, an obvious fluorescence increase (83-fold) was observed accompanied with distinct dual colorimetric and fluorescence changes. Probe BMP displayed the merits of fast response (<3 s), ultrasensitivity (LOD = 6 nM) and high selectivity towards ONOO- over other physiological species including ROS/RNS. Most importantly, the probe was capable of imaging ONOO- in lysosomes of living cells with good cell permeation and negligible cytotoxicity. Therefore, this research provides an effective tool to study the functions of ONOO- in lysosomes.
Collapse
Affiliation(s)
- Biao Gu
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China
| | - Cuiyan Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Chunxiang Zhang
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Shihui He
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China
| | - Siping Tang
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China.
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Youming Shen
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China.
| |
Collapse
|
14
|
Wang C, Shu W, Chen Q, Yang C, Su S, Gao M, Zhang R, Jing J, Zhang X. A simple dual-response fluorescent probe for imaging of viscosity and ONOO - through different fluorescence signals in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119990. [PMID: 34082351 DOI: 10.1016/j.saa.2021.119990] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Cellular viscosity is a prominent micro-environmental parameter and peroxynitrite is an essential reactive oxygen special, both of which are involved in various pathological and physiological processes. When the intracellular viscosity is abnormal or the ONOO- concentration is irregular, the normal function of cells will be disturbed. Herein, we rationally designed and synthesized a novel multichannel fluorescent probe (probe 1) for multichannel imaging of viscosity and peroxynitrite. Probe 1 displayed about 108-fold enhancement as the viscosity increased from 1.005 cP to 1090 cP. Moreover, the fluorescence intensity at 540 nm was quickly increased after adding ONOO-. It should be noted that probe 1 has high sensitivity, selectivity and low cytotoxicity, which can be successfully employed for the visualization of exogenous and endogenous ONOO- and imaging viscosity changes in HeLa cells by different fluorescent signals. Furthermore, probe 1 could monitor the change of ONOO- induced by LPS (lipopolysaccharide) and IFN-γ (interferon-γ) in zebrafish. This result reveals that probe 1 may inspire more diagnostic and therapeutic programs for viscosity-peroxynitrite related diseases shortly.
Collapse
Affiliation(s)
- Chong Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Wei Shu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Qianqian Chen
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chunlei Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Sa Su
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Mengxu Gao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Rubo Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Jing Jing
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Xiaoling Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
15
|
Duo Y, Luo G, Li Z, Chen Z, Li X, Jiang Z, Yu B, Huang H, Sun Z, Yu XF. Photothermal and Enhanced Photocatalytic Therapies Conduce to Synergistic Anticancer Phototherapy with Biodegradable Titanium Diselenide Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103239. [PMID: 34486220 DOI: 10.1002/smll.202103239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Nanomaterial-based photothermal and photocatalytic therapies are effective against various types of cancers. However, combining two or more materials is considered necessary to achieve the synergistic anticancer effects of photothermal and photocatalytic therapy, which made the preparation process complicated. Herein, the authors describe simple 2D titanium diselenide (TiSe2 ) nanosheets (NSs) that can couple photothermal therapy with photocatalytic therapy. The TiSe2 NSs are prepared using a liquid exfoliation method. They show a layered structure and possess high photothermal conversion efficiency (65.58%) and good biocompatibility. Notably, upon near-infrared irradiation, these NSs exhibit good photocatalytic properties with enhanced reactive oxygen species generation and H2 O2 decomposition in vitro. They can also achieve high temperatures, with heat improving their catalytic ability to further amplify oxidative stress and glutathione depletion in cancer cells. Furthermore, molecular mechanism studies reveal that the synergistic effects of photothermal and enhanced photocatalytic therapy can simultaneously lead to apoptosis and necrosis in cancer cells via the HSP90/JAK3/NF-κB/IKB-α/Caspase-3 pathway. Systemic exploration reveals that the TiSe2 NSs has an appreciable degradation rate and accumulates passively in tumor tissue, where they facilitate photothermal and photocatalytic effects without obvious toxicity. Their study thus indicates the high potential of biodegradable TiSe2 NSs in synergistic phototherapy for cancer treatment.
Collapse
Affiliation(s)
- Yanhong Duo
- Department of Radiation Oncology The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Guanghong Luo
- Department of Radiation Oncology The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
- Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zihuang Li
- Department of Radiation Oncology The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Zide Chen
- Department of Radiation Oncology The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Xianming Li
- Department of Radiation Oncology The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Zhenyou Jiang
- Department of Radiation Oncology The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou, 510632, China
| | - Binlu Yu
- Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hao Huang
- Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhengbo Sun
- Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xue-Feng Yu
- Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
16
|
The Scavenging Effect of Myoglobin from Meat Extracts toward Peroxynitrite Studied with a Flow Injection System Based on Electrochemical Reduction over a Screen-Printed Carbon Electrode Modified with Cobalt Phthalocyanine: Quantification and Kinetics. BIOSENSORS-BASEL 2021; 11:bios11070220. [PMID: 34356690 PMCID: PMC8301918 DOI: 10.3390/bios11070220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
The scavenging activity of myoglobin toward peroxynitrite (PON) was studied in meat extracts, using a new developed electrochemical method (based on cobalt phthalocyanine-modified screen-printed carbon electrode, SPCE/CoPc) and calculating kinetic parameters of PON decay (such as half-time and apparent rate constants). As reactive oxygen/nitrogen species (ROS/RNS) affect the food quality, the consumers can be negatively influenced. The discoloration, rancidity, and flavor of meat are altered in the presence of these species, such as PON. Our new highly thermically stable, cost-effective, rapid, and simple electrocatalytical method was combined with a flow injection analysis system to achieve high sensitivity (10.843 nA µM−1) at a nanomolar level LoD (400 nM), within a linear range of 3–180 µM. The proposed biosensor was fully characterized using SEM, FTIR, Raman spectroscopy, Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV), and Linear Sweep Voltammetry (LSV). These achievements were obtained due to the CoPc-mediated reduction of PON at very low potentials (around 0.1 V vs. Ag/AgCl pseudoreference). We also proposed a redox mechanism involving two electrons in the reduction of peroxynitrite to nitrite and studied some important interfering species (nitrite, nitrate, hydrogen peroxide, dopamine, ascorbic acid), which showed that our method is highly selective. These features make our work relevant, as it could be further applied to study the kinetics of important oxidative processes in vivo or in vitro, as PON is usually present in the nanomolar or micromolar range in physiological conditions, and our method is sensitive enough to be applied.
Collapse
|
17
|
Du Y, Wang H, Zhang T, Wei W, Guo M. ICT-based fluorescent ratiometric probe for monitoring mitochondrial peroxynitrite in living cells. NEW J CHEM 2021. [DOI: 10.1039/d1nj01713f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mitochondria-targeted near-infrared fluorescent probe for the detection of peroxynitrite and the bioimaging of peroxynitrite in cells.
Collapse
Affiliation(s)
- Yuting Du
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou
- China
| | - Hongliang Wang
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou
- China
| | - Ting Zhang
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou
- China
| | - Wen Wei
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou
- China
| | - Minmin Guo
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou
- China
| |
Collapse
|
18
|
Li M, Han H, Zhang H, Song S, Shuang S, Dong C. Boronate based sensitive fluorescent probe for the detection of endogenous peroxynitrite in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118683. [PMID: 32799185 DOI: 10.1016/j.saa.2020.118683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
In this work, a novel boronate-based fluorescent probe (FAM) for the endogenous detection of peroxynitrite (ONOO-) has been developed by using anthracycline as the fluorophore, arlyboronate as the recognition moiety, lipophilic cation as the mitochondrial targeting moiety. Upon reaction of the probe with ONOO-, the oxidation and subsequent hydrolysis of ONOO- to arlyboronate triggers quite rapid fluorescence off-on response, providing a sensitive and highly selective method for the detection of ONOO-. In addition, probe holds high sensitivity with the detection limit of 3.2 nM and excellent specificity including a series of biologically relevant reactive oxygen species. Importantly, FAM with good water solubility displays excellent performances for imaging endogenous peroxynitrite produced by RAW264.7 cells.
Collapse
Affiliation(s)
- Minglu Li
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Hui Han
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Huilin Zhang
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Shengmei Song
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | - Shaomin Shuang
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Chuan Dong
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
19
|
Activatable red emitting fluorescent probe for rapid and sensitive detection of intracellular peroxynitrite. Talanta 2020; 217:121053. [DOI: 10.1016/j.talanta.2020.121053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022]
|